شناسایی نشانگرهای RAPD پیوسته به زن ترکیبی زنیکی در چغندر قند
(Beta vulgaris L.)

چکیده
ترکیبی زنیکی مفتی این که در چغندر قند به وسیله یک جفت آل مغول (AA) کنترل می‌شود، وجود صفت ترکیبی زنیکی در یک رگه یا جمعیت چغندر قند موجب تهیه در انجام تغییراتی ناشی از داشتن صفات مهم نظر مقاومت به بیماری‌هایی می‌شود. همچنین با استفاده از ترکیبی زنیکی می‌توان تغییراتی جمعیت‌های نماینده چغندر قند را انرژیش داد. جنایتی صفت ترکیبی زنیکی را بتوان با نشانگرهای مولکولی نشانگند نمود زمان و هزینه‌ای که برای استفاده از آن به از بین زنیکی دیگر لازم است. به شدت کاهش می‌یابد. در این گامه‌ی ناروز بررسی برای نشانگند کردن زن ترکیبی زنیکی از 3 آغازگر RAPD به همراه نوش BSA استفاده شد. از مخلوط آن DNA و 8 گیاه ناروز از هر جمعیت 52 و 361 استفاده شد. نتان آغازگرها روز نه‌ای، آزمون گردید و پس از شناسایی آغازگرهایی چند شکل می‌شد. آغازگر تا ۱۱ ماه، در مرحله بعدی از آن در از کمکهای نه‌ای نبوده با ۳۶۱ جمعیت ۱۴۵ استفاده گردید. در پایان ۱۴ نشانگر در جمعیت ۳۳۰۴ نشانگر در جمعیت نشانگند که گاهی آنها تا ۳۶۱ نشانگر در جمعیت ۳۳۰۴ نشانگر ناکامی به عنوان این ۱۴۵ نشانگر فاصله را با مکان زن ترکیبی زنیکی داشت. این نشانگر فقط ۳ باکتری در جمعیت ۳۳۰۴ و یک نتیجه‌ی چند جمعیت ۱۴۵ نشان داد. در نتیجه فاصله این نشانگر از مکان زن ترکیبی زنیکی در مجموع این دو جمعیت برابر ۵۰۳ سانتی‌متر گزارش شد. وازه‌های کلیدی: تجزیه‌توان، چغندرین، ترکیبی زنیکی، نشانگر RAPD

1. دانشجوی سابق کارشناس ارشد بیوتکنولوژی. دانشکده کشاورزی. دانشگاه مازندران
2. استاد بیماری‌های گیاهی. دانشکده کشاورزی. دانشگاه مازندران
3. استادیار اصلاح نباتات. دانشکده کشاورزی. دانشگاه تهران. پردازی ابی‌هایان
4. دانشیار پژوهش مؤسسی تحقیقات اصلاح و تهیه بذر چغندر. رئیس جری
5. دانشجوی سابق دکتری اصلاح نباتات. دانشکده کشاورزی. دانشگاه تربیت مدرس. تهران
6. استادیار اصلاح نباتات. دانشکده کشاورزی. دانشگاه مازندران

۳۸۱
در بخش زیر، مقامات به بیماری‌ها (13، 21، 24، 25 و 29) و نر
باوری (17) مورد استفاده قرار گرفته‌اند. چنین نشان‌گرها
پیوسته می‌تواند برای انتخاب به‌کمک نشان‌گر در
برنامه‌های اصلاحی (4) و نیز برای غربال‌کردن
کلان‌به‌های زنده جهت کلون کردن یا پایه‌گذاری به کار
گرفته شود (36 و 37). استفاده از نشان‌گرها برای
انتقال به بکم نشانگر برخی‌نیز و وقتی گروهی می‌باشد،
17 و 20 و 25). نشان‌گرها DNA نیز پرزجامت بوده (28 و
و هریزه بالایی دارد. تاکنون مطالعه‌های محدود و تنها با
استفاده از جنف آغازگر و نشان‌گر در چند فرد سر
انجام گرفته است. در همین فضه برای
چند فردن. توالی آغازگر دوباره در دسترس نیست باشد (30). برای
انتقال از نشان‌گرها SSR لازم است آشکارسازی
زنده چند فردن تیپ نموده و کلینیک‌های حاصل را تعیین
توالی نمود. سپس آغازگرها مناسب برای انتخاب
می‌گذارد. (30) RAPD
زمت زبر روش
عمد نیاز به وجود اطلاعات در
مورد زنده برای طراحی آغازگرها می‌باشد (16 و 26). علاوه بر
این نشان‌گرها سریع و ارزان بوده و تهیه آنها آسان
می‌باشد (16 و 26). با وجود این برای استفاده از نشان‌گرها
در برنامه‌های اصلاحی به‌کمک نشانگر بهتر است.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)

کلمه بی‌شماری از جمعیت‌های کتابخانه‌ای
نور مورد نظر پرسه‌پاتش. بنابراین هر گیاه که
حاصل یک نشان‌گر خاص شود، حاصل می‌باشد.

(RAPD)
برواید رنگ آمیزی وبه کمک دستگاه ترانس ایلولمینانور مشاهده و عکس برداری گردید.

(BSA) تجزیه آن بین توده های فوت در مورد هر دو جمعیت β-جکوبیده مخلوط و ۴ توده تشکیل گردید (۲۳ توده نرم قرار گرفت در محله بعد آغازگرهای جنگ شکل این باعث پیدا نمی‌گردد باعث تشکیل دهنده توده‌ها بکار رفته و آغازگرهایی که جنگ شکل آنها در این محله تأیید شده روز سایر بونه‌های دو جمعیت آزمون شدنند (۳۱). توانای نکات‌آمیزی آغازگرهایی که برای نکات نشان‌گرهای با فاصله کمتر از ۵ سانتی‌متر از زن تحقیقاتی زنیکی بوده است، در جدول ۱ آمده است.

تزریز و تحلیل آماری
از آزمون کای اسکورت (Yates) نصیحتی بهتر برای مقایسه نسبت مورد انتظار و مشاهده شده شناخته استفاده شده، زیرا درجه آزادی این آزمون برابر یک بود (۳۱). فاصله نشان‌گرهای RAPD و مکان زنی نتیجه‌گیری زنیکی با استفاده از فراوانی بونه‌های نرکنیک نتیجه‌گیری گردید (۳۱، ۴ و ۲۷).

نتایج و بحث
برای شناسایی نشان‌گرهایی RAPD پویسته با مکان زنی نتیجه‌گیری زنیکی، یک گیاه نر و ۸ گیاه نتیجه‌گیری در و جمعیت ۲۳۱ و ۲۶۱ با نسبت مساوی با یکدیگر مخلوط گردیده و هر کدام یک توده به خاک را تشکیل داد. چاگو و همکاران (۶) معتقدند که مخلوط کردن تعداد زیادی از افراد برای ساخت توده، باعث کاهش اختلال مشاهده تفاوت بین دو توده برای نواحی غیر از نواحی مجاور زن هدف می‌گردد. از طرف دیگر، مؤسسه تحقیقات اصلاح و نهی به دو فاصله شد که برای صفت‌های زنیکی در حالت تحقق و معاون جمعیت می‌باشد. بهوسیله DNA، هدایت ۲۰۰ توده نرم قرار گرفت و ۶۰ توده نر بر از داخل هر جمعیت شناسایی گردیده و آنها نموده گزینه نهایی شد.

استخراج DNA
استخراج DNA به روش پیشنهادی تکسکلی و همکاران (۲۴ و ۳۲) غلفت با استفاده از اسکیتو فنوتومتر (Spectrolab - M350) طول موج ۴۶۰ نانومتر و کمیت آن نیز با استفاده از الکتروفوروز در دل آگارز ۱ درصد تهیه گردید.

RAPD
واکنش در حجم نهایی ۲۵ میکرون لیتر انجم شد. آغازگرهای مورد استفاده شامل ۱۸۰ آغازگر از کیت UBC (Advanced Biotechnology) در ۲۰ آغازگر از کیت (University of British Colombia) ایران (Operon kit(۶۰ میلی مولار MgCl۲،۲۰ میلی مولار dNTPs، در ایران، شرکت سینتان، بیاف و واکنش ۱ از نام بار، شرکت (Tag Polymerase)، واکنش ۱ آزمیل پلیمرنیک DNA (Syngene) واکنش ۲۵ نانوکروم آغازگر و ۵ نانوکروم بیاف و واکنش RAPD در برادیولاسیل بیومتر تریسا ۳ ترموزیکر ۱۰ دقیقه در ۴۹ درجه سانتی‌گراد. بیانگر زیر انجم گرفت: ۱۵ دقیقه در ۶۹ درجه سانتی‌گراد، ۲۵ ۴ (۲۵ ثانیه در ۶۹ درجه سانتی‌گراد) و ۵ دقیقه در ۷۲ درجه سانتی‌گراد که مراحل ۲۸ و ۲۹ یک تکرار گردید. فراوانی واکنش به وسیله الکترورافوروز روز Tris- acetate شامل Na۱/۲ درصد رابطه TAE (۲۰ میلی مولی، جداسازی گردید. ۵ رس از الکتروفوروز، ژل در محلول حاوی ۱ میکروگرم/ملیلیتر μg/ml
جدول ۱ توالی نوکلئوتیدی آغازگرهایی که برای تکیهٔ نشان‌گرهایی که فاصله آنها با ژن تعریفی
زنجیک کمتر از ۵۰ سانتی‌متریکه ورودی است.

<table>
<thead>
<tr>
<th>توالی نوکلئوتیدی</th>
<th>توالی نوکلئوتیدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB ۱-۹</td>
<td>TGGCCGACTC</td>
</tr>
<tr>
<td>AB ۱-۱۲</td>
<td>CCTACGCGA</td>
</tr>
<tr>
<td>AB ۳-۴</td>
<td>CGTTCACGGG</td>
</tr>
<tr>
<td>AB ۳-۷</td>
<td>ACGGGAGTTC</td>
</tr>
<tr>
<td>AB ۴-۹</td>
<td>TCCGTCGCAA</td>
</tr>
<tr>
<td>AB ۴-۱۰</td>
<td>TCACTGCGCC</td>
</tr>
<tr>
<td>AB ۴-۱۴</td>
<td>GGCACCGCA</td>
</tr>
<tr>
<td>AB ۴-۱۸</td>
<td>AAGCGTCACC</td>
</tr>
<tr>
<td>AB ۵-۱۴</td>
<td>GGTGCAATCTG</td>
</tr>
<tr>
<td>AB ۵-۱۸</td>
<td>TGTGTTGCGT</td>
</tr>
<tr>
<td>AB ۸-۱۸</td>
<td>TCGGCGAACC</td>
</tr>
<tr>
<td>AB ۸-۳</td>
<td>CCCGCATAA</td>
</tr>
<tr>
<td>AB ۸-۱۴</td>
<td>CACCGGATG</td>
</tr>
<tr>
<td>AB ۲-۱۲</td>
<td>TTATCGCCCC</td>
</tr>
<tr>
<td>AB ۶-۱۵</td>
<td>AGTCGCCCTT</td>
</tr>
<tr>
<td>AB ۸-۴</td>
<td>CTATCCTGCC</td>
</tr>
<tr>
<td>UBC ۲۴۵</td>
<td>GCGTGACCCG</td>
</tr>
<tr>
<td>AB ۳-۱۲</td>
<td>GTCCCGTGCC</td>
</tr>
<tr>
<td>OPR-۶</td>
<td>GTCTACGCCA</td>
</tr>
<tr>
<td>AB ۲۳</td>
<td>AAACCTGACC</td>
</tr>
</tbody>
</table>

میشلی و همکاران (۱۱)، یک زنجیک کوتوله‌ای در این مطالعه موفقیت‌آمیزی در مدل نمودار ۱۷۶ توالی نوکلئوتیدی با استفاده از ۲۵۰ آغازگر تصادفی به
در مرحله بعد با استفاده از ۳۰۰ آغازگر تصادفی به
۵۴ و ۶۲ آغازگر دادند که ترتیب جمعیت‌های متفاوتی در جمعیت ۲۳۱ و ۲۴۱ بودند. وجود تعداد نشان‌گرهای چند شکل بیشتر در جمعیت ۲۴۱
میکنن است ناشی است از زیادتر بودن نوع انرژیمتر در یک توالی کوتوله‌ای. در این مطالعه موفقیت‌آمیزی در
برای تکیه‌دهی نشان‌گرهای چند شکل شناسایی
شد. آغازگرهای مربوط به مطابقی که روی توالی متفاوت دو
جمعیت آزمون داشتند در پایان این مقطع ۸۲ آغازگر که اکثریت در
هم دو جمعیت چند شکل نشان داده بودند، مشخص گردیدند.
از این تعداد، یک آغازگر دارای ۵ توالی چند شکل، ۶ آغازگری دارای ۶ توالی چند
آغازگر چند شکل، ۷ آغازگری دارای ۷ توالی چند
میشلی و همکاران (۲۲) و همچنین گیوانتونی و همکاران
(۱۲) پیشنهاد کردند که افتیادی‌های مربوط به توالی می توانند سبب
کاهش خطای نوع اول گردند.

۳۸۴
شناختی نشان‌گرهای RAPD پوسته به دن ترکیبی زنیکی در چندرنگد

شکل و بیله آغازگرها هر کدام دارای ۶ک تبار و نوار شکل
بونده در مجموع ۲۴تا ۷نوار تولید شد که ۲۲ عدد از
آنها در ترکیبی (نشانگر نافذ) و ۲۰ عدد
باقی مانده در ترکیب ناپذیر (نشانگر جفت) وجود
داشتند.

در نهایت آغازگرها چند شکل نشان‌گرهای شیء بروی
یک بونهای تشکیل دهنده توده‌های متقابل (۶ بونه
نابارور و ۸ بونه ترکیبی از هر جمعیت) و سایر بونهای ترکیبی
و نابارور جمعیت آزمون کردند (در حداکثر ۵۰ بونه ترکیبی
و ۷۴ بونه جمعیت آزمون در نتیجه اخلاق اختصاصی سایه‌گذار و شماره آغازگر در مجموعه
موردن استفاده از افزایش توده‌های به همراه افزایش اختصاصی
۲ یا ۴ بونه ترکیبی عضو شانگر نافذ و (جفت) ذکر گردید.

بس از به دست آمده اطلاعات مرتبه به نشانگرها، ابتدا
نحوه فرق آنها با استفاده از آزمون کای اسکور فتوحی شده
در هر مجموعه بررسی گردید. از آنجایی که انتخاب
بونهای مورد مطالعه به صورت تصادفی بوده است، استفاده
می‌تواند آزمون کای اسکور برای بررسی نحوه فرق نشانگرها
در بیماری از موارد معنی‌دار شود. با وجود این، آزمون
کای اسکور فتوحی شده برای فرض ۳۲ در مورد نشانگرها
انجام کرده که تایپ حاصل موضوع فوق را تأیید کرد. برای
مثال در مجموعه ۲۲۱ حاصل بر ۲۵۰ ردیابی (تقریباً)
موردن انتظار مدل انحراف نشان داده. بنابراین نتیجه گیری شد
که حداکثر درصدی از انحراف تقریبی مشاهده شده برای نشانگرهای مورد بررسی ناشی از تصادفی
بودن بونهای انتخابی بوده است. این باعث شد که از این موضوع
نیز ممکن است مربوط به متغیر زنیم چندرنگد بشود. برای
مثال، پروف و ریکی (۱۵) از میزان انحراف تقریبی
نشانگرهای RAPD را در مجموعه ۴۴ بونه یا رابرد RAPD
و ۲۴ درصد گزارش نموده و این امر را نشان از این می‌آید
زنده در نشانگرها. این موضوع احتمالاً به دلیل حدف
انتخایی کامات های نی در نتیجه عقیقی دن به گردید.

شکل و بیله آغازگرها هر کدام دارای ۶ک تبار و نوار شکل
بونده در مجموع ۲۴تا ۷نوار تولید شد که ۲۲ عدد از
آنها در ترکیبی (نشانگر نافذ) و ۲۰ عدد
باقی مانده در ترکیب ناپذیر (نشانگر جفت) وجود
داشتند.

در نهایت آغازگرها چند شکل نشان‌گرهای شیء بروی
یک بونهای تشکیل دهنده توده‌های متقابل (۶ بونه
نابارور و ۸ بونه ترکیبی از هر جمعیت) و سایر بونهای ترکیبی
و نابارور جمعیت آزمون کردند (در حداکثر ۵۰ بونه ترکیبی
و ۷۴ بونه جمعیت آزمون در نتیجه اخلاق اختصاصی سایه‌گذار و شماره آغازگر در مجموعه
موردن استفاده از افزایش توده‌های به همراه افزایش اختصاصی
۲ یا ۴ بونه ترکیبی عضو شانگر نافذ و (جفت) ذکر گردید.

بس از به دست آمده اطلاعات مرتبه به نشانگرها، ابتدا
نحوه فرق آنها با استفاده از آزمون کای اسکور توصیح شده
در هر مجموعه بررسی گردید. از آنجایی که انتخاب
بونهای مورد مطالعه به صورت تصادفی بوده است، استفاده
می‌تواند آزمون کای اسکور برای بررسی نحوه فرق نشانگرها
در بیماری از موارد معنی‌دار شود. با وجود این، آزمون
کای اسکور توصیح شده برای فرض ۳۲ در مورد نشانگرها
انجام کرده که تایپ حاصل موضوع فوق را تأیید کرد. برای
مثلا در مجموعه ۲۲۱ حاصل بر ۲۵۰ ردیابی (تقریباً)
موردن انتظار مدل انحراف نشان داده. بنابراین نتیجه گیری شد
که حداکثر درصدی از انحراف تقریبی مشاهده شده برای نشانگرهای مورد بررسی ناشی از تصادفی
بودن بونهای انتخابی بوده است. این باعث شد که از این موضوع
نیز ممکن است مربوط به متغیر زنیم چندرنگد بشود. برای
مثال، پروف و ریکی (۱۵) از میزان انحراف تقریبی
نشانگرهای RAPD را در مجموعه ۴۴ بونه یا رابرد RAPD
و ۲۴ درصد گزارش نموده و این امر را نشان از این می‌آید
زنده در نشانگرها. این موضوع احتمالاً به دلیل حدف
انتخایی کامات های نی در نتیجه عقیقی دن به گردید.
جدول 2: درصد نو ترکیبی (2) بین نشانگرهای RAPD و مکان زنی نرخی زنبوری در جمعیت ۲۳۱ و ۲۶۱ چندنفره

<table>
<thead>
<tr>
<th>نشانگر</th>
<th>جمعیت ۲۳۱</th>
<th>جمعیت ۲۶۱</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>تعداد کاهان</td>
<td>نرخی زنبوری</td>
</tr>
<tr>
<td></td>
<td>آزمون شده</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>۳۱</td>
<td>۴۴</td>
</tr>
<tr>
<td>A ۲-۳-۱۸-۶۵+ r</td>
<td>۸۲</td>
<td>۸</td>
</tr>
<tr>
<td>A ۳-۱۲-۶۵+ r</td>
<td>۲۸</td>
<td>۷۰</td>
</tr>
<tr>
<td>A ۱-۹-۵۰+ c</td>
<td>۲۷</td>
<td>۷۵</td>
</tr>
<tr>
<td>A ۲-۱۲-۶۵+ c</td>
<td>۱۸</td>
<td>۷۰</td>
</tr>
<tr>
<td>A ۶-۹-۵+ r</td>
<td>۲۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>A ۶-۹-۵+ r</td>
<td>۵۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>A ۱-۲-۱۲-۳۸+ r</td>
<td>۵۲</td>
<td>۳۳</td>
</tr>
<tr>
<td>A ۸-۴-۸۵+ c</td>
<td>۴۶</td>
<td>۴۳</td>
</tr>
<tr>
<td>A ۲-۴-۱۵۵+ r</td>
<td>۳۳</td>
<td>۲۵</td>
</tr>
<tr>
<td>A ۶-۱۲-۶۵+ c</td>
<td>۴۱</td>
<td>۳۱</td>
</tr>
<tr>
<td>A ۶-۱۲-۱۵۵+ r</td>
<td>۷۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>A ۲-۱-۱۱۰+ r</td>
<td>۷۸</td>
<td>۶۵</td>
</tr>
<tr>
<td>UBC ۴۴-۱۲۰+ r</td>
<td>۴۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>AB ۳-۱۷-۱۸۰+ c</td>
<td>۸۸</td>
<td>۴۵</td>
</tr>
<tr>
<td>ABY-۸۵+ c*</td>
<td>۵۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>ABY-۱۴۰+ c*</td>
<td>۵۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>AB ۲-۱۷۰+ c*</td>
<td>۵۰</td>
<td>۴۳</td>
</tr>
<tr>
<td>AB ۱-۱۰-۱۵۵+ c</td>
<td>۲۵</td>
<td>۴۱</td>
</tr>
<tr>
<td>AB ۱-۱۲-۱۳۵+ c</td>
<td>۲۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>AB ۹-۱۵۰-۱۱۰+ r</td>
<td>۳۱</td>
<td>۳۳</td>
</tr>
<tr>
<td>AB ۲-۱۲-۱۵۰+ c*</td>
<td>۲۵</td>
<td>۴۱</td>
</tr>
<tr>
<td>AB ۹-۱۲-۱۵۰+ c*</td>
<td>۲۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>OPR-۲-۱۱۰+ c*</td>
<td>۴۰</td>
<td>۷۲</td>
</tr>
</tbody>
</table>

* این نشانگرهای جفت ابتدا بر روی برخی از یک و یا یکی از گروه‌های آزمون شد. نظر به این که فراوانی نویزی نتایج در مورد آنها زیاد بود. از بررسی این نشانگرهای در جمعیت دیگر می‌توان نتایج‌گیری کرد.

۳۸۶
جدول ۳ فاصله تردیدی نشانگرهای RAPD (بر حسب سانتی مورگان) و مكان زنی ترکیبی زنیکی در جمعیت های ۲۳۵ و ۲۴۱ جندراند

<table>
<thead>
<tr>
<th>نشانگر</th>
<th>جمعیت ۲۳۵</th>
<th>جمعیت ۲۴۱</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>کل</td>
<td>۲۳۵</td>
</tr>
<tr>
<td>AB ۸-۱۸-۹۶۰۰</td>
<td>۹/۸</td>
<td>۹/۸</td>
</tr>
<tr>
<td>AB ۹-۵-۱۱۰۵۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB ۹-۵-۱۱۰۵۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB ۹-۵-۱۱۰۵۰</td>
<td>۱۸/۹</td>
<td>۱۸/۹</td>
</tr>
<tr>
<td>AB ۹-۵-۱۱۰۵۰</td>
<td>۱۸۱/۹</td>
<td>۱۸۱/۹</td>
</tr>
<tr>
<td>AB ۹-۵-۱۱۰۵۰</td>
<td>۱۲۸/۲</td>
<td>۱۲۸/۲</td>
</tr>
</tbody>
</table>

درصد با برآورد بود فاصله نشانگر و مكان زنی محاسبه نشد است.

مجموع و با استفاده از داده‌های یافته‌های دو جمعیت، فاصله این نشانگر از زن ترکیبی زنیکی در حدود ۵۳ سانتی مورگان محاسبه گردید. در نهایت الکتروفورزی این نشانگر روی بونهای تشکیل دهنده توده‌های منفی (ب) در نواده و در کلیه بونهای ترکیبی در دو جمعیت وجود داشت، در حالی که فقط یکی از بونهای نر بودار در جمعیت ۵۷۴ نوار را نشان داد (شکل ۱)، با توجه به نتایج بدین ساختگی، می‌توان اظهار داشت که زن‌تیپ بونه مورد نظر هتروژیک گون است.

بر اساس این یافته نشانگرهای نزدیکی به محل زنی ترکیبی زنیکی همکار از نوع نادر است (جدول ۳)، که این آنها به جز نشانگر ۵۷۴۰۰۰۰ AB ، فاصله فیزی نشانگر جهت استفاده در انتخاب به همکاری زن‌تیپ می‌باشد (۲۴و ۲۳). با توجه به این که جمعیت مورد مطالعه در و نشانگر مورد استفاده غایب بود، لذا نتایج به استفاده از ترم‌افزار (برای Mapmaker مثال برای محاسبه فاصله نشانگرهای زنیکی و مكان زنی ترکیبی زنیکی و وجود نداشت، زیرا در شرایط فوق، ناب
شکل 1. الگوی تواری نشانگر AB در جمعیت‌های ۳۳۷ (چپ) و ۲۶۱ (راست) چندبردی. خطوط ۱۸ در هر سمت مربوط به گیاهان نیازمند و خطوط ۹ تا ۱۶ مربوط به گیاهان نرفعیم می‌باشند. استاندارد جرم مولکولی با اندازه فطع مشخص شده بر حسب SM جفت باز است.

با استفاده نوآم از نشانگرهای فاز ناجفabet و جفت‌امکان‌پذیری است و کارایی بیشتری در برنامه‌های اصلاحی به عنوان نشانگرهای همباز خواهد داشت. بنابراین پیشنهاد می‌گردد با استفاده از سایر آغازگرهای تصادفی نشانگر با فاز جفت نیز برای صرف نرفعیم‌زنبیکی در پراکنده می‌شود. نشانگر AB Röy ۸-۱۸-۴۶۷۰ توصیه می‌شود.

منابع مورد استفاده

۱. امپری، ر. ۱۳۸۲. وراثت زن (های) عامل مقاومت به ریزومانیا و نشانگرهای DNA پیوسته با آنها در چندبردی. پایان‌نامه دکتری اصلاح نیماتات، دانشکده کشاورزی، دانشگاه تبریز.

۲. فارسی، م. و. ۱۳۷۷. اصول اصلاح نیماتات. انتشارات دانشگاه مشهد.


