چکیده

در تعیین مجموعه کارا-رسک (Risk - Efficient) یا مناسب به سطح بازده برنامه، نیاز به نظرات اهداف و اهمیت ورودی برخورد دارد. لذا، در این مطالعه با این نظرات از روش برنامه‌ریزی جدید، مدل موتور هدف در قابلیت ارزیابی‌شدن محیط و تحلیل پارامتریک حداکثر-حداکثر (Maximin) برای تعیین مجموعه استراتژی‌های بزرگتر، ماهیت و مقدار مدل تعیین مجموعه استراتژی‌های غلاب کنترل ممکن است. در نهایت، استراتژی‌های غلاب طبق اقدامات انتخاب (Non - Inferior set estimation) سقوط بازده از یک سطح ارزشی تغییر نمی‌کند. می‌توان این امر را به دو سطح بازده از حداکثر و حداکثر نشان داد که حداکثر و حداکثر مرزه‌ی بالا و پایین مجموعه استراتژی‌های غلاب تعیین می‌گردد. نتایج حاصل از حداکثر نمونه‌گذاری حداکثر حداکثر نشان داد که حداکثر و حداکثر بازده به ترتیب 374/22 و 376/2 هزار ریال است. این نتایج از سطح مختلف برمبای وارون، در مجموعه‌ی مدل تعیین مقدار و بهترین مدل تعیین می‌تواند بررسی شود. مدل تعیین مقدار و بهترین مدل تعیین می‌تواند بررسی شود. مدل تعیین مقدار و بهترین مدل تعیین می‌تواند بررسی شود.

جواد ترکمانی، محمود صبحی‌چی

واژه‌های کلیدی: بهبود، روش برنامه‌ریزی چندهدفه، تأمین با ریسک، استراتژی‌های غلاب

مقدمه

۱. دانشیار اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
۲. دانشجویی بیزکاری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز و در حال حاضر استادیار اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
عملیات آماری از نظر لازم برخوردار تبادل و دانست غیرتی می‌کند. بنابراین موانع در مبنای است تغییر در شرایط آب و هوا، بیماریهای محیطی، و افزایش غیرتی در قیمت‌ها و شرایط بارز و یا ترکیبی از این عوامل باشند (16 و 20). لذا، در تعیین برناوهای بهینه نیاز به پیش بینی هنگام تصمیم‌گیری در مورد استفاده از این آماره نیست و برناوهای جدید بازاری، لازم است به تأثیر مخاطرات احتمالی توجه شود. به علیه دیگر برناوهای تعین شده باستی کارا - ریسک باشند (4 و 18).

در همه‌ها اظهار ن살اشر سکته‌های برای دخالت در مخاطرات و بیماریهای احتمالی آن در برناوهای دری در تحلیل تصادفی شده است (18). (19). این امر بیشتر از طریق استفاده از میزان میزان‌گذاری (Markowitz's Variance) و سیاست‌سازی (Stochastic Dominance Technique) می‌باشد (16 و 20). با این حال، تحلیل ریسک مناسب است با استفاده از روش‌های تصمیم‌گیری چند معياره (Multiple-Criterion Decision Making) مورد توجه قرار گرفته است (13). ذیل این آمر این ریسک در ماهیت خود یک مسئله که البته است چرا که در برخورد با ریسک همواره مبادله بین سطح تحقیق آن و اهداف دیگر وجود دارد (16 و 21). این مسائل که محدود تفاوت سازی و سایزی چند معياره که در تحلیل مسائل مربوط به مخاطرات کشاورزی به‌طور گسترده‌ای مورد توجه قرار گرفته برناوهای ریزی جدید هدف می‌باشد (Multi-Objective Programming).

تحلیل ریسک - بازه در مدلهای دو معياری می‌تواند شامل میزان حداکثری در زمان انتظار، حداکثر کردن کمترین بازه سالانه (تحلیل پارامتریک حداکثر - حداقل) و حداکثر کردن احتمال سقوط بازه از این سطح باید با اعمال مدل مرزی قرار گرفته است. این اهداف در قابل کنترل حداکثر کردن بازه انتظار و حداقل کردن میزان احتمالات مطلق جزئی و همچنین حداقل (Mean Partial Absolute Deviation) کردن بازه انتظار و کمترین بازه سالانه صورتی‌بندی شدند. مجموعه استرالیا و غربی می‌باشد و با یک مدل میان دری و یا ترکیبی از این سطح باید با اعمال شکست از این سطح به‌طور یک‌تولب باشد (16 و 20). (21). این از روش‌هایی که بطور گسترده‌ای در تحلیل مسائل کشاورزی و تحقیقات متعدد مورد استفاده قرار گرفته است، روش موتوده‌های هدف می‌باشد که به وسیله طراحی مطرح گردید (Target MOTAD).
تعیین استراتژی غلبه (Non - Inferior Set) با لحاظ کروندر ریپسک در...

کشتنار مربوط به "a" منطق زیر پارامتر "t" است و به صورت زیر تعیین می‌گردد:

\[Q(k,t) = \left(\int_{-\infty}^{\infty} (t - x)^k f(x)dx \right)^\frac{1}{k} \]

کشتنار اول "k" به راحتی در یک مدل برنامه‌ریزی خطی می‌تواند به لحاظ شود. با توجه به آن، جهت برنامه‌ریزی احتمال نشکست، سطح آستانه گری "g" را برای انتخاب کننده با توجه به تعریف کننده:

\[g = 1 - \frac{[P,Q(1,t)]}{g^2} \]

از رابطه "4"، می‌توان بیان کرد:

\[P = (t-g)/Q(k,t) \]

با قراردادن رابطه "5" در "2"، رابطه "6" حاکم می‌شود:

\[P \leq [Q(k,t)/t] = (t-g)/Q(k,t) \]

اگر در رابطه "6"، کشتنار اول "k=1" در نظر گرفته شود می‌توان به صورت زیر آن را در یک مدل برنامه‌ریزی خطی لحاظ کرد:

\[P \leq [Q(1,t)/t] = (t-g)/Q(1,t) \]

رفع "4" فقط با توجه کشتنار جزئی می‌تواند به دست آید. از کاربرد (1,4) رال‌حراف مطلق جزئی نام گذاری کرد (Partial Absolute Deviation (PAD)), با استفاده از مفهوم انحراف مطلق جزئی می‌توانند مدل می‌توانند هدف را که به وسیله تورب (17) به عنوان یک مدل برنامه‌ریزی ریسکی ارائه شد؛ به صورت زیر براساس برنامه‌ریزی چند هدف نشان داد (9):

\[\text{Maximize } Z_1 = \sum_{j=1}^{n} C_{ij} X_j \]

\[\text{Minimize } Z_r = \sum_{r=1}^{n_r} X_r \]

Subject to:

\[\sum_{j=1}^{n} C_{ij} X_j + r - P_r = t \quad r = 1, \ldots, s \]

\[\sum_{k=1}^{m} a_{kj} x_k \leq b_k \quad k = 1, \ldots, m \]

که سطح فعالیت "i" از "C_{ij}" باید فعالیت "j" در حالت "t" سطح "n_j" باید مرحله از ان اندازه‌گیری می‌شود. سطح پایینتر تحقیق باید هندسه یک هدف "t" در حالت "p" باشد.

\[\text{Pr}(X < g) = \text{Pr}[X < t - PQ(k,t)] \leq \frac{1}{pk} \]

که سطح آستانه اطمینان "t" برای انتخاب باید با انتخاب "Q(k,t)" باشد از "1, n_r" "P" برای انتخاب "1, n_r" احتمال شکست "g" می‌باشد.
مومتی اهداف (E-PAD) و هدف اصلی از گزارش و در پایین
کمترین ارزش برای هر از اهدافی می‌باشد.
مجموعه کارا
بین هر دو نقطه با استفاده از تکنیک بی‌آوری مجموعه غلابی
toosue یافته به سیستم کوین (10) می‌تواند به‌دست آید.
جهت تعیین
می‌توان از برنامه‌ریزی‌پارامتری
حداکثر - حداقل در قابلیت یک مدل برنامه‌ریزی ریزی چند هدفه
به‌صورت زیر استفاده کرده (9):

\[
\text{Maximise } Z_1 = \sum_{j=1}^{n} c_j x_j
\]

\[
\text{Maximise } Z_2 = V
\]

Subject to:

\[
\sum_{j=1}^{n} c_j x_j \geq V \quad r=1, S
\]

\[
\sum_{k=1}^{m} \delta_{kj} x_j \leq \delta_k \quad k=1, m
\]

که حداقل حداقل‌بازه‌سالانه است.
مجموعه کارا در فضای (E, V) مسیری بین نقطه استریتک (E-PAD) که از حداقل
کردن بازه انتظاری (معادله 13) و محسوبه مقدار V مربوط به
آن و نقطه استریتک (E, V) که از حداقل کردن حداقل‌بازه
سالانه (معادله 14) و محسوبه مقدار E مربوط به آن به‌دست
می‌آید. نقطه استریتک (E, V) حداقل‌حداقل‌بازه است که با
حداف معادله 13 در اساسیت هم‌بندی به‌دست می‌آید. مجموعه کارای
پارامتریک حداقل‌حداقل - حداقل‌حداقل (E, V) می‌تواند با استفاده از
تکنیک بی‌آوری مجموعه غلابی به‌دست آورد.

در مطالعه سعی سعی کردیم، با استفاده از روش مطرح
شد، مجموعه استراتژی‌های غلاب برای زارعی بخش شیپکو
واقع در شهرستان فسا تعیین گردید. اطلاعات مورد نیاز با تهیه
بریزی و مصاحبه حضوری با 30 زارع، که با استفاده از
روش ویکس و همکاران (21) و براساس نسبت میزان
نهداه‌های محدود از جمله آب کشاورزی و سرمایه قابل
دسترسی به طرح زیر و همکاران شده بودند، به‌دست آمدند. در
این رابطه، اگرچه مورد استفاده با توجه به محدودیت‌های
عمده آب و سرمایه در جدول 1 نشان داده شده است.

تحقیق بارده نسبت به هدف 1 در حالت 0 # | بازه انتظاری فعالیت
زی و به معنی بی‌آوری مقدار در دسترس منبع Cj به
تعداد منابع است. \(s \)

تأثیر هدف ز ر مجموعه متغیر‌های احراز منفی
را حداقل‌بازه کدک، که باردل (4) آن احراز مطلق جزئی
نام‌گذاری کرد. صورت‌بندی اصلی نوش‌ (17) با ساختن معادله
11 بی‌شماری جک‌هودرسیت و پارامتریک کردن سمت راست آن
به‌دست می‌آید. حلق این صورت‌بندی جدید، مجموعه کارایی
به‌دست می‌دهد که بر اساس دو ویژگی بارده و احراز مطلق
جزئی گرئت کف آت. باردل (6) مدل میانگین احرازات مطلق جزئی را جهت
صورت‌بندی مدل موانع هدف بسط و توسعه داد. مدل بی‌شماری
وی بی‌آوری دغدغی از احراز شکست و ایجاد مجموعه کارا با
تکنیک‌های برنامه‌ریزی چند هدفه را، بکار برای تحقیق می‌گیرد.
معادله 9 به راحتی می‌تواند به‌بستر احراز شکست (بارده
کمتر از سطح آستانه‌گام) به‌صورت تابعی از احرازات مطلق
جزئی (g) و به‌صورت از شرطش شود (8).

\[\text{Pr[returns } \leq g] \leq \text{PAD } / (t-g).S] \]

در این رابطه 4 پارامتر درون‌ای است که به تحلیلگر آزادی
برخی جهت تعیین سطح آن می‌دهد. به‌علاوه چون یک رابطه
خطر به احرازات شکست و احرازات مطلق جزئی، وجود دارد.
اهداف در مدل میانگین احرازات مطلق جزئی می‌تواند به‌صورت
انحرازات مطلق جزئی یا احراز بهشت‌سالانه بیان گردد (9).

در ساختارهای سعی سعی کردیم، با استفاده از روش متطرف
شده، مجموعه استراتژی‌های غلاب برای زارعی بخش شیپکو
واقع در شهرستان فسا تعیین گردید. اطلاعات مورد نیاز با تهیه
بریزی و مصاحبه حضوری با 30 زارع، که با استفاده از
روش ویکس و همکاران (21) و براساس نسبت میزان
نهداه‌های محدود از جمله آب کشاورزی و سرمایه قابل
دسترسی به طرح زیر و همکاران شده بودند، به‌دست آمدند. در
این رابطه، اگرچه مورد استفاده با توجه به محدودیت‌های
عمده آب و سرمایه در جدول 1 نشان داده شده است.
جدول 1. مدل موانع هدف در قابلیت میانگین انحرافات مطلق جزئی و پارامتریک حداکثر - حدااقل

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>N 1</th>
<th>N 2</th>
<th>N 3</th>
<th>N 4</th>
<th>N 5</th>
<th>N 6</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>حدااقل</td>
<td>1</td>
</tr>
<tr>
<td>حداکثر</td>
<td>0</td>
</tr>
<tr>
<td>زمینه</td>
<td></td>
</tr>
<tr>
<td>اب</td>
<td></td>
</tr>
<tr>
<td>بهار</td>
<td></td>
</tr>
<tr>
<td>تابستان</td>
<td></td>
</tr>
<tr>
<td>پاییز</td>
<td></td>
</tr>
<tr>
<td>زمستان</td>
<td></td>
</tr>
<tr>
<td>سرمایه</td>
<td></td>
</tr>
<tr>
<td>ریسک‌های ریسک</td>
<td></td>
</tr>
<tr>
<td>ریسک‌های حداکثر حدااقل</td>
<td></td>
</tr>
</tbody>
</table>

ماده: داده‌های مورد بررسی

465
جدول 2. ماتریس باره به سه هدف مورد مطالعه (هزار ریال)

<table>
<thead>
<tr>
<th>حداکثر...حداقل</th>
<th>حداکثر باره</th>
<th>PAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52479.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142315.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211758.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<>

در جدول ۲ باره های به دست آمده برای توان هدف تیز داده شده است.

میانگین توزیع های گردیده (PAD) دارای یک چوب می باشد. در جدول ۲ باره های به دست آمده برای توان هدف تیز داده شده است.

همانطور که از جدول ۲ ملاحظه می گرده، حداقل و حداکثر باره به ترتیب ۲۷۴۹۱ و ۱۷۷۸۵۸ هزار ریال می باشد.

در شکل ۱ مجموعه کاراپی می باشد. محصولات به ترتیب گنده (X₁)، خریدرهای (X₂)، پایه (X₃)، چندین‌گانه (X₄) و نتیجه‌ها دارای یک محدودیت برای زمین. یک محدودیت برای آب (برحم‌ساعت در هکتار فراهم قرار دهید) و یک محدودیت برای سرمایه (برحم‌ساعت هزار ریال) می باشد. نتیجه‌های ریسک و حداقل حداکثر باره و اهداف نیز در جدول ۱ نشان داده شده است.

نتایج و بحث

یکی از روش‌های معمول در برنامه‌ریزی چند هدف ساختن ماتریس باره‌ها است. عناصر این ماتریس از حداقل کردن هر هدف با توجه به محدودیت‌ها و محاسبه‌های مقدار سایر اهداف به دست می‌آید. ماتریس باره‌ها برای تیز داده شده در چهار تأیید اهداف شامل شده در مدل‌سازی سودمند است. در این مطالعه چون مقدار باره هندسف دوازده‌سایر حداکثر حداکثر در نظر گرفته شد، دو هدف جدایی حداکثر – حداکثر (t = maximin)
جدول ۲: مقادیر اهداف و متغیرهای تصمیم در فضای بازده انتظاری و انحرافات مطلق جزئی (E-PAD)

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتار)</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁</td>
<td>-</td>
<td>-</td>
<td>۲۵/۵۶</td>
<td>۴۵/۵۰</td>
</tr>
<tr>
<td>x₂</td>
<td>-</td>
<td>-</td>
<td>۲۱/۶۲</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₃</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₄</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₅</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₆</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₇</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₈</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₉</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
<tr>
<td>x₁₀</td>
<td>-</td>
<td>-</td>
<td>۲۱/۷۸</td>
<td>۲۹/۴</td>
</tr>
</tbody>
</table>

جدول ۳: مقادیر اهداف و متغیرهای تصمیم در فضای بازده انتظاری و حداکثر–حداقل (E-V)

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتار)</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>۸۷/۸۴</td>
<td>۷۲/۸۴</td>
<td>۷۲/۸۴</td>
<td>۷۲/۸۴</td>
</tr>
<tr>
<td>P₁</td>
<td>۱۸۷۶۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۰۱۷۵</td>
</tr>
<tr>
<td>P₂</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
</tr>
<tr>
<td>P₃</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
</tr>
<tr>
<td>P₄</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
</tr>
<tr>
<td>P₅</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
<td>۱۴۳۱۲۵</td>
</tr>
</tbody>
</table>

حدوده داده‌های محدوده محدوده در نظر گرفته می‌شود. همچنین ملاحظه می‌گردد در هر دو فضای اهداف متغیر تصمیم V در حداکثر–حداقل وارد در نظرگرفته می‌شود که هدف آن باید بیشترین محقق نسبت به سایر محصولات درالگو مباید. بیشترین محقق به راحتی به کنار ۶۷/۸۴ هکتار در با استفاده از تکنیک براورد مجموعه غالب به استفاده می‌گردد در هر دو فضای اهداف متغیر تصمیم V در حداکثر–حداقل وارد این نگرش به سایر محصولات درالگو مباید. بیشترین محقق به راحتی به کنار ۶۷/۸۴ هکتار در
Şekil 3: مجموعه‌های کارا پارامتریک حداکثر - حداکثر و

جدول 5: مقادیر اهداف و متغیرهای تصمیم زمانی که $t = 261400$ هکتار به ترتیب در E-V و E-PAD بجز مبنای به ذرت دانه‌ای می‌باشد.

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتار)</th>
<th>اهداف هزار ریال</th>
<th>نقاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>v_1</td>
<td>E_1</td>
</tr>
<tr>
<td>x_2</td>
<td>v_2</td>
<td>E_2</td>
</tr>
<tr>
<td>x_3</td>
<td>v_3</td>
<td>E_3</td>
</tr>
<tr>
<td>x_4</td>
<td>v_4</td>
<td>E_4</td>
</tr>
<tr>
<td>x_5</td>
<td>v_5</td>
<td>E_5</td>
</tr>
</tbody>
</table>

ملاحظه: پایه‌های تحقیق هر دو اگو و کمترین 5/3 هکتار به ترتیب در فضای اهداف E-V و E-PAD مربوط به دانه‌ای می‌باشد.

با در نظر گرفتن PAD در استراتژی‌های غالبی E-V و لحاظ PAD کردن آن در فضای اهداف E-PAD سطحی به دست می‌آید که نشان دهنده مجموعه استراتژی‌های غالب برای حداکثر زراعی مورد مطالعه با توجه به سطح بازده مرجع انتخابی می‌باشد. این سطح در نظر گرفتن 3 نشان داده شده است. در واقع هر نقطه در داخل این سطح جواب قابل قبول برای تصمیم گیرندای است که به‌طور هم‌زمان تأمین به حداکثر کردن ریسک و حداکثر کردن بازده انتظاری دارد.

با توجه به جدول 3 ملاحظه می‌گردد که مقدار V در دامنه $[270-275277558]$ تقریبی و حداکثر سطح هدف، کمتر از 217568 جواب منجر به حداکثر پارامتریک حداکثر - حداکثر و
جدول ٦ مقایسه الگوی کشت فعلی زارعین با مجموعه استراتژی‌های غلبه زمانی که ٢٧٠٥ = ١ است.

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (هکتار)</th>
<th>اهداف هزاریال</th>
<th>V</th>
<th>PAD</th>
<th>E</th>
<th>نقاطه</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁</td>
<td>x₂</td>
<td>x₃</td>
<td>x₁</td>
<td>x₂</td>
<td>x₃</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>٥/٥٥</td>
<td>٢٠/٦٢</td>
<td>٧٧/٢٤</td>
<td>٢١٧٧١</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>٣٣/٥٣</td>
<td>٣٨/٤٩</td>
<td>٢٨/٢٣</td>
<td>٢٧٠٨٤</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>٣٣/٩٩</td>
<td>٤١/١٠</td>
<td>١٨/٣١</td>
<td>٢٧٧٦٥</td>
</tr>
</tbody>
</table>

متأذب: یافته‌های تحقیق

جدول ٧ مقایسه الگوی کشت فعلی زارعین با مجموعه استراتژی‌های غلبه زمانی که ٢٧٠٥/٢ = ١ است.

<table>
<thead>
<tr>
<th>كل الگوی کشت</th>
<th>سطح زیرکشت (هکتار)</th>
<th>E</th>
<th>Fاطمی</th>
<th>E١</th>
<th>P١</th>
<th>E٢</th>
<th>P٢</th>
<th>E٣</th>
<th>P٣</th>
</tr>
</thead>
<tbody>
<tr>
<td>١٣٥٠٥</td>
<td>١٣٩/٨٧</td>
<td>-</td>
<td>١٨/٨٧</td>
<td>٤٩/٣٩</td>
<td>٤٩/٣٩</td>
<td>٤٩/٣٩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>١٣٠/٧٩</td>
<td>١١/٩٩</td>
<td>-</td>
<td>١٢/٨٧</td>
<td>١٢/٨٧</td>
<td>١٢/٨٧</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

متأذب: یافته‌های تحقیق و داده‌های جمع‌آوری شده

این امر شاید مصرف آب بالایی در دو نسبت به سایر فعالیت‌های درون‌گیری شده در این است.

جهت درک روش‌های الگوی کشت فعلی زارعین حاصل کننده مقایسه الگو‌های برای مجموعه غلبه به نظر می‌رسد، لازم است مقایسه‌هایی بین استراتژی‌ها و الگوی فعلی زارعین صورت گیرد. در جدول ٧، مقایسه‌های کشت فعلی زارعین برای مجموعه غلبه

با توجه به جدول ٧، ملاحظه می‌گردد که الگوی کشت P١ حذف ١/١٢ برای الگوی کشت فعلی زارعین ایجاد کرده‌اند. مقایسه الگوی کشت فعلی و الگوی کشت P٢ نشان می‌دهد که در شرایطی که بین الگویی بازده سالانه حاصل از الگوی فعلی زارعین الگویی بازده گردیده در محدوده معادل ٨٩٪ الگوی کشت فعلی زارعین ایجاد می‌کند.

با آن حال، اگر بازده به ازای سطح فعلی زارعین در الگوی کشت غلبه بازده متوسط هر هکتار زمین ٢٧٥ در الگوی کشت فعلی در الگوی P١ ٦٨‌٪ در الحاق P٢ و در حالت P٢ حالت ٥٣/٦ در حالت ٥٣/٦ و بازده متوسط پیش‌تر

ملاحظه می‌گردد در حالت P٢ و P٣ بازده متوسط بیشتر
جدول 8: مقایسه بازده مصرف آب در واحد سطح بین الگوی فعلي و الگوی پر و پمن

<table>
<thead>
<tr>
<th>بازده هر ساعت آب مصرفی (هزاریال)</th>
<th>کل بازده انتظاری (هزاریال)</th>
<th>الگوی F</th>
<th>الگوی P1</th>
<th>الگوی P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/15</td>
<td>266266</td>
<td>25861</td>
<td>P_1</td>
<td>P_2</td>
</tr>
<tr>
<td>19/1</td>
<td>527791</td>
<td>27500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/1/2</td>
<td>416553</td>
<td>137580</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ملاحظه: یافته‌های تحقیق و داده‌های جمع‌آوری شده

نظر به اینکه محدود کننده ترمز عامل تولید در کشاورزی است، انتخاب می‌شود بازده مصرف آب به ازای واحد سطح (هکتار) از شاخص‌های زراعتی و بالاتر حداکثر بازده انتظاری از 273 هزار و 420 هزار ریال و حداکثر پارامتریک حداکثر - حداقل مورد پرورش قرار گرفت. نتایج این بررسی در جدول 8 نشان داده شده است.

با توجه به جدول 8 ملاحظه می‌گردد که بازده هر ساعت آب مصرفی در الگوی فعلي کشت زراعی 18/15 هزاریال و در الگوی P1 19/1 هزاریال است. اختلاف این دو 950 هزاریال می‌باشد. در الگوی P2 جایی که بیشترین بازده سالانه حداکثر می‌گردد، ملاحظه می‌شود که بازده آب پیچیده حدود 4/6 در الگوی فعلي زراعی می‌باشد. از آن نتایج دانست که زارعین در شرایطی که با محدودیت از آب جمع‌آوری می‌کنند کشت خود را به نحوی انتخاب کنند که از آن حداکثر بهره‌برداری را کنند. این امر معنی‌کننده آن است که کمیابی در حال پیوند حرکت به مستهدف بهره‌برداری کارآمدتر از آن را تشکیل می‌دهد. بنابراین نتیجه که به دست آمده در برابر کشت فعلي نسبت به بازده کارآمدی آب در جهت بهره‌برداری کارآمدی از آب مؤثر خواهد بود.

نتیجه‌گیری

در این مطالعه مدل‌سازی هدف با استفاده از برنامه زیست‌چند هدفه در قابل الگوی مانیفست اقدامات مطلوب جزیی و تحلیل
په‌وسیله‌گو نشان داد که سطح زیر کشت هر بک از‌محصولات زارعی به جز چند‌فرنده تقابی در دامنه سطح زیر کشت مجموعه استراتژی‌های غالب فرار می‌گردد.

بی‌دلیل اهمیت آب و کمبود آن در منطقه مورد مطالعه‌بازه متوسط دارای آب مصرفی در گوی کشت فعالیت‌زارعی محاسبه گردید که ۱۸-۱۹/۵ هزار‌جایل به‌دست آمد. علاوه بر این، بازه متوسط آب در حالت حداقل و حداقل بایده به‌دست آمد به‌وسیله‌گو نیز محاسبه کرد که به‌ترتیب ۲/۰۵ و ۱/۹۱ هزار ریال به‌دست آمد. مقایسه این سطح از بایده آب با بیان‌زاویه در گوی کشت فعالیت‌زارعی نمایشگاه‌آن است که زارعی می‌توانند از آب به‌نحو مناسب ترا استفاده کنند. نظر به آنکه الگوی کشت فعالیت‌زارعی می‌تواند یکی از استراتژی‌های غالب

منابع مورد استفاده

1. ترکمنی، ج. ۱۳۷۵. استفاده از برنامه ریزی باربری توام برایسک در تعیین کارانه پره‌برداران کشاورزی. مجله علوم کشاورزی ایران ۲۷-۱۰۳.
2. کریمی، ع. در. م. سالاری و. م.، گریزین ۱۳۸۱. مدیریت و انتخاب‌گیری اقتصادی در توأم برنامه‌ریزی کشاورزی و ارزیابی سطح‌کشت. اقتصاد کشاورزی و توسعه ۲۷-۶۶.
3. کهخا، ی. در. سلطانی ۱۳۸۵. تعیین ضریب ریسک‌گریزی زارعی استان فارس. جمع‌مجمعه مقالات اولین کنفرانس اقتصاد کشاورزی ایران ۱۵ تا ۱۷ فروردین ۱۳۸۵، زابل.
4. نیکویی، ع. در. ترکمنی ۱۳۸۵. استراتژی‌گذاری کشاورزی با نگاهی به کراپش کشاورزان با مخاطره‌ی و مصرف‌های‌مها. دانشگاه کشاورزی ۱۲-۳۱.