تأثیر برخی از ویژگی‌های خاک بر فعالیت آنزیم اورآژ در شماری از خاک‌های استان اصفهان

فرشید نوری‌نژاد، شاهیور حجار رسولی‌ها و جعفر امپیازی

چکیده

شدت فعالیت آنزیم اورآژ نقش مهمی در کاربرد میکوروز کودور آوره و افزایش آسیب‌های بالقوه زیست محیطی دارد. در این پژوهش، فعالیت آنزیم اورآژ در 20 خاک گوناگون از مناطق مختلف و به‌کارگیری استان اصفهان اندازه‌گیری شد. تا همین‌گونه آن با برخی از ویژگی‌های مهم فیزیکی، شیمیایی و بیولوژیکی خاک نیز تمیز گردید. نمونه‌برداری از خاک به دو روش استریل و غیراستریل انجام شد و از ویژگی‌های مورد نظر در آنها معیارهای دامنه فعالیت آنزیم اورآژ برای خاک‌های مورد بررسی 79-2/5 میکروگرم آماده شده با ازای 1 کیلوگرم خاک در مقیاس انواع نمونه‌برداری تعریف شد.

نتایج حاصل از بررسی همبستگی‌های خطی نشان داد که از میان ویژگی‌های خاک، درصد کربن آلی، فعالیت آنزیم اورآژ و بعضی ویژگی‌هایی که در ویژگی‌های سریالی و دیده نشده، فعالیت آنزیم اورآژ و درصد تیتر آنزیم کل خاک همبستگی بسیار معنی‌داری با یکدیگر داشتند (***همبستگی را دارد، R=0.999***). میان فعالیت آنزیم اورآژ و درصد هیچ یک از قارچ‌های سریالی و نسبت و ریس همبستگی معنی‌داری دیده نشده. فعالیت آنزیم اورآژ، درصد تیتر آنزیم کل خاک، همبستگی‌های سریالی با یکدیگر داشتند (***همبستگی را دارد، R=0.999***). همچنین، فعالیت اورآژ با میکروگرم همبستگی معنی‌داری نشان داد (R=0.999***). لیکن با نسبت جذب سدیم، اورآژ با همبستگی معنی‌داری وجود نداشت. در سه‌ست فرکانس، همبستگی کلی باکتری‌ها (باکتری‌های رشد بیش‌تر) همبستگی معنی‌داری به دست آمد. حجم انسانی کلی باکتری‌ها، اورآژ و فعالیت آنزیم اورآژ در محیط ترکیبی و تولید کودور با فعالیت آنزیم اورآژ همبستگی معنی‌داری نشان دادند (R=0.999***). نتیجه‌گیری بررسی همبستگی‌های بین فیزیکی و شیمیایی پایین‌ترین مقدار بی‌شماری کودور با ویژگی‌های مختلف خاک‌های اورآژ در خاک‌های حوزه اورآژ و ویژگی‌های خاک، همبستگی

واژه‌های کلیدی: فعالیت آنزیم اورآژ، ویژگی‌های خاک، همبستگی

1. دانشگاه دکتری و استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار میکروبیولوژی، دانشکده مهندسی، دانشگاه اصفهان
مقدهم

آورهآز (آوره آمیدوپروپولاز) ۱۵۱۸۶-۵۳۱۵ آنزیمی است که هیدروژن اوره به دی اکسیکرین و آمینوکار را انجم دهد.

این آنزیم به طور گسترده در طبیعت، در گیاهان، جانوران و میکروگاواکسپس یافت می‌شود. آنزیم آورهآز نقش مهمی در کاربرد ملکول آوره دارد (۱۲، ۱۳ و ۱۷). آوره یکی از مهم‌ترین کودهای شیمیایی بوده و استفاده از آن در خارج میانه و ره افزایش است، زیرا از یک سو کارخانه‌های تولید ن در محل وجود دارد و از سوی دیگر در مقایسه با دیگر کودهای نیتروژون، مانند نیترات و سولفات آمونیوم، ارزانتر است (۲۴).

آگاهی از مصالح فعال آنزیم نقص مهمی از سطح فعالیت آن در اثر افزایش فعالیت آنزیم یا افزایش میزان و مقدار آنزیم فعال می‌باشد. مصرف حاوی کودهای سطح مضافاتی از آورهآز یا بوده، و همین‌سان‌های باعث شده است که عوامل کننده فعالیت آنزیم یا خصوصیات پوشش‌های نقابی قارچ‌گیر، و همین‌سان‌ها (۱۲، ۱۳ و ۱۴) یکی از آن‌ها است.

است

رئو و گار (۱۶) از دواده خاک‌زای ریالی که کاربرد هوشمندان را به سرعت نموده و نشان داده که بررسی نیترات تعیین‌های آنزیم آورهآز ناشی از کرین آل است. همچنین در این زمینه، رابطه میان تغییرات آنزیم و درصد آنزیم رابطه معکوس معنی‌دار است.

رئوژن و همکاران (۱۷) با بررسی فعالیت آورهآز و پوزه‌های دیگر ۲۲ خاک سطحی (۲۴۵) با بررسی فعالیت آورهآز و ۲۱ سانتی متری از ایالت‌های کانزاس، میزوری و اوکلاهوما نشان دادند که کرین آل، نیترژون کل، ظرفیت تبادل کاتائونی، درصد و درصد خازه‌های گروه معکوس، در درصد رس، بر فعالیت آنزیم آورهآز رابطه معکوس دارد. در این پژوهش میان تغییرات دی‌دهید نشود. برای مثال، آنزیم آورهآز خاک شیمیایی خاک‌های بهتر را دیده است. در این پژوهش میان تغییرات دی‌دهید نشود. برای مثال، آنزیم آورهآز خاک‌های بهتر را دیده است.
تأثیر برخی از ویژگی‌های خاك بر فعالیت آنزیم اوراژ در شماری از خاك‌های استان اصفهان

افزون بر این، اگاهی از عوامل مؤثر در فعالیت یک آنزیم، اطلاعاتی در مورد طبیعت و چگونگی حضور آن آنزیم در خاك به دست می‌دهد. یا به تعبیر عوامل مؤثر بر فعالیت آنزیم اوراژ در خاك‌های شاخص و مهم كشاورزی استان اصفهان می‌پردازد.

مواد و روش‌ها

در مهرماه سال 1378، بیست نمونه خاك از عمق صفر تا 15 سانتی متری نقاط مختلف استان اصفهان تهیه شد. همه خاك‌ها زراعی بوده و قبلاً به مدت طولانی کود اوره دریافت گردیده بودند. انتخاب مکان‌های نمونه‌برداری با کمک نقشه‌ها خاك و با هدف دستیابی به بیشترین توزن موجود در خاك‌ها استان اصفهان صورت گرفت. هنگام نمونه‌برداری، از هر مکان یک نمونه‌برداری مکعب استریل به صورت اندازه‌گیری جمعیت‌های میکروبی به‌نام PDA (42 درجه سانتی‌گراد) تهیه، و سپس جمعیت میکروبی آنها شمارش گردید. همچنین، از هر یک از مکان‌های نمونه‌برداری یک نمونه مربی غیراستریل تیز تهیه شد که به‌وسیله آزمایشگاه هواخشک فریبی و برای انتقال نمونه‌های واقع در طرف عاستن نگهداری شد.

با فتح خاك به روش هیدروموت (12)، نظیر تبلد کاتیونی به روش استاتس سدیم با pH=8/2 (13)، در صدای خاك (CEC) خاك به روش واکلی-بلاک (14)، در صدای آمک به کربن آلی خاك به روش پیشنهادی PDA (15)، در صدای اکتیکی (EC) pH سدگاه متر محلول ۶۰ مترم، و هداکتکیکی در عصاره اشویی از استفاده از هدایای سنجی مدل منابع در دماي آزمایشگاه معمی برای درای دماي 24 درجه سانتی‌گراد تصدیق شد. جمعیت باکتری‌ها و قارچ‌های خاك به کمک روش رفت‌ها متوات و کشت سطحی در پیلهٔ تربیت روي محیط آگار مغذی 1 و PDA تشیع کرده، از همچنین، از کل رابطه خمی مدعم‌دار وجود دارد. همچنین، در این آزمایش میان فعالیت اوراژ و فسفور و گیاه خاك نيز ارتباط معمی دار برقرار گريده كه علت آن را می‌توان به تاثیر عوامل دانستند. ارتباط تگانگی فعالیت آنزیم با کربن آلی و نیترورآنزیم‌ها محدود بوده. اوراژ به نیترورآلزا و همچنین آل-آسیابازیف و آل-گلوتامیناز نیز مسحور 8 و 9 به‌صورت ساده است. همچنین، نشان داده شده است، که فعالیت آنزیم اوراژ به خاك‌های معمی‌دار می‌باشد. این پژوهشگران میان فعالیت آنزیم‌های نام بوده و درصد شن و رس همچنين رابطه معمی دارد توجد.

کوسکن و لیس (9) فعالیت آنزیم اوراژ را در 26 نمونه خاك عمان بررسی نموده و دریافتند که بیشترین همبستگی با مواد آلی و درجه شوری خاك (به طور معمول) وجود دارد.

فرانکنبرگ و طباطبایی (10) برای شمارش یا تباخی تجهیز کننده ترکیبات آمیدی محیط کشتی به کار برده‌که حاوی یک آمید به عنوان تنا منع کرین و نیترورآنزیم‌ها ضروری و آگار بود.

به رغم اهمیت موضوع و ضرورتی منابع خارجی، نویسنده‌گان مقاله‌ها هیچ‌گزاري از مطالعه‌های اين آزميزي مناطق خشك و نيمه خشك منطقه‌اي ايران نيازند. بررسی عوامل خاك مؤثر بر فعالیت یک آنزیم است. تخصصي و ضروري ترين اطلاعات مربوط به يك آنزيم است. مطالعه عوامل مؤثر بر فعالیت یک آنزیم، با شناساني روابط و مسائل آماري تأثیر آنزيم و دیگر پژوهش‌ها خاك (که معمولاً اندازه‌گيري آنها ساده از اندازه‌گيري فعاليت آنزيم است)، یک روش تعیین معمول است. و از آن را می‌توان فعالیت آنزیم را تعیین کرد.

از سوی دیگر، آگاهی از سطح فعالیت این آنزیم در خاك به استفاده مؤثر از کود اوره کمک می‌نماید، به گونه‌ان که پيچ برای کاربرد کود اوره، و نيز ارزیابي رسك‌های زیست محیطی استفاده از کود اوره در هر منطقه آسان‌تر خواهد بود.

شامل می‌شود. لطفاً یادداشت‌های کشاورزی استان را باید... لازم است برای تغییرات... مورد بررسی سنجش و مدل بوده و در... می‌تواند در مورد کاهش نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد کاهش نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد کاهش نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... نهایی در هیپستگی... SAR لازم است برای تغییرات... می‌تواند در مورد... نهایی در هیپستگی... SAR یافته‌ها در ردیف... آزمایش با... دارد (19). شمار... می‌تواند در مورد... NCE = 17/56 + 5% C13 + 0/5% OC نتایج و بحث

1. Calcium carbonate equivalent
2. Stepwise
شکستن روي محيط كشت آگار مغذی و باکتری های رشد یافته
روی محيط اورژ-انیم دمی شود. این رابطه به صورت زیر
است:
\[UAG = \frac{7}{3} \times (0.7) \times \frac{1}{0.8} \times 10^{-4} \ NAG \]
در این فرمول شمار باکتری های رشد یافته روي محيط
اورژ-انیم باکتری های رشد یافته در محيط آگار مغذی
است.
فعالیت اورژ-انیم در محدوده ۷۵/۲ میکروگرم آمونیوم
آزید به داشتی با در این مورد تراکم اکسیداسیون است. لازم
به ذکر است که در یک آزمایش مقدماتی، فعالیت آنزیم
اورژ-انیم هم در گاز هوایشک کن در و هم در طولیت
معرض نیایانده گیاه‌گری، و نظر به اینکه پس
از انجام آزمون-۲ استبودید، تفاوت معنی‌داری میان آنها دیده
شد، از داده‌های دست آمده در وضعیت هوایشک استفاده
گردید. این فرآیند از یک هورگنون برای بررسی آنزیم
گرگردی. بسیاری از پژوهشگران برای بررسی آنزیم
گرگردی از یک هورگنون برای بررسی آنزیم
جدول ۲. رابطه همبستگی ساده خطی میان فعالیت آنزیم اورزاز (به عنوان متغیر تابع) و ویژگی‌های خاک (به عنوان متغیر مستقل)

<table>
<thead>
<tr>
<th>خطا استاندارد برآورد</th>
<th>ضریب همبستگی</th>
<th>ویژگی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴/۸۸</td>
<td>-۰/۰۶۸**</td>
<td>شن (%)</td>
</tr>
<tr>
<td>۲۲/۳۴</td>
<td>۰/۰۳۲**</td>
<td>سیلیت (%)</td>
</tr>
<tr>
<td>۱۴/۸۰</td>
<td>۰/۰۴۱**</td>
<td>رس (%)</td>
</tr>
<tr>
<td>۲۴/۷۱</td>
<td>۰/۰۴۹***</td>
<td>کربن آلی (%)</td>
</tr>
<tr>
<td>۲۵/۲۹</td>
<td>۰/۰۲۹**</td>
<td>کربنات (کلسیم معادل (%))</td>
</tr>
<tr>
<td>۲۳/۰۷</td>
<td>۰/۰۳۲**</td>
<td>ظرفیت تبدیل کاتیونی [cmol(+) / kg]</td>
</tr>
<tr>
<td>۲۲/۰۶</td>
<td>۰/۰۴۷**</td>
<td>نیتروژن کل</td>
</tr>
<tr>
<td>۲۳/۷۸</td>
<td>۰/۰۴۷**</td>
<td>pH</td>
</tr>
<tr>
<td>۲۲/۷۰</td>
<td>۰/۰۴۷**</td>
<td>(dS/m) EC</td>
</tr>
<tr>
<td>۲۲/۷۱</td>
<td>۰/۰۱۸**</td>
<td>SAR</td>
</tr>
<tr>
<td>۲۲/۷۲</td>
<td>۰/۰۱۸**</td>
<td>(cfu/g) NAG</td>
</tr>
<tr>
<td>۲۲/۷۸</td>
<td>۰/۰۱۸**</td>
<td>(cfu/g) PDA</td>
</tr>
<tr>
<td>۲۲/۷۴</td>
<td>۰/۰۱۸**</td>
<td>(cfu/g) UAG</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح ۰/۰۵
***: معنی‌دار در سطح ۰/۰۱
NS: غیر معنی‌دار

در جدول ۱ توضیح داده شده است.

\[
UA = -۹۶/۸۸\times 5۹۵TN + ۰/۰۷۹ \times \sigma
\]

در این رابطه، UA فعالیت اورزاز بر حسب میکروگرم آمینوئید آزمایشی در آزاد شده از یک گرم خاک در مدت سه ساعت انکورسنو، و TN نیتروژن کل خاک بر حسب ppm است. این همبستگی قوی میان فعالیت اورزاز و نیتروژن کل به سبب وجود ارتباط قوی کربن آلی خاک و نیتروژن کل است. به علاوه این کربن آلی بیش از آنچه که به یک همبستگی قوی داشته باشد. این رابطه به صورت زیر است:

\[
TN = -۹۶/۸۸\times 5۹۵OC + ۰/۰۷۹ \times \sigma
\]

که در این رابطه، TN نیتروژن کل خاک بر حسب ppm و OC میکروگرم آمینوئید آزمایشی در آزاد شده از یک گرم خاک در مدت سه ساعت انکورسنو است. وجود ارتباط خیلی معنی‌دار میان فعالیت اورزاز و نیتروژن کل مانند رابطه آن با کربن آلی، در پیش همراه‌ها به چشم می‌خورد (۴۳، ۱۵، ۱۱، ۱۲، ۱۴ و ۲۰).

الکترواستاتیکی قوی، بیشتر مولکول‌های آنزیم را به یک جذب نموده. در چنین شرایطی میان فعالیت آنزیم و درصد کربن آلی خاک همبستگی قوی دیده می‌شود. این وضعیت در نتایج پژوهش حاضر به چشم می‌خورد. شکل ۱ نشان‌دهنده همبستگی خطی معنی‌دار (***: r=۰/۷۹۵) میان فعالیت اورزاز و درصد کربن آلی خاک است. اغلب گزارش‌ها به چنین همبستگی قوی اشاره دارند (۳۲، ۱۱، ۱۳، ۱۰، ۱۲ و ۲۰). در این رابطه، NAG، PDA و UAG به عنوان میانه اتصال Fatty acids بر روی سطح خاک جذب نموده و درصد کربن آلی، آن است که مانند فعالیت اورزاز مولکول‌های آنزیم را روی سطوح خود جذب نمی‌کند. این نتیجه واقعی نیز ارتباط قوی دارد.

 Downloaded from icp.iut.ac.ir at 5:23 IRST on Thursday December 27th 2018
هنگام (5) در سه تعدادی میکروآمیکسیون با مدت زمان ۳۰ دقیقه، مواد بررسی در این یوزه (۶۰۰۰-۱۲۰۰۰ دسی‌زینمینی بر متر افزایش داده و کاهش معنی‌دار اورآژ را گزارش نمودند. این پژوهشگران در پژوهش‌های مختلف آنزیم‌هایی مانند اورآژ که دارای رفتار همبستگی سلولی هستند، در مقایسه با آنزیم‌هایی چون دیروژناتاز یک آنزیم درون سلولی است، نسبت به افزایش شوری کاهشی کمتری از خود شان می‌دهند. زیرآنزیم‌های برون سلولی روز سطوح کلیئیدی (به ویژه کلیئیدهای آلی) حفاظت شده و ساختار سبعمدل مولکول آنها محافظت می‌شود، حال آن که عوامل آنزیم‌هایی چون دیروژناتاز با متاثر شدن خود سلول و پلاسمولیز شدن آن به دست کاهش می‌یابد (6).

میزان فعالیت اورآژ و نسبت جذب سدیم (SAR) خاک رابطه معنی‌دار دیده نشد. البته با توجه به این که هیچ کدام از (SAR>۱۵) و (SAR<۵/۲) مواد بررسی در گروه خاک‌های سدیمی (۴) قرار نمی‌گیرد، ممکن است همبستگی معکوس در سطوح بالاتر SAR وجود داشته باشد، ولی در دانه SAR مورد آزمایش (SAR>۵/۲) همبستگی معنی‌داری به چشم نماید و همبستگی آنزیم اورآژ با جمعیت‌های میکرو‌باشی خاک نیز Hәدیات الکتروکیکی عصاره اشباع در دانهیل شوری خاک‌های موردن بررسی در این یوزه (۶۰۰۰-۱۲۰۰۰ دسی‌زینمینی بر متر) با فعالیت اورآژ ارتباط خطی معکوس دارد که نشان‌دهنده تأثیر کاهشی شوری بر فعالیت اورآژ خاک است. این رابطه به صورت زیر است:

\[UA = \frac{555}{2} + \frac{18ECe}{5} \]

در این رابطه، UA دستیزینمینی بر متر است. وجود یک همبستگی معکوس بیشتر کوکسون و پییس (4) و ضریبانکر و بینگهام (4) نیز گزارش شده است. در بررسی‌هایی که در خاک‌های نیمه مرطوب تا مرطوب انجام شده، این ارتباط منفی دیده نمی‌شود، نسبت (SAR) بیشتر خاک‌های نیمه مرطوب تا مرطوب تأثیر بازدارنده بر فعالیت اورآژ ندارند (۱۵ و ۱۷). در یوزه‌های ساحلی اگرچه این ارتباط معنی‌دار شده، ولی ۵/۰ منی‌دار است.

این امکان هست که اثر بازدارنده شوری بر فعالیت اورآژ در سطوح بالاتر شوری رؤیت شود، به گونه‌ای که ضریبانکر و
تأثیر برخی از ویژگی‌های خاک بر فعالیت آزمیز اورآژ در شماری از خاک‌های استان اصفهان

بررسی گردید. تایپ نشان می‌دهد بی‌کیو میکروبی به وسیله ریونژیون و همکاران (17) و فرانکمنیکر و دیک (18) برای تهیه گزارش‌های این یافته‌ها گرفته شده است. این یافته‌ها از محیط‌های کشی چون آگار مفعول، آگار با عصاره مخمر و اگالبیوم آگار و پریکس تهیه شده است. این اثبات‌ها در محیط‌های زمین و پریکس در مقایسه با با پروآژ فعالیت آورآژ در روی کریم آگار و پریکس بهتر به دست می‌آید.

به طور کلی، چنین برخی از ویژگی‌های خاک بر فعالیت آزمیز اورآژ در خاک‌های استان اصفهان تاثیرگذار به طور کلی، چنین برخی از ویژگی‌های خاک بر فعالیت آزمیز اورآژ در خاک‌های استان اصفهان تاثیرگذار

1. Yeast extract agar
2. Egg albumin agar

103

