تیعین استراتژی‌های غالب (Non - Inferior Set) با لحاظ کردن ریسک در روش برنامه‌ریزی چندهدفه: مطالعه موردی زارعین شهرستان فسا

چکیده

در تیعین مجموعه کارا - ریسک (Risk - Efficient) انتخاب و تیعین سطح بانک برنامه بهصورت دوگانه از اهمیت ویژه‌ای برخوردار است. نمایانگر در این مطالعه با استفاده از روش برنامه‌ریزی چند هدفه، مدل موتوری هندف در قالب دو گونه بیانگر انحرافات مطلقو جزیی و تحلیل پارامتریک حداکثر حداکثری (Maximin) برای تیعین مجموعه اکثریتی غالب برابر زارعین صورت مطالعه. با این ترتیب برنامه‌ریزی چند هدفه دارای مسئله‌ای از حداکثر حداکثری غالب می‌باشد که حداکثر حداکثری غالب و سطح بانک به یک سطح پرلایی با تخمین زده‌شده سپس با استفاده از تکنیک برآورد مجموعه غالب (Non - Inferior set estimation) مزرعه بالا و پایین مجموعه استراتژی‌های غالب تیعین گردید. نتایج حاصل از حداکثر حداکثری غالب نشان داد که حداکثر حداکثری غالب بازده به ترتیب 287-62 و 277-7 هزار ریال است. افزون برآنر، با استفاده از سطح مختلف تابع هندف، زیر مجموعه‌های اکثریتی غالب تیعین گردید. نتایج حاصل از مقایسه گروهی کشت فلوری زارعین با گروهی زارعین پیشنهاد شده، به‌ویژه در نظر داشتیم که سطوح زیر کشت علی می‌بایست محصولات مختلف زارعین با استنداردهای مختلف تغییری غنی به‌دست آید. افزون برنر، تیعین نشان داد که گروهی کشت فلوری زارعین می‌تواند کی بیشتر از استراتژی غالب باشد. پایداری با اهمیت آب و کمی و سه شدن در منطقه مورد مطالعه، بازده متوسط آب در اکثریتی غالب در مقایسه گروهی کشت فلوری زارعین با گروهی از ورودی استراتژی غالب که مزیت و پایین کی اکثریتی غالب را تئلیک می‌دهد. مقایسهی گروهی. نتایج نشان داد که زارعین بازاری معادل 18/1 هزار ریال به‌راز از ساختن آب صرفه‌جویی به‌دست می‌آورد. با این حال، بازاری متوسط آب در دامنه 1/2 و 3/0 هزار ریال در مجموعه استراتژی غالب نیز می‌تواند که این نماینده‌ای مناسبی برای استخراج کنن. با توجه به پژوهش، می‌توان گفت که نگرشی غالب جهت استفاده بهتر از منابع اسراری کاملاً پیچیده است و صرفاً از انتخاب سیاست‌های تجاری محور نیست به‌روز استفاده نام‌گذاری می‌توان به‌ویژه با این زمینه‌اتبافت.

واژه‌های کلیدی: بهبودسازی، روش برنامه‌ریزی چند هدفه، تابع بازاری، استراتژی غالب

مقدمه

نظام‌های کشاورزی معمولاً با چند‌گرایی، ارتباط منفی‌ناتوان اجرایی

1. دانشیار اقتصاد کشاورزی، دانشگاه شیراز
2. دانشجویی دانشگر اقتصاد کشاورزی، دانشگاه شیراز و در حال حاضر استادیار اقتصاد کشاورزی، دانشگاه شیراز

دانشگاه شیراز

۴۶۱
سالانه زراعی از ثبات لازم برخوردار نموده و دامن‌گیر
می‌کند. علت نوسانات در این مسئله است تغییر در شرایط
آب و هوایی، بیماری‌ها و آفات. تغییر در شرایط
بازار و یا تغییر از عین عوامل باشد (1، 10 و 20). لذا، در
تعیین برناهی بهینه رزاقی باید از ستودارهایی در مورد
استفاده از فن آوری نوین و برناهی جدید رزاقی، لازم است به
تأثیر مخاطرات احتمالی توجه شود. به عبارت دیگر برناهی
تعیین شده با استناد کارا - ریکس باشد (3، 0 و 18).

در همه‌ای نظر تلاش کرده‌ایم برای دخالت دان
مکاترات و بیان‌دهای احتمالی آن در برناهی رزاقی و تحلیل
تکمیلی گری شده است (1، 10 و 19). این امر بیشتر از طریق
استفاده از میانگین میانگین - واریانس مارکوویتز
(Stochastic Markowitz's)
تکنیک‌های مختلف می‌باشد (Mean-variance Markowitz's)

صدارتی (Stochastic Dominance Technique)

است (1 و 20). با این حال، تحلیل ریسک‌سنجی است با
استفاده از روش‌های تکمیلی سازی می‌تواند به
مورد توجه قرار دهد (13). همچنین وارد می‌شود که برای

وا در این مطالعه در برناهی رزاقی به دنبال
مداخله‌ای بین سطح تحقیق آن و مسائل مربوط به ناهنجاری
(13 و 21). یکی از شکل‌های مختلف تکمیلی سازی یک

برنامه‌ها می‌باشد که در همه‌ای مبتنی بر مدل‌های

وا (ست (4 و 8).)

تکنیک‌های لیستی - به صورت مبنی در مدل‌های دو می‌تواند شامل

تعیین می‌باشد که به واسطه ترکیب مطرح

(1 و 17). این روش به دلیل قابلیت حل بالا نرم افزارهای ساده و

توجیه به ریسک‌سنجی مدل اضافه ذکر ارائه می‌نماید. این

مقدمه‌ای از جواب‌های موجه که تأیید می‌نماید مدل

(Second Degree Stochastic Dominance)
تنبیه استراتژی غیر بالاستیک (Non - Inferior Set) با لحاظ کردن ریسک در ...

کشتار مربی k از سطح زیر پارامتر T است و به صورت زیر

تعریف می‌گردد:

$$Q(k,t) = \int_{-\infty}^{\infty} (t-x)^k f(x)dx$$

کشتار اول t به راحتی در یک مدل برنامه‌ریزی خطی می‌تواند حل شود. به‌طور احتمال نشان کدی از معادله g به صورت زیر تعریف می‌گردد:

$$g = 1 - [P, Q(1,t)]$$

از رابطه 4، می‌توان P را به صورت زیر تهیه کرد:

$$P = (t-g)/Q(k, t)$$

با فاردارادان رابطه 5 در 2، رابطه زیر حاصل می‌شود:

$$Pr(x \leq g) \leq [Q (k, t)/ (t-g)]^k$$

اگر رابطه 6 کشتار اول ($k=1$) در نظر گرفته شود می‌توان به صورت زیر آن را در یک مدل برنامه‌ریزی خطی لحاظ کرد:

$$Pr (x \leq g) \leq [Q (1, t)/(t-g)]$$

رابطه 7 فقط با تعریف کشتار جدید می‌تواند به صورت زیر ایجاد باید (Partial Absolute Deviation (PAD))

$$Q(k, t) / (t-g)$$

با استفاده از مفاهیم احراز مطلق جزئی، نام گذاری کرد.

$$\Delta(k, t)$$

روش‌های مورد استفاده در این مطالعه شامل مدل‌هایی مانند

مثلاً اول اطمنان (Safety-First) (SF)

یکی از روش‌های مبنا در تحلیل بازده-رسیبک می‌باشد. این روش در نیاز به برنامه‌ریزی به‌صورت توزیع مربوط دانست که تا پایان‌گذاری این است که بازده به‌مانند سطح نامطلوب از پیش تنبیه شده نخواهد نسبی. این مدل را می‌توان با استفاده از رابطه زیر ایجاد کرد:

$$[X - E (x)] \leq KS \leq 1/K^2$$

که از ارث انتظار بازده، S و $E(X)$ فاکتوری است که احتمالاً مشخص می‌گردد. به‌طور معمولی که از رابطه 1 به‌دست می‌آید، محاسبه کاراکتره است. آن‌ها (5) جهت تنبیه مزیات احتمال استفاده از کشتارهای جزئی مربی این بر روی پیشنهاد کرد و نشان داد که رابطه 1 را می‌توان به صورت زیر باز نویسی کرد:

$$Pr(X \leq g) = Pr[X < - PQ(k, t)] \leq \frac{\beta}{pk}$$

که سطح اطمنان P, پارامتر انتخابی برای بازرد $P(k)$ اختیار شکست g که سطح آستانه اطمینان t, پارامتر انتخابی برای بازرد g به جمله Q به عنوان P، $P(k)$ احتمال شکست g به عنوان $P(k)$ احتمال شکست g به عنوان $P(k)$
اهداف (E-PAD) است. علائم ستاره در بالا به‌پرداخت و در پایین
کمترین ارزش باره یک از اهداف باشد. مجموعه کارا
بين هر نوع ست کلاس در کلاسیفیکاتور زیر استفاده از تکنیکی برآورده مجموعه قابل
توسعه یافته به‌وسیله کوئن (1) می‌توانند به‌دست آید.

جهت تعیین t، می‌توان از برنامه ریزی پارامتری
حداقل - حداکثر - مقدار در قابلیت یک مدل برنامه‌ریزی چند هدفه
به‌صورت زیر استفاده کرد (9):

$$\text{Maximise } Z_1 = \sum_{j=1}^{n} c_j x_j \tag{11}$$

$$\text{Maximise } Z_2 = V \tag{12}$$

$$\text{Subject to: }$$

$$\sum_{j=1}^{n} c_{ij} x_j \geq V \quad r = 1, s \tag{15}$$

$$\sum_{k=1}^{m} b_k x_j \leq b_k \quad k = 1, m \tag{16}$$

$$\Pr\{\text{return} \leq g \} \leq \text{PAD} / (t-g).S \tag{17}$$

در این رابطه، یک پارامتر درون‌زاپی است که به تحلیلگر آزادی
به‌شیرین جهت تعیین محدودیت آن می‌دهد. به‌علاوه چون می‌توان به‌راه راه‌نوردی
در حفظ محدودیت‌ها و نسبت به شکسته شدن، روش یک
اهداف در مدل مبتنی از انرژی می‌تواند به‌صورت
حداکثر به‌صورت زیر شکسته شود (9).

$$\text{Maximise } Z_1 = \sum_{j=1}^{n} c_j x_j \quad (E-PAD)$$

$$\text{Subject to: }$$

$$\sum_{j=1}^{n} c_{ij} x_j \geq V \quad r = 1, s \tag{15}$$

$$\sum_{k=1}^{m} b_k x_j \leq b_k \quad k = 1, m \tag{16}$$

$$\Pr\{\text{return} \leq g \} \leq \text{PAD} / (t-g).S \tag{17}$$

در این رابطه، یک پارامتر درون‌زاپی است که به تحلیلگر آزادی
به‌شیرین جهت تعیین محدودیت آن می‌دهد. به‌علاوه چون می‌توان به‌راه راه‌نوردی
در حفظ محدودیت‌ها و نسبت به شکسته شدن، روش یک
اهداف در مدل مبتنی از انرژی می‌تواند به‌صورت
حداکثر به‌صورت زیر شکسته شود (9).

$$\text{Maximise } Z_1 = \sum_{j=1}^{n} c_j x_j \quad (E-PAD)$$

$$\text{Subject to: }$$

$$\sum_{j=1}^{n} c_{ij} x_j \geq V \quad r = 1, s \tag{15}$$

$$\sum_{k=1}^{m} b_k x_j \leq b_k \quad k = 1, m \tag{16}$$

$$\Pr\{\text{return} \leq g \} \leq \text{PAD} / (t-g).S \tag{17}$$

در این رابطه، یک پارامتر درون‌زاپی است که به تحلیلگر آزادی
به‌شیرین جهت تعیین محدودیت آن می‌دهد. به‌علاوه چون می‌توان به‌راه راه‌نوردی
در حفظ محدودیت‌ها و نسبت به شکسته شدن، روش یک
اهداف در مدل مبتنی از انرژی می‌تواند به‌صورت
حداکثر به‌صورت زیر شکسته شود (9).
جدول 1. مدل مواند هدف در قالب مانیگین احترامات مطلق حزیب و پارامتریک حداکثر - حدااقل

<table>
<thead>
<tr>
<th>Non - Inferior Set (هزار ریال)</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر ناخواسته (هزار ریال)</td>
<td>۱۰۵۰</td>
<td>۵۳۳۶</td>
<td>۵۷۸۸</td>
<td>۶۸۱۰</td>
<td>۶۵۱۰</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>حداکثر باردار (هزار ریال)</td>
<td>۱</td>
</tr>
<tr>
<td>زمین</td>
<td>۳۹.۳</td>
<td>۱۱۸.۸</td>
<td>۱۵۰</td>
<td>۳۱۶</td>
<td>۳۱۶</td>
<td>۴۳۳.۹</td>
<td>۴۳۳.۹</td>
<td>۴۳۳.۹</td>
<td>۴۳۳.۹</td>
<td>۴۳۳.۹</td>
<td>۴۳۳.۹</td>
<td>۴۳۳.۹</td>
</tr>
<tr>
<td>اب</td>
<td>۹۵.۳</td>
<td>۱۵۷.۱</td>
<td>۱۶۵</td>
<td>۹۱۴</td>
<td>۹۱۴</td>
<td>۴۱۴</td>
<td>۴۱۴</td>
<td>۴۱۴</td>
<td>۴۱۴</td>
<td>۴۱۴</td>
<td>۴۱۴</td>
<td>۴۱۴</td>
</tr>
<tr>
<td>نیویورک</td>
<td>۲۸.۴۴</td>
<td>۵۳.۸</td>
<td>۱۴۴</td>
<td>۱۷۵</td>
<td>۱۷۵</td>
<td>۲۸۸</td>
<td>۲۸۸</td>
<td>۲۸۸</td>
<td>۲۸۸</td>
<td>۲۸۸</td>
<td>۲۸۸</td>
<td>۲۸۸</td>
</tr>
<tr>
<td>تونس</td>
<td>۳۷.۷</td>
<td>۱۷۸</td>
<td>۲۰۱</td>
<td>۲۲۶</td>
<td>۲۲۶</td>
<td>۳۵۱</td>
<td>۳۵۱</td>
<td>۳۵۱</td>
<td>۳۵۱</td>
<td>۳۵۱</td>
<td>۳۵۱</td>
<td>۳۵۱</td>
</tr>
<tr>
<td>سرماهای</td>
<td>۱۶۹۲</td>
<td>۱۸۸۱</td>
<td>۲۰۴۰</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
<td>۴۸۸</td>
</tr>
<tr>
<td>رشته‌های زیرکس</td>
<td></td>
</tr>
<tr>
<td>روشنایی حداکثر</td>
<td></td>
</tr>
<tr>
<td>روشنایی حداکثر</td>
<td></td>
</tr>
</tbody>
</table>

توجه: داده‌های مورد بررسی

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۵۰</td>
<td>۵۳۳۶</td>
<td>۵۷۸۸</td>
<td>۶۸۱۰</td>
<td>۶۵۱۰</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۴۳۳.۹</td>
</tr>
<tr>
<td>۴۱۴</td>
</tr>
<tr>
<td>۲۸۸</td>
</tr>
<tr>
<td>۱۷۸</td>
</tr>
<tr>
<td>۲۰۱</td>
</tr>
<tr>
<td>۱۸۸۱</td>
</tr>
<tr>
<td>۴۸۸</td>
</tr>
</tbody>
</table>
جدول 2. ماتریس پازده برای سه هدف مورد مطالعه (هزار ریال)

<table>
<thead>
<tr>
<th>حداکثر_حداقل</th>
<th>حداکثر_حداقل</th>
<th>بازده انطباعی (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>245653</td>
<td>216553</td>
<td>254791</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>21315</td>
</tr>
<tr>
<td>26252</td>
<td>270252</td>
<td>211758</td>
</tr>
</tbody>
</table>

ملاحظه: داده‌های مورد بررسی

شکل 1. مجموعه کارایی mean-PAD

محصولات به ترتیب گنبد (X₁), خریزه (X₂), پینه (X₃) چگانه‌ی (X₄) و ذرت دانه‌ای (X₅) باشند. الگوها دارای یک محدودیت برای زمین. 4 محدودیت برای آب (برحسب ساعت در هکتار در فصل)، یک محدودیت برای سرمایه (برحسب هزار ریال) می‌باشد. رفاه‌های ریسک و حداکثر حداقل پازده و اهداف نیز در جدول 1 نشان داده شده‌اند.

نتایج و بحث

یکی از روشهای معمول در برخورداری ریزی چند هدف ساخت ماتریس پازده‌ها است. عناصر این ماتریس از حداکثر کردن هر هدف با توجه به محدودیت‌ها و محاسبه مقدار سایر اهداف به‌دست می‌آیند. ماتریس پازده برای نشان دادن درجه تقابل اهداف لحاظ شده در مدل به‌سیار ساده‌نامه است. در این مطالعه، هدف مقدار پازده هدف مساوی حداکثر-حداقل در نظر گرفته شد. دو هدف حداکثر-حداقل (t = maximin)
شکل 2. مجموعه کارایی پارامتریک ماکسیمین

جدول 3. مقادیر اهداف و متغیرهای تصمیم در فضای بازده انظاری و اثرات مطلقيقة جزئی (E-PAD)

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (مئتر)</th>
<th>اهداف هزاریال</th>
<th>نقاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>V_1, P_1, E_1</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>V_2, P_2, E_2</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>V_3, P_3, E_3</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. مقادیر اهداف و متغیرهای تصمیم در فضای بازده انظاری و حداکثر حداقل (E-V)

<table>
<thead>
<tr>
<th>متغیرهای تصمیم (مئتر)</th>
<th>اهداف هزاریال</th>
<th>نقاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>V_1, P_1, E_1</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>V_2, P_2, E_2</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>V_3, P_3, E_3</td>
<td></td>
</tr>
</tbody>
</table>

با استفاده از تکنیک براورد مجموعه غالب به دست آمده است. در جداول 3 و 4 پایه P_1 است $چون$ هر دو از حداکثر کردن وزش انتظاری به دست آمده است. نقاط Q_1 و Q_2 نیز P_1 و Q_1 مساوی می‌باشد و جویند فاکتور برای هر دو می‌تواند زمانی انفجار می‌اند که سطح بازده مرجع هدف P_1 می‌باشد.
مشخصات استانداردهایهای غالب برای واحد‌های زراعی مورد مطالعه به توجه به سطح بازده مرجع انتخابی می‌باشند. این سطح در محدوده 3 نشان داده شده است. در واقع هر نقطه در داخل این سطح جواب قابل قبول برای تصمیم گیرنداری است که به‌طور هم‌زمان تمامی به حداکثر کرون ریسک و حداکثر کرون بازده انظاری دارد.

با توجه به جدول 3 ملاحظه می‌گردد که مقیاس V در دامنه 677768-270527 قرار می‌گیرد. برای هر 1 سطح هدف، کمتر از 211768 جواب منجر به حداکثر پارامتریک حداقل - حداقل...

[۱۳۸۶] علم و فنون کشاورزی و منابع طبیعی / سال پاژدهم / شماره اول (ب) / بهار
تایید استراتژی‌های غالب (Non - Inferior Set) با لحاظ کردن ریسک در ...

جدول ۶ مقدار اهداف و متغیرهای تصمیم زمانی که $375 = t$

<table>
<thead>
<tr>
<th>متغیرهای تصمیم</th>
<th>هکتار</th>
<th>اهداف</th>
<th>هزاریال</th>
<th>نقاط</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25/56</td>
<td>21/62</td>
<td>77/34</td>
<td>52/77</td>
<td>S_1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75/22</td>
<td>221265</td>
</tr>
<tr>
<td>33/53</td>
<td>38/95</td>
<td>75/24</td>
<td>24150</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>78/65</td>
<td>259426</td>
</tr>
<tr>
<td>33/99</td>
<td>41/10</td>
<td>18/31</td>
<td>245152</td>
<td></td>
</tr>
</tbody>
</table>

ماهیت: قاچع تحقیق

جدول ۷ مقایسه الگوی کشت فعالی زارعین با مجموعه استراتژی‌های غالب زمانی که $270 = t$

<table>
<thead>
<tr>
<th>کل اهداف</th>
<th>مقدار هکتار</th>
<th>اهداف</th>
<th>هزاریال</th>
<th>الگوی کشت</th>
<th>بازده (هزاریال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_1</td>
<td>E_1</td>
</tr>
<tr>
<td>135/05</td>
<td>5</td>
<td>3</td>
<td>32/75</td>
<td>18</td>
<td>246926</td>
</tr>
<tr>
<td>139/97</td>
<td>-</td>
<td>-</td>
<td>21/62</td>
<td>75/22</td>
<td>P_1^*</td>
</tr>
<tr>
<td>137/89</td>
<td>-</td>
<td>-</td>
<td>21/62</td>
<td>75/22</td>
<td>P_2^*</td>
</tr>
</tbody>
</table>

ماهیت: قاچع تحقیق و داده‌های جمع‌آوری شده

این امر شاید مصرف آب بالایی این دو نسخت به سایر فعالیت‌های در نظر گرفته شده درالگو باشد.

جهت درک روش‌های از استراتژی‌های مجموعه غالب به نظر رسد. لازم است مقایسه‌ای بین استراتژی‌های الگوی فعال زارعین صورت گیرد. در جدول ۷ الگوی مقایسه‌ای نشان داده شده است.

با توجه به جدول ۷ ملاحظه می‌گردد که الگوی کشت P_1 حذف کردن ۱/۲ برای الگوی کشت فعالی زارعین انجام‌دار.

می‌کند مقایسه الگوی کشت فعالی و الگوی کشت P_1 نشان می‌دهد که در شرایطی که بندتهای باره سالانه داده‌ها می‌گردد درآمدی معادل ۸۳ دلار الگوی کشت فعالی زارعین انجام می‌کند.

با این حال، اگر باره به باره وجد ارثی، سطح مقایسه گردید در الگوی کشت فعالی باره متوسط هر هکتار زمین 375 در P_1 bài یافت P_1 و P_2 و P_3 در حالات P_4 ملاحظه می‌گردد در هر دو حالت P_1 و P_2 و P_3 بازده متوسط بیشتر

469
جدول 8 مقایسه پاده مصرف آب در بازه سطح بندی

<table>
<thead>
<tr>
<th>گلک</th>
<th>باید دره قسمتی</th>
<th>کل کارایی (مظاهرات)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18/15</td>
<td>462,206</td>
</tr>
<tr>
<td></td>
<td>19/1</td>
<td>524,367</td>
</tr>
<tr>
<td></td>
<td>30/2</td>
<td>518,532</td>
</tr>
<tr>
<td>پ_1</td>
<td>258,1</td>
<td></td>
</tr>
<tr>
<td>پ_2</td>
<td>275,00</td>
<td></td>
</tr>
<tr>
<td>پ_3</td>
<td>137,58</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه گیری

نظر به اینکه محدود کندند تنها عامل تولید در کشور اب اگاهیه می‌شود پاده مصرف آب به ایز واحدهای سطح (هکتار) نیز بین گلک فعال زراعی و حالت حداکثر پاده انتظاری به ارزای ۲۷۵ هزار ریال و حداکثر پاده انتظاری - حداقل مورد بررسی قرار گرفته. نتایج این بررسی در جدول 8 نشان داده شده است.

با توجه به جدول 8 ملاحظه می‌گردد که پاده در سطح آب مصرفی در گلک عکس زراعی ۱۸/۱۵ هزاریال و در گلک پ_1 ۱۹/۱ هزاریال است. اختلاف این دو ۹۵ هزاریال می‌باشد. در دانلگی پ_2 حالتی که بی‌پرداز پاده سالانه حداکثر می‌گردد. ملاحظه می‌شود که پاده آب چیزی حدود ۱/۶ برای گلک عکس زراعی می‌باشد. لذا می‌توان انتظار داشت زراعی در شهریکه کی که محدودیت اب مواجه شوند، گلک کشت خود را به نحوی انتخاب کند که از آن حداکثر بهرهبرداری بکند. این امر منعکس کننده آن است که کمبود تأمین تولید حرکت به نسبت بهره‌برداری کارآمدتر از آن را تشکیل می‌دهد. این نشان می‌دهد که انتخاب رشده که به دست آمده، بیش‌تر در مقدار مناسبی آب در جهت بهره‌برداری کارآمد از آب مؤثر خواهد بود.

توجه کنید

در این مطالعه مدل مونت کارو هدف با استفاده از برنامه ریزی چند هدف در قالب گلک میانگین احترامات مطلق جزئی و تحلیل

۱۷۰
تعیین استراتژی‌های غالب (Non - Inferior Set) به وسیله اگو نشان داد که، سطح زیر کشت هر یک از محصولات زاری این به جز قندیرن تنفسی در دامنه سطوح زیر کشت مجموعه استراتژی‌های غالب قرار می‌گیرد.

به دلیل اهمیت آب و کمکی در منطقه مورد مطالعه بادر، متوسط هر ساعت آب مصرفی در اگوی کشت فعلی زاری این محاسبه گردید که 187.8 هزار لیتر بسته امید. علاوه بر این، بادر به متوسط آب در حالت حداکثر و حداکثر بادزه بسته آمده به وسیله اگوی محاسبه شد که به ترتیب 2/4 و 1/9 هزار ریال به بسته آمده. مقایسه این سطح از بادزه آب با بادزه آب در اگوی کشت فعلی زاری این نشان‌گذاری که است، به کمک می‌توانند از آب به نحو مناسب تری استفاده کنند. نظر به آنکه اگوی کشت فعلی زاری می‌تواند یکی از استراتژی‌های غالب متاب مورد استفاده باشد.

1. ترکمی، ج. 1375. استفاده از برنامه ریزی ریاضی تومار باریکسک در تعیین کارایی بهره‌برداران کشاورزی. مجله علوم کشاورزی ایران. 14: 777 - 783.