تولید زلاتین خوراکی از ضایعات ماهی

علي آبرومداً

چکیده

زلاتین ماهه پروتئینی است که در صنایع غذایی، دارویی، صنعتی و پزشکی کاربرد فراوانی دارد. در صنایع غذایی از این محصول در تهیه مارمالدها، زله‌ها، شیرینی‌جات و بستنی استفاده می‌شود. زلاتین به آسانی در بدن جلب شده و حتی به هضم سایر مواد غذایی از طریق تشکیل امیل‌های کمکی می‌پیوندد. هدف از این تحقیق، استفاده بنیه از مواد اولیه محل وصول و ارزان بعنی مقادیر فراوان ضایعات شیلات و بهینه‌سازی شرایط برای استخراج زلاتین و در نتیجه کاهش واردات آن به کشور که عمداً از پوست خوک و ضایعات دامی ضریب آن p< (در دو شرایط قلیایی و اسیدی) و نوع ماهه اولیه pH قمگردد. می‌باشد. این طرح در دو مرحله صورت گرفت: در مرحله اول اثر شرایط pH و رنگ و رابطه) مورد بررسی قرار گرفت. در مرحله دوم طرح نیز اثر دما (در سه مقطع 75 و 80 درجه سانتی‌گراد (در دو سطح pH رنگ و رابطه) مورد بررسی قرار گرفت. نتایج مرحله اول نشان داد که در صورت استفاده از شرایط قلیایی و ضایعات فیل، مقدار زلاتین حاصل حداکثر خواده بود. با توجه به نتایج مرحله دوم طرح و با دمای 70 درجه سانتی‌گراد و pH برای با 6/5/5 رانندان زلاتین حاصل حداکثر و با بهترین کیفیت به دست خواهد آمد.

واژه‌های کلیدی: زلاتین، ضایعات ماهی، روش اسیدی، روش قلیایی

مقدمه

تاریخچه تولید و استفاده از زلاتین را عصر فراعنه مصر می‌توان هویزمان دانست. پیش در شاهد کشف رهبری از زلاتین در مقبره ملکه Rekhmara و کشف لوحه Ratschesput در شهر قدیمی Thebes ساهاش برای است که ملکه از زلاتین را پیش زلاتین را در نازنین گرفت. گرچه زلاتین از زمان‌های قدیم شناخته شده و به‌نام چپ استخوان معروف بود، ولی برای اولین بار در سال 1681 عقیلی آن را به کمک دیگ مصرف خود که یک‌پنگ

انتولوگی‌ها امروزی بود، به همین نیرویی (نفل از 2).

در سال 1814 برای اولین بار از اسید جهت نرم کردن استخوان خارج نمودن مواد معدنی ای استفاده گردید و در سال 1888 اولین تولید صنعتی با این روش به وسیله دانشمندی از ایالی شاهیر انجام گرفت و از آن زمان تا کنون Coignet لیون فرانسه به نام روژ کستر یافته است (نفل از 1).

1. مرتب صنایع غذایی، دانشگاه علوم دانشگاه دانشگاه شاخصی و منابع غذایی، ملایم، مlahati، اهواز

409
دیل ماده کالزان محضی بافت پوستنی (پوست و استخوان) به یک ماده تشکیل دهنده ژل و محلول که به عنوان ماده غذایی جایگزین مصرف می‌گردد. به مانند تاریخ بر می‌گردد. از این نظر، به عنوان یک استفاده از این ماده جهت بهبود فیلم نیز آغاز گردد. شکفت این نبیه که برای صنعت اولیت کالزان برای ایجاد یک ماده سازی مصرف می‌کند. ژلاتین بکر از پروتئین‌های مواد پروتئینی کلولید در صنایع غذایی، دارویی، صنعتی، پزشکی و نظارت ایمنی است که به صورت چهار نوع متخلخل، خرکالی، صنعتی، رفتاری و دارویی تولید می‌شود. در صنایع غذایی در تهیه مالاده‌ها و زله و جیربیان و بستنی کار می‌رود که به اساسان در بدن شده‌ها و حتی کمک به همکاری مواد غذایی با شکل اولیت کالزان می‌باشد.

بهر روی تحقیقات نشان داده‌اند که ژلاتین حاصل از پوست و استخوان ماهی که در آزمایش‌های خون‌سنجی شده، قدرت ازایش ماده و زلیبق‌های حاصل از پوست و استخوان زلیبق ماهی و تولید‌کننده را ندارد. هر چند کلازین ماهی غمرویی، زلیبق با قدرت زلیبق ماده بهتری دارد (10-21).

کلازین در ماهی
کلازین ماهی به عنوان منبع چسب ماهی ارزش اقتصادی دارد، ولی تولید آن در سطح کشورهای اقتدار نمی‌گردد. کلازین محلول کیسه‌های ماهی (Ichthyocol) شیمی‌ای اولین کلازین محلول باشد که درجه بالای خالیت آن مشخص و احتمال است (23). به عبارت دیگر کلازین کیسه‌های ماهی نهونه هم به طور تجاری برای تصفیه نوشابه‌های الکلی مورد استفاده قرار می‌گیرد (24).

ایرینگلاس (Isinglass) ماده زلیبینی است که در ساخت سرشمیر به کار می‌رود و از کیسه‌های ماهیان بزرگ می‌باشد که به عنوان یک ماده به‌شمار می‌آمد. ویژه برخوردار بودگرای نوع مس انسان باید این عمل مهم به شمار می‌آمد. ولی بعد از متنوعیت صادرات این ماده از روسیه در...

۱- زمینه‌گذاری: تجربی می‌شود (12).

۲- رژیم بدون نمک: با جایگزینی شدن زلیبق به گات ماده پروتئینی بیشتر می‌شود و قرار نباتی خالیت از کلازین است. زمانی قبل ماهی خواری بلدا منع می‌شود این عمل مهم به شمار می‌آمد. ویژه باور به نوع...

۳- رژیم دوره ناهفت: چنین زلیبین، یپرتوئین و مواد معدنی
توهید زلاتهای خوراکی از ضایعات ماهی

سال ۱۹۹۹ ماهیان دیگری مورد استفاده قرار گرفتند (۸۸). کلاژن محلول پوست ماهی روغن نیز به طور وسیع مطالعه شده است. به طوری که سه زنجیر آلفا آن با هم تفاوت دارد و این غیر عادی است (۷۵). به طور کلی مقدار اسیدهای آمینه کلاژن ماهی کمتر از کلاژن پستانداران می باشد و این خود دلیلی برای درجه حرارت یا دانه شدن این مواد می باشد. کلاژن محلول پوست کوسه ماهی و همین طور کلاژن ماهی استخراج درجه حرارت دانه شدن قابلیت دارد. اگرچه از جنبه‌های دیگر مشابه کلاژن مهرداران است می‌باشد (۷۷).

شاید جالب‌ترین کلاژن ماهی که تاکنون استخراج شده، الستوئیدین (Elastoidin) استواپریدین (Elastoidin) است (۸۹). کلاژن ماهی این اثر در طور عادات غذایی ایجاد می کند که با استفاده از این ماده از دور عادات ماهی، سه‌تایی ماهی با عناوین ماهی و ماهیان دیگر از این ماده استفاده می‌شود. ممکن است به‌صرفه‌برداری کیفیت زلوئوتیکی آن بهبود خاصی به وجود آن دارد. فاقد پوست ماهی از ماده قرار گرفته است. کلاژن محلول توسط ماهی به طور غیر عادی است. این مقدار اسیدهای آمینه کلاژن ماهی کمتر از کلاژن پستانداران می‌باشد (۸۸). به طور کلی مقدار ماهی استخراج دانه شدن قابلیت دارد. اگرچه از جنبه‌های دیگر مشابه کلاژن مهرداران است می‌باشد (۷۷).

کاربردی زلاتهای خصوصی از حیوانات خوشه‌مرد مانند ماهی صورت گرفته است (۷۷.۱۳ و ۲۳). تبدیل کلاژن غیر محلول به زلاتهای تازه‌ای توسط انسداد اتصالات نفوذپذیر مولکولی و خارج مولکولی بوده و باعث شده که هم خوردن ساختمان پوستی شده که بعداً منجر به کلاژن محلول خواهد شد (۸۸).

مواد و روش‌ها

فرآیند تهیه خوراکی بر روی نمونه‌های زیر انجام گردید: پوست لاغری ماهی، پوست نام‌دار و کوسه ماهی، ضایعات کارخانه فلزی زنی (شامل پوست و دم و بالا و استخوان) و فلز از ماهیان خسون، خار، گیفت ریز و قباد و سرخرو از ترمیمات شیلات بهره‌گیری گردید. استخراج خوراکی از نمونه‌های خوراکی به روش اسدی و B فلای کیا صورت می‌یافته و انواع زلاتهای استحصالی به ترتیب A می‌باشند. نمونه‌ها به صورت محروم از آماده‌سازی مشترک شدند و تا شروع آزمایش‌ها به همان صورت در یک چاله نگهداری گردید.
حذف اسید با استفاده از چیف بوختر است. هدف از انجام این عمل به منظور خارج نمودن املاح می‌باشد. مرحله پنجم، نمونه‌ها در pH 6-6.5 توسط متر دیجیتال تنظیم کردیم. زیرا که این محدوده سرعت تجزیه محلول زلاتین حاصل در حداکثر است و بهترین نتایج به دست می‌آید.

مرحله ششم، هیدروژن کلری و تبدیل آن به زلاتین توسط حاره و در محیط‌های آب است. استفاده از اوتکلاو سری‌تیون روش است. نمونه را مهار کردیم و به لمدسه یک ساکت ساخت. فشار بخار 20 فوریت داده تا کلری بیان صورت زلاتین هیدروژن کرد.

از میان ود در درجه حرارت 70 درجه سانتی‌گراد هم استفاده کردیم. ولی این در تولید زلاتین نیفت لزوم است و 46 ساعت با هرتیپ زلاتین بیست و قیلی نیز بازید به میزان دو سوی مواد کلارنژ آب اضافه گردید.

هدف از اوتکلاو نمودن، شکستن با هیدروژنی است که ساختن مارچین کلارنژ را تا حدی کنار، به هر حال نابود اتصالات بی‌پدید از بین برود. اصولاً از نکات جالب توجه تولید زلاتین آن است که علمی رگی متمایز فارنگاها، ترکیب اسیدهای مینه کلارنژ عیناً در زلاتین نهایی شده از آن دیده می‌شود.

مرحله هفتم، تعیین و محلول زلاتین: برای این کار می‌توان از سفیده تخم مرغ با اکسیژن کلسیم استفاده نمود. بلعلافل وسیع از خروج نمونه‌ها از اوتکلاو، در حالی که محلول در حال جوش است، به ازای هر 0.5 میلی‌لیتر محلول زلاتین، یک میلی‌لیتر سفیده تخم مرغ افزوده می‌شود. آلیمن سفیده در اثر حرارت متعدد کوکنده می‌شود و پس از یک ساعت می‌توان املاح مانند مس و دیگر ناخالصی‌ها را به خود متص نموده و تنها نکد که بعداً می‌توان جهت حذف ناخالصی‌های متصل شده به سفیده کوکنده شده، محلول‌ها را از صافی چرب داد.

مرحله هشتم، سانتی‌فزر نمودن: نمونه‌ها را با 2500 RPM مرحله جهش، سانتی‌فزر نمودن، نمونه‌ها را با محوطه‌های خارج شده از حالت انجماد واخرد و توزیع نموده و در کاغذ صافی پچانده و پس از گذشت آنها در کاتوئس جداگذار آنها را در دستگاه سوکلند به منظور جدا سازی چربی آنها، قرار داده و به وسیله 260 مس‌پریلور بیان

ساعت، چربی استرگنی گرفتند.

به دلیل این که فقط کلارنژ موجود در بوست و ضایعات ماهی است که در اثر هیدروژن زلاتین تبدیل می‌شود، بازماندیم تا درک پروتئینی‌ها در کلارنژ بیانی گردد. وجود این بیان تشکیل صرباب از طریق ترکیب اسید چرب و قلیای مصرفی در تولید فرآیند تهیه زلاتین خواهد شد و بایرانیس ضروری است که در مرحله اول فرآیند آن را جدا نمود

(2).

الف) روش اسیدی

مرحله چهارمی جدامی از گردن در هر مو یا سفید بیشتر توسط مشترک است. مرحله سوم، خذف املاح توسط HCL است. نمونه‌های بدنی چربی را در 200-300 میلی‌لیتر اسید کلریدیک 3 تا 4 ساعت در دمای اینان باید متغیر وزن سطحی مخلوط گردید تا املاح آن جدا و در مرحله بعد با شستشوی آب به مغز خارج گردید. هدف از املاح گیری توسط اسید، عدم تا گرفتن املاح کلسیم است. فسفات‌های کلسیم به‌طور کلریو دیده می‌شوند.

Ca5(PO4)3(OH) آبی نشتر (3) فسفات‌های کلسیم به صورت فسفات‌های اسیدی حلال شده و خارج گردید. از نهایی کلریان به صورت متوم (استین) باقی می‌ماند که دارای ناخالصی‌های مولکولی پیچیده است. عمل جداسازی املاح باعث کنترل بیشینه عمل در درجه حرارت پایین (دام اماسی) انجام گیرد، و از افزایش درجه حرارت پرهیز گردید. غلظت زیاد اسید بیانی‌هی دردلر اسیدی بی‌روتین کلارنژ می‌شود.

مرحله چهارمی، شستشوی استری با آب به دفعات مکرر برای

412
نتایج
در مرحله اول ابتدا نمونه‌های متجمد و خارج شده از حالت انجماد توزین گردید. درصد آب از دست رفته نمونه‌های پوست نواقش با گوش کننده متجمد و پوست کفپرینگ متجمد و ضایعات کارخانه زیبی به ترتیب برای 20/37 و 20/37 و 20/37 سه‌پرداز مورد نگهداری و بررسی قرار گرفت.

بحث
تعیین بهترین شرایط PH و نوع ماده اولیه
نتایج آنالیز واریانس داده‌ها در این مرحله از طرح (از طریق طرح فاکتوریل در قالب بلوک‌های کامل تصادفی و مقایسه مانگین‌ها) نشان داد که بین تیمارهای مختلف از نوع PH (شرایط قلبی و اسیدی) و ماده اولیه مورد استفاده جهت استخراج زالاتین با توجه به فاکتورهای کیفی مورد بررسی (ميزان راندمان، درصد خلوص و رنگ و ظاهر) اختلافات معنی‌داری به شرح زیر وجود دارد:

الف) راندمان
نتایج حاصل از آنالیز داده‌های نشان داد که کاهش استخراج pH معنی‌داری از نظر شرایط زالاتین برای میزان راندمان وجود دارد اما نوع ماده اولیه به طور کلی معنی‌داری (P < 0.05) بر میزان راندمان زالاتین تأثیر گذاشت. به علاوه همان گونه از تجزیه داده‌های مذکور می‌توان مشاهده نمود بین آمار معنی‌داری میان‌دوز فاکتور مورد آزمایش اختلاف کاملاً معنی‌داری وجود دارد (جدول 3).

ب) روش فلایی
1. چندسازی چربی
2. استفاده از محلول فلایا (سود 2/4 و مجاور نمودن آن با مغذی زالاتین (ضایعات ماهی) به مدت 3 هفته و در دمای اطاق
3. حذف فلایا به سیله آب
4. کاهش سایز محلول حاصله به سیله اسید کلریدریک 1/5
5. شستشی کرک تا اب برای حذف اسید و تنظیم
6. حذف 6-7 8
7. ناهیدولزی تحت فشار بخار آب (در انوکلاژ) مانند روش
8. آسیدی
9. تغییرات مایع زالاتین تحت خلاء
10. سرد و خشک نمودن زالاتین
11. تعبیه صفت کیفی زالاتین (رنگ) به روش تست بانل اندازه‌گیری شد و رنگ بر اساس (Hedonic scaling)

امنیت دهی حسی بود.
تعیین مناسب‌ترین ماده اولیه جهت استخراج زلاتین

همانند روشهای استخراج شرایطی A و B در اینجا نیز از امیتازHS تیم هر ماده اولیه مورد بررسی قرار گرفته است. به این ترتیب از امیتاز 20 میلی‌متری از محیط اسیدی استفاده شده است و همچنین این ویرانی هسته‌ای داده شده است.

بررسی اثر مقاول

در اینجا از بررسی اثر مقاول میانی در فاکتور مورد ارزیابی آزمایش سطوح مختلف آزمایش براساس وجود احتمال معنی‌دار از تفاوت‌ها بهره می‌بریم.
جدول ۱. میانگین درصد چربی و آب استحصالی از نمونه‌های مختلف ضایعات شیلات

<table>
<thead>
<tr>
<th>نوع نمونه</th>
<th>مقادیر آب و چربی</th>
<th>درصد آب</th>
<th>درصد چربی</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوست کفک‌کش ماهی</td>
<td>21/37 + 0/69</td>
<td>21/37 + 0/69</td>
<td>0/62 + 1/01</td>
</tr>
<tr>
<td>پوست توأم با گوشت کوسه ماهی</td>
<td>20/96 + 0/72</td>
<td>20/96 + 0/72</td>
<td>0/62 + 1/01</td>
</tr>
<tr>
<td>ضایعات کارخانه‌ای فیله زنی</td>
<td>22/39 + 0/57</td>
<td>22/39 + 0/57</td>
<td>0/62 + 1/01</td>
</tr>
<tr>
<td>میانگین کل ضایعات شیلات</td>
<td>11/76</td>
<td>11/76</td>
<td>0/62 + 1/01</td>
</tr>
</tbody>
</table>

جدول ۲. متوسط درصد زلاته‌پودری شکل استحصالی از منابع زلاته‌پودری با فرآیندهای اسیدی و قلیایی

<table>
<thead>
<tr>
<th>نوع نمونه</th>
<th>پوست کفک‌کش ماهی</th>
<th>ضایعات کارخانه‌ای فیله زنی</th>
<th>فرآیند اسیدی</th>
<th>فرآیند قلیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱/۵۷ + 0/۶۷</td>
<td>۱۸/۰۵ + 0/۱۶</td>
<td>۱۹/۷۶ + 0/۸۲</td>
<td>۱۸/۵۱ + 0/۲۹</td>
<td></td>
</tr>
<tr>
<td>۱۸/۱۷ + 0/۱۷</td>
<td>۲۰/۸۵ + 0/۸۸</td>
<td>۱۹/۷۶ + 0/۸۲</td>
<td>۱۸/۵۱ + 0/۲۹</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳. مقایسه راندمان، درجه خلوص و رنگ زلاته‌پودری در شرایط استخراج اسیدی و قلیایی (A) و امتیاز دهی به آنها (B)

<table>
<thead>
<tr>
<th>شرایط استخراج</th>
<th>راندمان</th>
<th>درجه خلوص</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) اسیدی pH</td>
<td>۱/۹۸ A</td>
<td>۸۶/۱۶ A</td>
</tr>
<tr>
<td>(B) قلیایی pH</td>
<td>۱/۹۸ A</td>
<td>۸۶/۱۶ A</td>
</tr>
</tbody>
</table>

خرش همیشگی نشان دهنده تفاوت معنی‌دار بین نمونه‌ها در هر سطح می‌باشد.

جدول ۴. مقایسه راندمان، درجه خلوص و رنگ زلاته‌پودری بر حسب مواد اولیه مختلف (A) و امتیاز دهی به آنها (B)

<table>
<thead>
<tr>
<th>ماده اولیه</th>
<th>درجه خلوص</th>
<th>راندمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوست کفک‌کش ماهی</td>
<td>۸۶/۱۶ A</td>
<td>۲۰/۳۱ A</td>
</tr>
<tr>
<td>پوست کوسه ماهی</td>
<td>۸۶/۱۶ A</td>
<td>۲۰/۳۱ A</td>
</tr>
<tr>
<td>ضایعات فیله</td>
<td>۱۹/۷۶ B</td>
<td>۲۰/۳۱ A</td>
</tr>
<tr>
<td>پوست کفک‌کش ماهی</td>
<td>۸۶/۱۶ A</td>
<td>۲۰/۳۱ A</td>
</tr>
<tr>
<td>پوست کوسه ماهی</td>
<td>۸۶/۱۶ A</td>
<td>۲۰/۳۱ A</td>
</tr>
<tr>
<td>ضایعات فیله</td>
<td>۱۹/۷۶ B</td>
<td>۱۹/۷۶ B</td>
</tr>
</tbody>
</table>

۴۱۵
اختلاف معنی‌داری مشاهده نگردید.

بررسی اثر مقیاس

در انجاژ نیز با احتمال بالا از 99 درصد اثر مقیاس میانی و به‌طور مشابه در این اسید PH و دمای استخراج مشاهده گردیده. در هر حال، پس از بررسی اثر مقیاس مذکور مشخص گردید که بهترین راندمان در صورت به کارگیری روش استخراج اسیدی و استفاده از مواد اولیه A و C می‌باشد که با تأیید به دست آمده. این مقدار مقیاس دارد.

توجه بوده در انجاژ معنی‌داری در این زمینه (در مورد فاکتور راندمان و این) مشخص گردید که بهترین راندمان، رنگ زلالین از طریق به کارگیری روش استخراج اسیدی و استفاده از مواد اولیه A و C در این مقدار داشته‌اند.

تعیین شیبیات مناسب PH و دمای استخراج زلالین

پس از مشخص شدن مناسب‌ترین ماده اولیه و شیبیات PH اسیدی جهت استخراج زلالین، در این مرحله از طرح و فاکتور و با عناوین متمایز از فاکتورهای مؤثر در کمیت و PH کیفیت زلالین استخراج از ارزیابی قرار گرفت که نتایج آن در زیر آورده شده است.

تعیین مناسب ترین PH در شیبیات استخراج اسیدی

از آنجا که PH به عنوان فاکتوری مؤثر در کمیت و کیفیت اسیدی استخراج نقش دارد، لذا در این قسمت از طرح این عامل به عنوان یک متد آزمایش در نظر گرفته شد که همانند مراحل اولیه طرح، در انجاژ نیز بر اساس از مشخص نمودن شیبیات PH و تعیین وجود اختلاف معنی‌دار بین شیبیات بهترین سطح معنی‌دار مشخص گردید.

PH این اسید استفاده از 6/5 PH به عنوان PH مناسب‌ترین تر انتخاب گردید. این زمینه میانه PH عنوان PH اسیدی محاسبه شده است.

کار رفت‌های اختلاف کلی‌اکتب معنی‌دار مشخص گردید.

تعیین بهترین دمای استخراج

با توجه به نتایج آنالیز واریانس داده‌ها و مقایسه میانگین‌ها، در انجاژ نیز بر اساس وجود اختلاف معنی‌دار بین سطوح مختلف این معنی‌دار سطح با دمای استخراج مشخص گردید. در انجاژ دمای این مناسب اختلاف کلی معنی‌دار مشخص گردید و یا توجه به نتایج حاصل بهترین راندمان در صورت به کارگیری دمای استخراج 70 درجه میانه PH به دست آمد. در هر حال میانه PH دمای سطح دیگر (C) و (D) از این نظر بهتر گونه

416
بررسی می‌شود تا اینکه چه مقدار ژلاتین‌های تولید شده در دو زمینه ژلاتین‌های این ویژه را در بسته‌بندی مورد استفاده قرار گیرند.

نتیجه‌گیری

در پژوهش حاضر، فواید مختلفی از استفاده با ژلاتین‌های تولید شده در بسته‌بندی مواد غذایی می‌تواند حکایت کننده باشد. به گونه‌ای که می‌تواند در بهبود کیفیت و دمای محیط زیست مواد غذایی مشارکت داشته باشد.

منابع اصلی

13. **Lepidorhombus boscii**

منابع مورد استفاده

1. **آرشی ولیعهد. 1359.** کاربرد ژلاتین‌های زیستی در داروسازی. پایان‌نامه دانشکده داروسازی، دانشگاه تهران.
2. **نگر اکرم‌نژاد. 1365.** روشهای تولید ژلاتین‌های زیستی در داروسازی. پایان‌نامه دانشکده داروسازی، دانشگاه تهران.