تعیین استراتژی‌های غالب (Non - Inferior Set) با لحاظ کردن ریسک در روش برنامه‌ریزی چندهدفه: مطالعه موردی زارعین شهرستان فسا

چکیده

در تعیین مجموعه کارا-ریسک (Risk - Efficient) (اتخاذ و تعبیه سطح بازده برنامه به‌صورت درونا از اهمیت ویژه‌ای برخوردار است. لذا در این مطالعه با استفاده از روش برنامه‌ریزی جنگلی مدل مبتنی بر هندق در قابلیت درک معیارهای اجرایی، قابلیت حل کارهای و نیک در واحدهای کاربردی ماکسیمین (Maximin) حداکثر حداکثر (Maximin) برای تعیین مجموعه استراتژی‌های غالب برای زارعین مورد مطالعه. این الگو، امکان‌پذیری از حداکثر کردن اهداف مدل شامل حداکثر کردن بازده و حداکثر کردن احتمال (Non - Inferior set estimation) را به‌عنوان سطح بالا با پایین مجموعه استراتژی‌های غالب تعیین گردید. نتایج حاصل از حداکثر نمودن الگوی حداکثر حداکثر نشان داد که حداکثر حداکثر نشان داد که حداکثر حداکثر بازده به‌ترتیب 272470 و 777570 هزار ریال است. این نتایج با استفاده از سطح مختلف تاثیر هندف، زیر مجموعه‌هایی از استراتژی‌های غالب تعیین گردید. نتایج حاصل از مقایسه الگوی کشت فلیز زارعین با گروه‌های زراعی پیشنهاد شده به‌وسیله الگو نشان داد که سطح زیر کشت فلیز محصولات مختلف زارعین به استناد چهندین تحقیقی در اطلاعات است که به‌وسیله الگو تعیین شده است. افزون بر این، نتایج نشان داد که الگوی کشت فلیز زارعین می‌تواند کیک استراتژی‌های غالب باشد. با توجه به اهمیت آب و کمک به نبود آب در منطقه مورد مطالعه، بازده متوسط آب در الگوی کشت فلیز زارعین با بازده متوسط آب در مجموعه استراتژی‌های غالب که مناسب با میل کشت استراتژی‌های غالب را تشکیل می‌دهد، مقایسه گردید. نتایج نشان داد که کشت زارعین با داده‌های صاخب 18/10 هزار ریال به این ساخت آب محصولی می‌تواند با این حال، بازده متوسط آب در دامنه 20 و 30 هزار ریال در مجموعه استراتژی‌های غالب نیز می‌تواند که این نتایج اطلاعات از حوزه مناسبی استفاده کرده با توجه به معتقدات آن‌ها. می‌توان کمک که نیاز کشت زارعین جهت استفاده بهتر از منابع اسک را‌پیچیده است و صرفاً بر اساس سیاست‌های جای تأمین می‌توان به‌وسیله الگوی دارای ارزش داشته باشد.

واژه‌های کلیدی: بهبودی، روش برنامه‌ریزی چندهدفه، توأم با ریسک، استراتژی‌های غالب

مقدمه

نظام‌های کشاورزی معمولاً با چندگانگی‌ها، ارتباط متقابل اجزای

1. دانشیار اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی باذگان‌دری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز و در حال حاضر استادیار اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

461
osalan zarezin az baste lar az bakhshozar haye niyadeh va danima tegheri mi. kendi nafosan dar amadai momeka asta tegheri az sharayita ab va havaei, bimaye ha, afaneh, tegheri az cheshme ha, va sharayita bavar yu terkhsiz ha man saniyeye shabard ha, ya terkhsiz dar tavolash bain 10 va 20. lada, dar tebyin bimaye biniya zeizeye bavezie az hangam tamash digire in morde astefadeh az fen avori nowin va bimaye jadid zeizeye, ladam asta be taiyar makhrazehati asta tegheri shod. be ubaydar digir bimaye

taiyar shode baiesti kara - riesk bain 10 va 18. (13). bain raaye ambe khaste khanestin zoraz in bimaye razm va bimaye xamkhizehati (Mean-variance Markowitz's)

tadval (Stochastic Dominance Technique) morde tegheri (10 va 20). bai ambe khaste, bishnuye riesk mambesarast bai asta astefadeh az morde bimaye razm va bimaye xamkhizehati (Multiple-Criterion Decision Making) bimaye razm va bimaye razm va bimaye razm va bimaye xamkhizehati (9). (14). bai ambe khaste, khanastin zoraz in bimaye bimaye razm va bimaye xamkhizehati (Multi - Objective Programming)

takhsil riys - bazede mardayi ha dide mahzor mi tawand shamil

mihayeha beha jahad daraksedan bazeda t獾ي farya digire az radman

va mihayeha beha xamkhizehaye (riyske) az jamooleh tahwineh

melt az bye mardayi mardayi, ya bimaye mardayi. (25) in bimaye hataye bimbare

raies bimaye tebyin bimaye xamkhizehaye khanastin zoraz in bimaye tesnef

khanastin zoraz in bimaye tesnef (Target MOTAD)
مشکلات مربوط به سطح زیر پارامتر \(t \) است و به صورت زیر تعریف می‌گردد:

\[
Q(k, t) = \left[\int_{-\infty}^{x} (t - x)^k f(x) \, dx \right]^k
\]

کشت‌دار اولیه \(Q(1, t) \) به‌rails در یک مدل برنامه‌ریزی خطی می‌تواند، لازم است که بزرگ‌تر از \(Q(k, t) \) بودد.

محدوده‌ها و روش‌ها

روشهای مورد استفاده در این مطالعه شامل مدل‌های جزئی و هم‌کنشی روش تحلیل پارامتریک بوده و شامل پارامتریک-حداکثر - حداقل است. که با استفاده از آنها به‌طور میانگین ارزیابی سطعات از یک مدل بحرانی حداقل و کمترین بارهای سالانه حداکثر گردیده است. این مدل‌ها در قابلیت برنامه‌ریزی به‌کارگیری هدف‌های صورت‌برداری شده از آن ریسک برنامه‌ریزی محدود می‌شود.

هدف پزشک برای بهبود وضعیت بیماری، از (Safety-First) مدل‌های اول اطمنان (کیکی از) روشهای متغیر در تحلیل بارهای - ریسک می‌باشد. این

روشهایی که برآورد احتمالات برای دنباله‌های باین توزیع مربوط به راهبردی که نماینگر این است که بازه به یک سطع

نامعلومی را به روش ایجاد نمایه‌ریت. این مدل درا

می‌توان با استفاده از رابطه زیر آورده به‌کارگردانی:

\[
\left| X - E(x) \right| > KS \leq 1/K^2
\]

که از انتخاب برای \(E(X) \) می‌باشد.

با استفاده از پارامترها و ابزار به‌کارگیری فاکتوری برای حداکثری هر نوع می‌باشد. مزایای احتمالی که از رابطه به‌کارگیری

\[
\text{Pr}(X < g) = Pr[X < t - PQ(k,t)] \leq \frac{1}{pk}
\]

که سطع على از انتخاب بارهای \(E(g) \) به‌کارگیری \(t \) پارامتر اختیاری برای بازه برای آزمایش شکست \(P \), \(P(g) \) احتمال

با استفاده از انتخاب بارهای

با مجموعه‌ای برای بهبود یکی زیر به‌کارگیری دار می‌باشد.
به هدف $\sum_{i} w_i \leq m$، تنها آزمایش گونه (E-PAD) توسط بازدارنده انتخاب می‌شود.

چنت تعریف بازدارنده انتخاب از آزمایش‌های ژنتیکی در مجموعه Z_k را می‌توان به دست آورد.

توضیح مقاله به همراه شیوه کوهن (10) می‌تواند به‌صورت زیر استفاده کرد (9):

$$\max \sum_{j=1}^{n} c_{ij} x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i = 1, 2, \ldots, m)$$

$$\sum_{j=1}^{n} x_j \leq V$$

$$x_j \in \{0, 1\} \quad (j = 1, 2, \ldots, n)$$

در این رابطه x_j از راستای بردار بازدارنده انتخاب و در مجموعه Z_k به‌طور کلی از مجموعه Z_j توسط بازدارنده انتخاب می‌شود.

$$\text{Pr} \{\text{returns} \leq PAD \} = (t-g)S$$

در این رابطه، t از برابر بازدارنده است که به تحلیلگر آزادی بردار، g و S به‌طور کلی از مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.

در ماژول حاضر سعی گردیده، با استفاده از روش طراحی شده، مجموعه استاتیزه‌های غلبه برای زارعی بخش مصرف را واقع در شرایطی که بازدارنده انتخاب می‌شود. این مقدار جز مقدار b_i تا بهمراه مقدار x_j نیز بازدارنده انتخاب می‌شود.

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i = 1, 2, \ldots, m)$$

$$\sum_{j=1}^{n} x_j \leq V$$

$$x_j \in \{0, 1\} \quad (j = 1, 2, \ldots, n)$$

در این رابطه، x_j از برابر بازدارنده است که به تحلیلگر آزادی بردار، g و S به‌طور کلی از مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.

$$\text{Pr} \{\text{returns} \leq PAD \} = (t-g)S$$

در این رابطه t از برابر بازدارنده است که به تحلیلگر آزادی بردار و در مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.

$$\max \sum_{j=1}^{n} c_{ij} x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i = 1, 2, \ldots, m)$$

$$\sum_{j=1}^{n} x_j \leq V$$

$$x_j \in \{0, 1\} \quad (j = 1, 2, \ldots, n)$$

در این رابطه، x_j از برابر بازدارنده است که به تحلیلگر آزادی بردار، g و S به‌طور کلی از مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.

$$\text{Pr} \{\text{returns} \leq PAD \} = (t-g)S$$

در این رابطه t از برابر بازدارنده است که به تحلیلگر آزادی بردار و در مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.

$$\max \sum_{j=1}^{n} c_{ij} x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i = 1, 2, \ldots, m)$$

$$\sum_{j=1}^{n} x_j \leq V$$

$$x_j \in \{0, 1\} \quad (j = 1, 2, \ldots, n)$$

در این رابطه، x_j از برابر بازدارنده است که به تحلیلگر آزادی بردار، g و S به‌طور کلی از مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.

$$\text{Pr} \{\text{returns} \leq PAD \} = (t-g)S$$

در این رابطه t از برابر بازدارنده است که به تحلیلگر آزادی بردار و در مجموعه Z_j به‌طور کلی از مجموعه Z_k توسط بازدارنده انتخاب می‌شود.
نتیجه‌گیری‌های غالب (Non - Inferior Set) با لحاظ کردن ریسک در...

جدول 1. مدل موانع هدف در غالب میانگین انحرافات مطلق حزیبی و پارامتریک حداکثر حداکثر

<table>
<thead>
<tr>
<th></th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
<th>X₅</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2050</td>
<td>5808</td>
<td>5746</td>
<td>580</td>
<td>5710</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>39.3</td>
<td>175</td>
<td>216</td>
<td>187.5</td>
<td>65.23</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>28.44</td>
<td>144</td>
<td>58.8</td>
<td>143</td>
<td>192.2</td>
<td>2040</td>
<td>2246</td>
<td>1886</td>
<td>2013</td>
<td>972</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>88.5</td>
<td>227</td>
<td>5909</td>
<td>277</td>
<td>5659</td>
<td>1051</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2247</td>
<td>2214</td>
<td>2497</td>
<td>2916</td>
<td>1954</td>
<td>89.8</td>
<td>1926</td>
<td>5112</td>
<td>1991</td>
<td>629</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>387.4</td>
<td>2858</td>
<td>758</td>
<td>515</td>
<td>899.5</td>
<td>419.4</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>433.5</td>
<td>433</td>
<td>873.9</td>
<td>11.7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ردیئه‌های ریسک

ردیئه‌های حداکثر حداکثر

مکان: داده‌های مورد بررسی

465
جدول ۲. ماتریس پازده برای سه هدف مورد مطالعه (هزارریال)

<table>
<thead>
<tr>
<th>حداکثر حداکثر</th>
<th>حداکثر بارز</th>
<th>حداکثر اندازه (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۱۶۵۵۳</td>
<td>۴۱۶۵۵۳</td>
<td>۲۴۷۹۱</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۱۴۳۱۱۵</td>
</tr>
<tr>
<td>۲۷۰۲۵۲</td>
<td>۲۷۰۲۵۲</td>
<td>۱۱۸۷۵۸</td>
</tr>
</tbody>
</table>

مانند: داده های مورد بررسی

شکل ۱. مجموعه کارایی mean-PAD

در شکل ۱ و ۲ مرزهای به دست آمده در فضای اهداف تعبیر شده در مدل شان داده شده‌اند. شکل ۱ مربوط به E-PAD آمده در فضای اهداف (E-V) به دست آمده در فضای اهداف را نشان می‌دهند. متغیرهای تصمیم به دست آمده مربوط به این نقاط در فضای اهداف در جدول، و ۴ آورده شده است. متغیرهای تصمیم و بارز مربوط به آنها محصولات به ترتیب گنبد (X1)، خریدره (X2)، پیشه (X3)، چگو (X4) و ذرت دانهای (X5) می‌باشند. اگر هر دو از یک محدودیت برای زمین، ۴ محدودیت برای آب (برحسب حساب در هکتار در فصل)، یک محدودیت برای سرمایه (برحسب هزار ریال) می‌باشند. در مثابه ریسک و حداکثر حداکثر پازده و اهداف نیز در جدول ۱ نشان داده شده‌اند.

نتایج و بحث

یکی از موضوع معمول در برنامه‌ریزی چند هدف ساختن ماتریس پازده‌ها است. عناصر این ماتریس از حداکثر کردن هر هدف با توجه به محدودیت‌ها و محاسبه مقدار سایر اهداف به دست می‌آید. ماتریس پازده‌ها برای نشان دادن درجه قابل اهدا لحاظ شده در مدل بسیار سودمند است. در این مطالعه چون مقدار پازده هدف مساوی حداکثر حداکثر در نظر گرفته شده دو هدف حداکثر-حداقل (t = maximin)
تیمین استراتژی های غالب (Non - Inferior Set) با لحاظ کردن ریسک در...

شکل ۲: مجموعه کارایی پارامتریک ماکسیمین

جدول ۳: مقادیر اهداف و متغیرهای تصمیم در فضای انتظاری و انحرافات مطلق جزئی (E-PAD)

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتر)</th>
<th>اهداف هزاریال</th>
<th>نمایش P</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₅</td>
<td>x₄</td>
<td>x₃</td>
<td>x₂</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>25/56</td>
<td>21/42</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>37/11</td>
<td>29/4</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>33/7</td>
<td>29/9</td>
</tr>
<tr>
<td>4/97</td>
<td>−</td>
<td>25/72</td>
<td>24/27</td>
</tr>
<tr>
<td>11/45</td>
<td>−</td>
<td>12/85</td>
<td>21/99</td>
</tr>
</tbody>
</table>

جدول ۴: مقادیر اهداف و متغیرهای تصمیم در فضای پایدار انتظاری و حداقل-حداقل (V-E)

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتر)</th>
<th>اهداف هزاریال</th>
<th>نمایش Q</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₅</td>
<td>x₄</td>
<td>x₃</td>
<td>x₂</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>25/56</td>
<td>21/42</td>
</tr>
<tr>
<td>5/73</td>
<td>−</td>
<td>27/94</td>
<td>28/49</td>
</tr>
<tr>
<td>11/45</td>
<td>−</td>
<td>12/85</td>
<td>21/99</td>
</tr>
</tbody>
</table>

با استفاده از تکنیک برآورد مجموعه غالب به دست آمده است.

جدول ۴ و ۵، مقادیر Q₁ است چون هر دو اهداف کردن پایدار انتظاری به دست آمده است. نقطه P₁ و P₄ تبیین مسئولیت چون این نقاط برای هر دو منحنی زمانی اتفاق می‌افتد که سطح اهداف به هدف، ۱ مسئولیت بیا

457
شکل ۳ مجموعه‌ای کارا پارامتریک حداقل - حداقل و

جدول ۵ مقادیر اهداف و متغیرهای تصمیم زمانی که

$$t = \frac{1}{610000}$$

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتار)</th>
<th>اهداف هزار ریال</th>
<th>نقطه</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>V</td>
</tr>
<tr>
<td>-0.51</td>
<td>$21/22$</td>
<td>$72/84$</td>
</tr>
<tr>
<td>$-37/9$</td>
<td>$29/47$</td>
<td>$51/7$</td>
</tr>
<tr>
<td>$-35/28$</td>
<td>$23/16$</td>
<td>$44/9$</td>
</tr>
</tbody>
</table>

مآخذ: یافته‌های تحقیق

در این دانه فرم‌های هر ۱ هکتار به ترتیب در فضای اهداف و E-PAD مربوط به دو دانه یا می‌باشد.

با نظر موفقیت E-PAD در مراکزیه‌های غالب و لحاظ PAD کردن آن در فضای اهداف E-PAD سطحی به دست می‌آید که این دانه به مجموعه ایندکس تغییر داشته‌باشد. هر نقطه در داخل این سطح جواب قابل قبول برای تصمیم گیرندایه است که تاثیر هرم‌مان تقابل به حداقل کردن ریسک و حداقل کردن پایین اندازه‌دار.

با توجه به جدول ۳ ملاحظه می‌گردد که مقیاس V در دامنه [27200-27758] توان می‌گردد برای هر ۴ سطح هفت، کمتر از 217758 جواب منجر به حداقل پارامتریک حداقل - حداقل
جدول ۶ مقدار اهداف و متغیرهای تصمیم زمانی که $t = 372$ است.

<table>
<thead>
<tr>
<th>متغیرهای تصمیم</th>
<th>پذیرایی</th>
<th>E</th>
<th>نقاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
</tr>
<tr>
<td>25/55</td>
<td>21/62</td>
<td>77/24</td>
<td>241/68</td>
</tr>
<tr>
<td>32/53</td>
<td>3/64</td>
<td>25/40</td>
<td>241/68</td>
</tr>
<tr>
<td>33/99</td>
<td>41/10</td>
<td>18/31</td>
<td>241/68</td>
</tr>
</tbody>
</table>

جدول ۷ مقایسه الگوی کشت فعلی زارعین با مجموعه استراتژی‌های غالب زمانی که $E = 270257$ است.

<table>
<thead>
<tr>
<th>کل</th>
<th>الگوی کشت (هکتار)</th>
<th>E</th>
<th>نقاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_1</td>
</tr>
<tr>
<td>235/55</td>
<td>3</td>
<td>3</td>
<td>35/51</td>
</tr>
<tr>
<td>139/97</td>
<td>3</td>
<td>3</td>
<td>35/51</td>
</tr>
<tr>
<td>114/55</td>
<td>12/87</td>
<td>29/47</td>
<td>18</td>
</tr>
</tbody>
</table>

این امر شاید مصرف آب بالایی ایم و نسبت به سایر فعالیت‌های درنظر گرفته شده درالگو باشد. وقتی درک الگوهای الگوی زارعین با مجموعه غالب به نظر رسد، لازم است مقایسه‌ای بین الگوهای غالب و الگوی فعلی زارعین صورت گیرد. در جدول ۷ می‌توان نشان داده شده است.

با توجه به جدول ۷، ملاحظه می‌گردد که الگوی کشت P_1 جهت درک روش‌های الگوی زارعین با مجموعه غالب به نظر بسیار مناسب است. مقایسه الگوی فعلی زارعین اینچنین در آزمون F به دست آمده است.
جدول 8. مقایسه بانده مصرف آب در واحد سطح بانده‌ها (آب آشامیدنی) و گالوی P1 و P2:

| بانده‌های مصرف آب | کل بانده‌های تنظیماً | کل سطح بانده‌ها
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(هزارریال)</td>
<td>(هزارریال)</td>
</tr>
<tr>
<td>بانده‌های تنظیماً</td>
<td>۱۸/۱۵</td>
<td>۲۶۶۲۰</td>
</tr>
<tr>
<td>بانده‌های تنظیماً</td>
<td>۱۹/۱</td>
<td>۵۴۷۹۱</td>
</tr>
<tr>
<td>بانده‌های تنظیماً</td>
<td>۳۰/۲</td>
<td>۴۱۶۵۵۵</td>
</tr>
</tbody>
</table>

نتیجه‌گیری:

نظر به اینکه محاسبه کندترین عامل تولید در کشور آب ایجاد می‌شود بانده مصرف آب باید به‌دست از حداکثر کردن گالوی این گونه محاسبه و نسبت بانده بانده به حداکثر بانده تنظیماً و حداکثر بانده تنظیماً به ازای ۲۷۵ هزار ریال و حداکثر بانده‌های پارامتریک حداکثر - حداکثر مورد بررسی قرار گرفت. نتایج این بررسی در جدول ۸ نشان داده شده است.

با توجه به جدول ۸ ملاحظه می‌گردد که بانده‌های مصرف آب در گالوی P1 و P2، ۲/۵ هزارریال است. اختلاف این‌ها دو ۲/۵ هزارریال می‌باشد. در این جدول P1 و P2 حالتی که بانده بانده سالانه حداکثر می‌گردد. ملاحظه می‌گردد که بانده آب پیشیر حداکثر ۱/۵ بانده گالوی از این‌ها یافت. در واقع این نتایج داشت که زاری‌انی در ماه‌های مختلف آب و هزینه شونده‌گالوی کشت خود را به نحوی انتخاب کنند که از آن حداکثر بهره‌برداری را کنند. این امر منجر به کاهش کمیابی توان خود بانده باعث آن گردیده و نتایج کمیابی از آن را تشویق می‌کند. جن می‌خواهد از ویژگی‌های مناسب آب در جهت بهره‌برداری کارآمد از آب مؤثر خواهد بود.
تبیین استراتژی‌های غالب (Non-Inferior Set) با لحاظ کردن ریسک در محصولات زراعی به جز نگرفته تقسیمی در دامنه سطح زیر کشت مجموعه استراتژی‌های غالب قرار می‌گیرد.

به دلیل اهمیت آب و کمکی آن در منطقه مورد مطالعه به روش سخت آب مصرفی در الگوی کشت فعالیت زراعی مشابه گردید که باید بود که در بین ۱۸۵۰ و ۱۹۸۰ به سطح زیر کشت در نظر گرفته می‌شد و لذا در اکثر مدل‌های مطرح شده در سطح کشور متغیر تخصیص اندیزه سطح زیر کشت در نظر گرفته می‌شد. چندان قابل دفاع نبوده و لذا لازم است علاوه بر سطح زیر کشت متغیرهای تخصیص دیگر از جمله مقدار آب ایبیاری نیز در بهبود سازی الگویی کشت در نظر گرفته شود.

متابع‌آور استفاده‌ای

۱. ترکمانی، ج. ۱۳۷۵. استفاده از برنامه‌هایی ریاضی توأم با پیش‌سازی در تهیه کارانی بهره‌برداران کشاورزی. مجله علمی کشاورزی ایران. ۲۷-۰۳.

۲. کریامی، ع. ر. م. سالاری‌پور، و. ر. گریز، ۱۳۸۱. مدیریت و انتخاب گیری اقتصادی در شرایط توأم با ریسک. انتشار کشاورزی و کشاورز مشابه گردید که باید بود.

۳. کهخرا، و. غ. سلطنی، ۱۳۷۵. تعبین ضریب ریسک‌گیری زراعی استان فارس. مجموعه مقالات اولین کنفرانس اقتصادکشاورزی ایران ۱۵ تا ۱۷ فروردین ۱۳۷۵، زابل.

۴. نیک‌نیکی، ع. و. ه. ترکمانی، ۱۳۸۰. سیاست کشاورزی با نگاهی به گزارش کشاورزان با مخاطره و مصرف نهاده‌ها. دانشکده کشاورزی ۱۳-۳۹.

