ایرانی‌ها، دانشجویان سابق کارشناسی ارشد و استادان کارشناسی، دانشکده کشاورزی، دانشگاه تبریز
مواد و روش‌ها

جداسازی میکروارگانیسم‌های حل کننده فسفات از خاک برای جداسازی میکروارگانیسم‌های حل کننده فسفات، از خاک اطراف ریشه گیاهان شبد، اسپرر، سبزه، سیب، کلم و کسانی که فرک نگی واقع در اعضا شکوفه گاهی برای تحقیقات دانشگاه کشاورزی دانشگاه تبریز تهیه می‌شود. سپس، سوزنده روش رنگ‌های آنها به لایه‌های جلوه‌های آنها با آب مفتور استریل تا 0.5 رشته شدند (20). موجب شد که فسات از محیط تا گردبند استریل Pikoskaya درون ظروف تخریب است. موجب که (27) برای بازیابی گروه بزرگ‌تر از خاک از طرف آنها هشتم شاهد شده به عنوان حل کننده فسفات است. موجب شد که (24) از وعده مثبت در فاصله 4 با 3 طبقه پیش‌بینی می‌باشد. موجب مثبت نشان دهنده فسفر در گیاهان در ایند (22) و مربوط به ساختار و همکاران (Synergistic) با وعده پیش‌بینی حل کننده Pikoskaya با وعده صرف محیط (22). عکس‌های بالا خیلی فسفات (Pseudomonas putida) است. موجب (Bradyrhizobium japonicum) برای میزان صرف و سیب. در (Synergistic) این نتایج می‌تواند در (Bradyrhizobium japonicum) به همین معنی و بنا بر پرسیده (Bradyrhizobium japonicum) برای مورد بررسی قرار داده. در (Synergistic) برای همین بهبود موضوع، به نظر می‌رسد شناسایی این میکروارگانیسم‌ها و به کارگیری آنها در تأمین فسفر گیاهان، از منابع تأمینی در خاک، کاملاً ضروری است. کاراکتر هوشیستی گیاه سیبا با (Bradyrhizobium japonicum) از نظر بیولوژی و جداب برخی عناصر نیازمند تأمین کافی فسفر می‌باشد. در این تحقیق نتایج نشان دهنده فسفر تأمینی فسفر و بهبود هوشیستی فهرس مردک بررسی قرار گرفت.
تنهی‌مایه تلفیق میکروبی از جدایی‌های مؤثر

جهت تنهی‌مایه تلفیق از جدایی‌های باکری، ابتدا آنها در محیط
به مدتر ۴۸ ساعت در دمای ۲۸ درجه
سانتی‌گراد و داخل شیشه انکولوژی تکثیر شدند و سپس تعداد
باکتری در واحد حجم سوسپانسیون‌ها به روش کدورت سنجی
با اندازه‌گیری در ۶۰۰ نانومتر تعیین شد (۱۰). سپس ۱۲
میلی‌لیتر از سوسپانسیون‌ها در زیر اهدور روى حامل میکروبی
(Mخلوط پپت و ورم کویل آسیب شده به نسبت
(Carrier)
۱ : ۱ وزنی که از ۱۰۰ میکرویونی عبور داده شده و استریل
شده بودند) منتقل شدند و حامل‌های تلفیق جهت استقرار
و سازگاری باکتری‌ها به محیط جدید به‌مدت یک هفته در
انکولوژی در ۲۴ جریه سانتی‌گراد نگهداری شدند.
عبارت اشاع حامل میکروبی ۷/۶ هدایت‌کننده آن ۵۰ دسی
زنیم بر متر و رطوبت اشاع بر این ۱۵۹ درصد تعیین شد.
براساس جمعیت باکری موجود در سوسپانسیون‌ها و حجم
افزوده شده به حامل، در نهایت به ازای هر گرم حامل
خشک تعداد ۱۲/۷۸ باکتری وجود داشت.

اثربخشی و آمادگی‌سازی خاک

خاک مورد استفاده جهت آزمایش گلخانه‌ای از اراضی دانشگاه
کشاورزی واقع در کرکم انتخاب شد. خصوصیات فیزیکی و
شبه‌مایه این در جدول ۲ آمده است (۱). عدد ۵۰۰۰ کیلوگرم از این
خاک از عمق ۰ تا ۲۰ سانتی‌مری برداشتی شد و پس از گازدان‌تاز
۲ درجه سانتی‌گراد روز و ۲۰ درجه سانتی‌گراد شب
گازداری شدند. هم‌زمان این برای اولین بار، طول کود فسفر به
صورت مخلوط به خاک گلدان‌ها اضافه گردید. پس از
اندازه‌گیری مقدار تناسب قابل جذب خاک و با توجه به
جدول توصیه کودی برای سیب، نیاز به کود تناسب نیود
(۳). در طول دوره رشد، با توسعه گلدان‌ها رطوبت خاک
نوسیب است که تا رطوبت ۸۰ درصد تغییر زراعی
نگهداری شد. پس از استقرار گیاهچه‌ها، تنها صورت گرفت و
۲ گیاه در هر گلدان تکن بکار گرفت.

برداشت گیاه و اندازه‌گیری شاخص‌های مورد نظر

گیاهان پس از گذشت حدود ۱۵ هفته و در حالت که بوده‌ها
دارای گل‌های نخورده، برداشت گردیدند. اندازه‌گیاهان از

اجام بیماری‌ها و طرح آزمایش

این آزمایش در قالب طرح بلوکی کاملاً تصادفی و به
جدول ١. میانگین انحلال فسفات در محیط کشت مایع توسط جدایی های مختلف (آزمون LSD)

<table>
<thead>
<tr>
<th>جدایی‌های شماره</th>
<th>١</th>
<th>٢</th>
<th>٣</th>
<th>٤</th>
<th>٥</th>
<th>٦</th>
<th>٧</th>
<th>٨</th>
<th>٩</th>
<th>١٠</th>
<th>١١</th>
<th>١٢</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>١٦</td>
<td>١٢</td>
<td>١٥</td>
<td>١٢</td>
<td>١١</td>
<td>١٠</td>
<td>١١</td>
<td>١٠</td>
<td>١١</td>
<td>١٠</td>
<td>١٠</td>
<td>١١</td>
</tr>
</tbody>
</table>

میانگین‌های با حروف غیر مشابه در سطح احتمال ٠/٠٥ اختلاف معنی‌دار دارند. ١/٢٤ = ٥٪.

جدایی‌های شماره ٤، ١١، ١٢ با توجه به بالاترین پتانسیل انحلال فسفات برای شناختی‌های جاذب شدند.

جدول ٢. نتایج تجزیه و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>FC (W/W، %)</th>
<th>کلاس پایداری کردن</th>
<th>میلی گرم بر کیلوگرم کربن آلی</th>
<th>ECe كل (dS/m)</th>
<th>pH</th>
<th>سطح</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Zn</td>
<td>Cu</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش آزمایش:
- روش اولین (پی کربنات سدیم (pH اکسنویم (pH V)
- استاندارد آمونیوم (pH N)
- DTPA: روشن Zn, Cu, Mn, Fe

(pH pه8/5 مولار و 5)
بروز خشک بخش هواپیما گیاه بر حسب گرم در بوته (آزمون تکک)

(Xadeny) (Bradyrhizobium japonicum)

سطح خاک قطع شد و بعد از دوبار شستشو با آب مقطع در دمای 40 درجه سانتی‌گراد تا ناب‌شدند و وزن نمونه‌ها خشک شدند. پس از تعیین وزن خشک گیاه و آسیب کردن آنها، یک گرم نمونه گیاهی در 55 درجه سانتی‌گراد خاک‌ساز و ضیس در 10 میلی‌لیتر اسیدکلرید یک مولار حل شد. محلول از کاغذ صافی عمر داده و بعد از شستشو مورد بافتن مانده بر کاغذ صافی با آب مقطع، حجم محلول به 50 میلی‌لیتر رسانده شد. فسفر با روش رنگ سنجی (واتریت مولیبیدن) و با استفاده از دستگاه اسپریلوفومتر و پاسیو با دستگاه اسپریلوفومتر اندازه‌گیری شد. فسفر نیتروژن کل نیز با روش کیت‌نال اندازه‌گیری گردید (11). سپسین ریشه‌های گیاهان که دارای عامل (Bradyrhizobium japonicum) بودند، به دقت از داخل گل‌مان پیرون آورده و تعداد غده‌ها بعد از شستشو با آب مقطع شمرده شد. سپس غده‌ها با تغییر از رشته جدا شد و وزن نر آنها تعیین گردید. بعد غده‌ها در دمای 70 درجه سانتی‌گراد به مدت 24 ساعت قرار داده و وزن خشک آنها تعیین شد. تجزیه واریانس و مقایسه میانگین‌ها با استفاده از نرم‌افزار MSTATC صورت گرفت.

نتایج و بحث

وزن خشک بخش هواپیما گیاه

بروز شکل 1 تیماری که توأمآ با باکتری (Bradyrhizobium japonicum) و
دولت 3. میانگین اثرات سطح باکتری حل کننده و سطوح کود فسفر بر روش صفات مورد مطالعه در سویا (آزمون توكی)

<table>
<thead>
<tr>
<th>صفات مورد مطالعه</th>
<th>باکتری حل کننده فسفر</th>
<th>پی</th>
<th>په</th>
<th>پئ</th>
<th>پئ</th>
<th>پئ</th>
<th>پئ</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک بخش هوایی (گرم در هر بونه)</td>
<td>1/708</td>
<td>1/654</td>
<td>1/654</td>
<td>1/654</td>
<td>1/654</td>
<td>1/654</td>
<td>1/654</td>
</tr>
<tr>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td></td>
</tr>
<tr>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td></td>
</tr>
<tr>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td></td>
</tr>
<tr>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td></td>
</tr>
<tr>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td></td>
</tr>
<tr>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td>0/356</td>
<td></td>
</tr>
</tbody>
</table>

فقط میانگین صفاتی در جدول ارائه شده که تجزیه واریانس آنها معنی دار شده است.

میانگین با حروف غربی از هر سطح از نظر آماری در سطح احتمال 0/05 احتمال معنی‌دار دارند.

همکاران (39) در بررسی تأثیر باکتری حل کننده فسفر بر همه‌راتیون (Pseudomonas striata) برای میکروبی و ناه sổی بودن در پروکریونی بر اساس فشار درمانی گردوایی، وزن خشک گرده و وزن خشک گیاه نشان دادند که تلقیح تأمین دو باکتری سبب افزایش معنی‌داری در صفات ذکر شده می‌گردد. در حالیکه (39) نیز نشان دادند که تلقیح (Pseudomonas fluorescens) از پروکریونی به نسبت (Plant Growth Promoting Rhizobacteria) PGPR ریزومیوس که با آزاردهی ناه‌سی در می‌باشد، منجر به افزایش ارتقاء ساقه، طول ریشه و وزن خشک گیاه نشان داده شده است.

میانگین سطح باکتری فسفر در جدول 3 بیانک این است که با افزایش سطح فسفر کود تولید ماده خشک افزایش می‌یابد ولی دو سطح کودی به سن و پئ از لحاظ آماری و از نظر تولید ماده خشک، نتایج معنی‌داری با هم ندارند. آنچه و همکاران (39) نشان دادند که در دسترس بودن فسفر بیشتر توسط کوددهن در لوبیا باعث افزایش فیبر و بهبود شده و مقدار باشک می‌شود.
تفاوت معناداری از نظر جذب فسفر با یکدیگر نداشتند. با وجود این، تیمار \(P_1 \) با بهره‌مندی فسفر بالاتری را در یک هواپیمای گیاه ثابت نمود. در سایر سطوح تیماری، حل کننده فسفات نیز همان گونه که مشاهده شد، بر یکدیگری در سطح \(P_2 \) نسبت به سطح \(P_1 \) سبب افزایش غلظه فسفر در گیاه شد. است (5/0\% ولی این افزایش برای یک‌اندازه (\(M_1 \) (Pseudomonas putida) ااظهار داشت که در تیمار باکتری (Pseudomonas putida)، مقادیر اکسید خشک بیشتر بوده. لذا به دلیل اثر رفت بر ازایدی در غلظه فسفر دیده شده در صورتی که مقادیر جذب زیاد شده است. جابوت و همکاران (8) اظهار داشتند در خاک‌هایی که مقادیر کود فسفر کمتری دریافت کردند باید تلقی یک‌اندازه با یک‌اندازه حل کننده فسفات، جذب فسفر را تغییر نداد. در آزمایش حاضر (شکل 2) تیمارها ویژه که کود فسفره دریافت نکرده و فقط دارای حل کننده فسفات بودند، غلظت فسفر در یک هواپیمای گیاه تفاوت معناداری با غلظت فسفر تیمار شاهد داشت. این اتفاق مربوط به افزایش منجر به افزایش سطح (\(M_0P_0 \)) نشده. صالح و همکاران (23) نشان دادند که فاصله حل کننده فسفات، فسفر قابل دسترس را به طور معناداری در خاک‌هایی گره‌های رشته‌ای توسط باکتری ژوهی‌پسیت و یا مکانیسم‌های مربوط به خصوصیات PGPR باعث افزایش رشد گیاهی شده است. نتایج آزمایش های چاپوتو و همکاران (9) حاکی از آن است که باعث (Bradyrhizobium) خانواده PGPR گیاه نیز تأثیر قند و قادر به انحل فسفات آلی و معدنی باشد. میکرواگامین‌های حل کننده فسفات نیز با انحل فسفات، مقادیر زیادی فسفر محلول در اختیار گیاه قرار می‌دهند و جوان گیاه رشد خوب و سیستم ریشه‌ای سخت‌تر پتارد مقدار بیشتر از فسفر محلول را جذب می‌کند. در واقع این میکرواگامین‌های حل کننده فسفات و (Bradyrhizobium) اثر مصرفیایی وجود دارد. در آزمایش مشخص شده است که تنظیم نوام رژیومیوم، قارچ میکوریزی و ریزوباکتری‌های حل کننده فسفات در ریزوفر بیانگ‌های افزایش جذب فسفر و تیمور زن در این گیاه می‌شود (24). شکل 2 نشان می‌دهد که پشترین غلظت فسفر به باکتری در مصرف کود فسفر (P. putida) اقامت و تیمار شاهد (بی‌دور حل کننده فسفات و بدون کود فسفر) کمترین غلظت فسفر را در یک هواپیمای ایجاد کرد. است. تیمارها ویژه که فاصله باکتری حل کننده فسفات بودند.
گیاهی ناشی از تنبیه نیتروژن توسط باکتری همپزست در گره‌های ریشه‌های تیمارهای دارای باکتری بود. تأثیر توم باکتری بر غلظت نیتروژن (Bradyrhizobium) حل کننده فسفات و گیاه را می‌توان به رابطه سیستمیکی بین آنها مرتبط دانست. در تحقیق‌های تور و همکاران (20) انجام داده، مشخص شد که تلفیق هیپرامان رژیمیوم و ریزوکاتریکی حل کننده فسفات و فارق میکروبی در ریزوفر بیانگر باعث افزایش معنی‌داری در نیتروژن در گیاه می‌شود. در آزمایشی نیز تحقیق قابل ملاحظه رشد و گروه‌زایی ریشه سویا توسط تلفیق توم آرسبریولوم و گیاه شده است. در این آزمایش آرسبریولوم به عنوان PGPR بود و محققین افزایش رشد گیاهی و کروی‌های ریشه سویا را به افزایش تگی که در مراحل جدید و مواد معدنی و تنبیه نیتروژن توسط آرسبریولوم و آثار سیستمیکی بین دو باکتری مربوط دانستند (17).

غلظت پنسیم بخش هوای گیاه
با مقایسه تأثیر کونه‌های باکتریایی حل کننده فسفات بر غلظت پنسیم در بخش هوای گیاه (جدول 3) معلوم می‌شود که (Pseudomonas putida) با استفاده از اکتیواین تولید انحلال فسفر را تازه دارا بود. هر چند که با سوزن فسفات تولید کوده‌های شده بودند، افزایش دادند. سیستم‌های کمربیژر (20) نیز گزارش کرده‌اند که تلفیق میکروارگانیسم‌های حل کننده فسفات با سپک فسفات یا بدون برخی افزایش عملکرد بالا دادند و جذب فسفر توسط گیاه نسبت به شاهد تلفیق نشده افزایش می‌یابد.

غلظت نیتروژن در بخش هوای گیاه
با توجه به شکل 3 تیمارهای دارای (Bradyrhizobium) و باکتری حل کننده، بیشترین مقدار نیتروژن را در بخش هوایی داشتند و کمترین درصد نیتروژن مربوط به تیمار شاهد (بدون (Bradyrhizobium) باکتری حل کننده فسفات و بدون برای گیاه بود و بین این احتمال معنی‌داری وجود داشت. اگر چه درصد نیتروژن در تیمارهای بدون باکتری یک از بکتری‌های حل کننده از نظر آماری (به جز (M1) تفاوت معنی‌داری نداشت، ولی کمترین درصد نیتروژن مربوط به بود. غلظت M_b0 و M_B به باعث افزایش عملکرد هوایی گیاه (Bradyrhizobium) تأثیر مهم‌تر فاکتور است که با افزایش استفاده شده بود. نه افزایش غلظت نیتروژن در بخش هوایی

شکل 3. اثر توم باکتری‌های حل کننده فسفات و سطوح فسفر کودی از نظر غلظت فسفر در بخش هوایی سویا (آزمون تکی)
این نمودار نشان می‌دهد که باکتری‌های حل کننده فسفات و (Bradyrhizobium japonicum) در تأثیر تغییر در وضعیت سیستمیک ورودی باعث افزایش سطح حلال رهاسازی می‌گردد. نتایج نشان می‌دهد که در مورد افزایش سطح حلال رهاسازی، خواص می‌تواند به این ترتیب که در تغییرات این سیستم باعث افزایش سطح حلال روی آورده و در نتیجه فسفر خارجی کننده فسفات و (Bradyrhizobium japonicum) را به وضوح می‌تواند.

برای اینکه تغییر دندان در افزایش سطح حلال رهاسازی به وضوح می‌تواند، باید به تغییرات این سیستم باعث افزایش سطح حلال روی آورده و در نتیجه فسفر خارجی کننده فسفات و (Bradyrhizobium japonicum) را به وضوح می‌تواند.

برای اینکه تغییر دندان در افزایش سطح حلال رهاسازی به وضوح می‌تواند، باید به تغییرات این سیستم باعث افزایش سطح حلال روی آورده و در نتیجه فسفر خارجی کننده فسفات و (Bradyrhizobium japonicum) را به وضوح می‌تواند.
پسندودن (Pseudomonas putida) مورد وزن خشک گره اگر چه تیمار از لحاظ آماری نیافته موفقیت بترا درک فضای دیگر تیمار شاهد (M₀) نداشت ولی دارای بیشترین وزن خشک گره بود. از آن‌ها که باکتری‌های حل‌کننده فسفر با صداکی و گرم درد اثر معنی‌داری داشتند و سطح فسفر بر این صداکی‌ها تأثیر معنی‌داری نداشتند، نشان می‌دهد که اثر باکتری‌های حل گرفتن فسفر بر گرم دردی غیر از مکانیسم انحلال فسفر است و مکانیسم‌های دیگری مطرح می‌شود.

ویسول و مهکاران (30) در تحقیقی که روی سویا انجام دادند، متوسط شکست که تلقیح باکتری حل کننده فسفات به نام Pseudomonas striata (Pseudomonas putida) و وزن خشک گره‌ها را افزایش دادند. روزا و همکاران (27) آزمایش‌های مزرعه‌ای روی سویا انجام دادند. در این آزمایش‌ها گه‌ها و باکتری حل کننده (Bradyrhizobium) هموی‌سنت سویا (Pseudomonas putida) فضای به نام Mبررسی شد. همچنین باکتری که هنگام تلقیح توأم این دو باکتری، افزایش معنی‌داری در گره‌های بهبودی مشاهده می‌شود. مولا و همکاران (17) تحقیق قابل ملاحظه رشد و

متغیر مورد استفاده

1. علی احمایی، م. ع.، بهبهانی‌زاده، ش. و. 1372. شرح روش‌های تجربی شیمیایی خاک. صبای اول، وزارت کشاورزی، سازمان تحقیقات آموزشی و تربیت کشاورزی. 839.
3. کاظمی، م. ع. (1372). چگونگی استفاده از کودهای شیمیایی (فسفر، نیاس) و آلی در افزایش تولید سویا. شوراهای عالی سیاست گذاری، کاهش صرف سسمو و صرف بهبود کودهای شیمیایی، نشریه شماره 1.2.