کارایی مصرف کود در آفت‌آگردان با سیستم کود- آی‌آری

امام کریمی، محمد معززلیان، مهبد همتی، عبدالرزاق لیاقت و فائز رئیسی

چکیده
کودهای شیمیایی در کشور عمداً به روش پخش سطحی مصرف می‌گردد. مصرف کودهای شیمیایی مطالب این روش، زمان کافی را برای انجماد واکنش‌های هدررفت فرآهم نموده و سر انجام از تابع جذب آنها اتصال شده گاهی می‌کاهد. به این دلیل در پشت موارد آزاری عملکرد همه‌گانه یا آزاری کود مصرف نیست. کود- آی‌آری نشی نیست در آزاری کود مصرف آب و کود دارنده. هدف از این پوشش، تجزیه اثر کود- آی‌آری بر کارایی مصرف کود در آفت‌آگردان با استفاده از سیستم آی‌آری قطره‌ای- نواری بود. در آزمایش، این آزمایش در خاکی با پاک‌سازی سطحی رسی سبز و در قالب طرح کاملاً تصادفی با دو فاکتور متداوم آب آپاری در چهار سطح (0.5) 100 و 120 درصد نیاز آب محاسبه شده بر اساس تخلیه رطوبت خاک و متداوم کود شیمیایی در پنج سطح (شاد) 100، 150 و 200 درصد توسعه کودی بر اساس ازنام خاک) در سه تکرار به اجرا درآمد.

ترکیب کودی توسعه شده به صورت 50 کیلوگرم اوره، 50 کیلوگرم کاور پاتسی، 30 کیلوگرم نفاهت دی امومی، 30 کیلوگرم سولفات آهن، 30 کیلوگرم سولفات نیک، 30 کیلوگرم سولفات روز، 30 کیلوگرم اسید بوریک در هکتار ورود. در تمامی تیمارها به حجمی شیمیایی شاهد کلودی که مشخص می‌گردد. بررسی مورد صرف قرار گرفت. کودهای آپاری و پاتسی در طویت و پاتسی در 12 روز و کودهای دارای عناصر کم مصرف در 4 روز با فاصله 12 روز در طی فصل رشد مصرف گردید. نتایج نشان داد که کارایی مصرف کود تحت تاثیر میزان آپاری، متداوم کود مصرفی آب را اندازه‌گیری بود. تیمارهای آپاری اثر معمولی در مساحت 1/ بر کارایی مصرف کود در تولید دانه و ماده خشک کد بر افزایش اثر معمولی کودی کارایی مصرف از طرف و پاتسی کم‌تر می‌باشد. در پی تیمارهای کودی اثر معمولی در مساحت آپاری 1/ بر کارایی مصرف کود در تولید دانه و ماده خشک کود بر افزایش اثر معمولی کودی کارایی مصرف از طرف و پاتسی کم‌تر می‌باشد. در پی تیمارهای کودی اثر معمولی در مساحت آپاری 1/ بر کارایی مصرف کود در تولید دانه و ماده خشک کود بر افزایش اثر معمولی کودی کارایی مصرف از طرف و پاتسی کم‌تر می‌باشد. مقایسه کارایی مصرف از طرف و پاتسی نشان داد که کارایی مصرف پاتسی در اثر معمولی کودی کارایی مصرف پاتسی 3.5/ است.

واژه‌های کلیدی: آپاری قطره‌ای- نواری، آفت‌آگردان، کارایی مصرف، کود- آی‌آری

1. دانشجوی ساختمان دکتری خاک‌سنجی، دانشگاه کشاورزی، دانشگاه تهران و در حوزه استادیار خاک‌سنجی، دانشگاه کشاورزی دانشگاه شهرکرد
2. دانشجوی ساختارهای، پرستی و شاخصهای تهیه، دانشگاه کشاورزی، دانشگاه تهران
3. دانشجوی ساختارهای، پرستی و شاخصهای تهیه، دانشگاه تهران
4. دانشجوی ساختارهای، پرستی و شاخصهای تهیه، دانشگاه تهران
5. دانشجوی ساختارهای، پرستی و شاخصهای تهیه، دانشگاه شهرکرد

65
مقدمه
در مسابک مختلف مفهوم کاراژی مصرف کود متفاوت بیان شده است. کود (کاراژی مصرف کود عناصر غذایی) را به صورت اندازه‌گیری مکانکرد بر‌گردیدن است. کود به صورت کود تعریف کرد. بر اساس این مفهوم کود (عناصر غذایی) به مقدار مصرف غذایی جذب شده، به‌این‌ویرآورا و ایضاح‌های مصرف شده گفته می‌شود و از رابطه زیربرده می‌آید:

\[F = \frac{U_t - U_c}{F} \]

که این ابزار کود به معنی کود (عناصر غذایی) تاریک (درصد) \(U_t \) مقدار غذایی جذب شده توسط گیاه کود دریافت کرده است (کیلوگرم در هکتار). \(U_c \) مقدار عنصر غذایی جذب شده توسط گیاه کود دریافت تکه‌ی کود (کیلوگرم در هکتار) \(F \) مقدار عنصر غذایی مصرف شده (کیلوگرم در هکتار) می‌باشد.

کاراژی مصرف کود به مقدار زمان، نوع و روش مصرف کود بستگی دارد. روش کود‌دهی نظیر انسانی است. در جامعه غذایی این مصرف را به‌صورت گیاه قرار گرفته است. ایجاد اندازه‌گیری فعالیت به‌عنوان دانش‌های و افزایش کاراژی مصرف کود می‌گردد. بهبود افزایش کاراژی از طریق اینفرتویی مصرف نسبت به نویز آن و میزان جذب ارد و تمایل را عامل کاهش افزایش می‌دهد.

کود به تدریج با مصرف قابل پیش‌بینی کم می‌شود، به‌معنی کودبهای بطریکی می‌باشند. از این‌رو مصرف کود به‌معنی کود به‌عنوان مصرف کود به‌معنی کود به‌عنوان مصرف کود به‌جای کود به‌عنوان مصرف کود به‌جای
مواد و روش‌ها

این آزمایش در مزرعه مکرر تحقیقات کشاورزی شهرباز (طول 40 درجه ۳۵ دقیقه و عرض ۳۰ درجه ۵ دقیقه) در خاک با فاکتور مقدار آب کاملاً تصادفی در دو اتاق فاکتور مقدار آب ایجاد بوده و ترتیب کنترل و اتدادگیری میزان آب و کود در محل انتقال منطبق‌بوده. به لحاظ تهیه اصلی از کنتورهای حجمی ۵/۰ این اجسام گردید. جهت جلوگیری از گریختن فراوانی، توزیع ذرات علت بین خطوط و خط اغلب کننده با فیتر دیسکی به مس ۱۵۰ میکرون از روش تریک ایجاد اختلال فشار استفاده شده در این مطالعه روش آزمایشی، محلول کودی را از یک تانک ریزاب کشیده و آن را با جابیبی فشار به داخل سیستم آبیاری تزریق می‌نماید.

برای تعیین تیمارهای آبیاری از تخلیه رطوبت خاک استفاده گردید. به‌دین منظور با استفاده از رطوبت خاک در طرفین زراعی و نسبت پذیرفته، مقدار آب قابل استفاده گیاه در خاک محاسبه گردید. سپس این مقدار در آزمایش به عنوان تیمار شاهد و سایر تیمارها به عنوان درصدی از این مقدار منظور گردید. بر این اساس با توجه به درصد منظور آبیاری منطقه (۷ روز اندوزه‌گیری طی و زمان دو روزی طی و زمان دو روزی طی انجام گرفت و محاسبه نیاز آبیاری برای آینده نیاز آبیاری ایجاد شده کمیابه تیمارهای آبیاری بر اساس جدول ۱ اعمال گردید.

در اواستار اردیبهشت ماه زمین مورد نظر شکمش و بعد از دیگر دانه آفاده به انجام شده در سیستم آبیاری و نیازمندی برای منظور مناسب در آن پیچ گردیدند. فاصله کرته‌ای آبیاری از یک‌چهارم ۰/۵ متر و اندازه آن ۸۸/۵ تریک ایجاد در منطقه گرفته شدند. در اواستار اردیبهشت ماه آب‌دارگردن، به‌صورت روزانه به خاک از رنگی به رنگ سبز ۶۰ سانتی‌متر و فاصله بهت ۵۵ سانتی‌متر روی رنگ به‌صورت خطی توزیع دست کشت.
جدول 1. تیمارهای آبیاری و کودی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تعریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری به اندازه ۶/۰۰ میلی‌متر آبی محاسبه شده</td>
<td>I₁</td>
</tr>
<tr>
<td>آبیاری به اندازه ۸/۰۰ میلی‌متر آبی محاسبه شده</td>
<td>I₂</td>
</tr>
<tr>
<td>آبیاری به اندازه ۱۰۰ میلی‌متر آبی محاسبه شده</td>
<td>I₃</td>
</tr>
<tr>
<td>آبیاری به اندازه ۱۲۰ میلی‌متر آبی محاسبه شده</td>
<td>I₄</td>
</tr>
<tr>
<td>مصرف کوده‌ها به اندازه صفر درصد فرمول کودی توصیه شده</td>
<td>F₀</td>
</tr>
<tr>
<td>مصرف کوده‌ها به اندازه ۶۰ درصد فرمول کودی توصیه شده</td>
<td>F₁</td>
</tr>
<tr>
<td>مصرف کوده‌ها به اندازه ۸۰ درصد فرمول کودی توصیه شده</td>
<td>F₂</td>
</tr>
<tr>
<td>مصرف کوده‌ها به اندازه ۱۰۰ درصد فرمول کودی توصیه شده</td>
<td>F₃</td>
</tr>
<tr>
<td>مصرف کوده‌ها به اندازه ۱۲۰ درصد فرمول کودی توصیه شده</td>
<td>F₄</td>
</tr>
</tbody>
</table>

درصد ورودی رطوبت موجود در خاک، هرم‌های محصول، ظاهری خاک (گرم بر سانتی‌متر مکعب)، D، (میلی‌متر) و b، (میلی‌متر) به آب‌سنجی آب‌پذیری بر حسب میلی‌متر است. ترکیب کودی توصیه شده برای آب‌پذیری، قابلیت اکسیژن خاک به صورت ۴۰۰ کیلوگرم اوره، ۵۰ کیلوگرم کلرور، ۳۰ کیلوگرم سولفات آهن، ۵۰ کیلوگرم سولفات منگنز و ۲۰ کیلوگرم اسید بوریک در هکتار بوده است. تیمراه‌های کودی شامل پنج سطح کودی (شاهد، ۱/۵، ۱/۴، ۱/۲، ۱/۱ و ۵/۰) بوده‌اند. تیمارهای کودی بر اساس جدول شماره ۱ اعمال گردید. در مجموع آزمایش ۲۰ تیمار و ۳ تکرار به اجرا در آمد. در هر یک از تیمارهای کودی، از آنجا که تمام انواع کوده‌ها موجود در ترکیب کودی مورد ارزیابی قرار گرفت، کوده‌های مبتنی و پی‌ال‌دی در ۵ نویت و با فاصله ۱۴ روز و کوده‌های دارای آهن، روی، مگنتز، مس و بر در ۴ نویت با فاصله ۱۴ روز در طی پایان رشد آفتابگیران مصرف گردید. در این آزمایش، کود فسفات دی آمینوم به دلیل حلالیت پایین و عدم امکان مصرف آن به روش کودی آبیاری در تمام تیمارهای آزمایش فیلز از شامل موجود نبود. ارزیابی اندازه گیری کود گردو (۳۲) به کمک نرم‌افزار SAS انجام شد و پس از محاسبه جدول لیست تجزیه واریانس مقایسه میانگین به روش LSD (ANOVA) کرگد.
کاراپی مصرف کود در آفتاکنگان با سیستم کود - آبیاری

جدول ۲: مشخصات شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>عمق cm</th>
<th>دمای گرم بر کیلو گرم</th>
<th>فشار بالا</th>
<th>گذار جذب</th>
<th>پتانسیم</th>
<th>کلسیم</th>
<th>سولفات</th>
<th>کلسیم</th>
<th>کلسیم</th>
<th>آنزیم</th>
<th>کلسیم</th>
<th>کلسیم</th>
<th>سولفات</th>
<th>غذا</th>
<th>غذا</th>
<th>غذا</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>0/35</td>
<td>0/47</td>
<td>0/27</td>
<td>0/93</td>
<td>0/68</td>
<td>0/24</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-40</td>
<td>0/35</td>
<td>0/47</td>
<td>0/27</td>
<td>0/93</td>
<td>0/68</td>
<td>0/24</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳: مشخصات فیزیکی خاک محل آزمایش

<table>
<thead>
<tr>
<th>عمق cm</th>
<th>شن سیلت</th>
<th>رس</th>
<th>درصد توزیع اندازه ذرات شاخ</th>
<th>جرم مخصوص حقيقة</th>
<th>جرم مخصوص ظاهری</th>
<th>بقای شاخ</th>
<th>درصد وزنی رطوبت شاخ</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>52/7</td>
<td>47/8</td>
<td>44/2</td>
<td>0/29</td>
<td>0/31</td>
<td>Silty Clay</td>
<td>1/0</td>
<td>8/6</td>
</tr>
<tr>
<td>25-40</td>
<td>53/6</td>
<td>53/7</td>
<td>47/8</td>
<td>0/29</td>
<td>0/31</td>
<td>Clay</td>
<td>1/0</td>
<td>8/6</td>
</tr>
</tbody>
</table>

جدول ۴: نتایج تجزیه و تحلیل کاراپی مصرف کود آفتاکنگان

<table>
<thead>
<tr>
<th>کاراپی مصرف کود (درصد) برابر کل ماده خشک و عملکرد دانه</th>
<th>عملکرد دانه</th>
<th>تغییرات آزاد ت و تغییرات آزاد ت</th>
<th>NPK</th>
<th>F</th>
<th>PWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>کود ۲</td>
<td>۲/۰۴</td>
<td>۴/۰۲۵</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td>آب ۳</td>
<td>۴/۰۱۹</td>
<td>۵/۸۲۶</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td>کود آب ۱۲</td>
<td>۴/۰۲۰</td>
<td>۴/۰۱۷</td>
<td>""</td>
<td>""</td>
<td>""</td>
</tr>
</tbody>
</table>

توجه و بحث

ویژگی‌های خاک و شرایط رشد آفتاکنگان

خاک مورد آزمایش دارای پایه رسی سیلتی است و از آنجایی که آفتاکنگان با گالب خاک‌های سازگاری دارد ولی خاک‌های نسبتاً سبک را به خاک‌های خیلی سنگین رسی ترجیح می‌دهد. بنابر این محدودیتی از نظر نوع خاک برای این گیاه می‌دهد.

ویژگی‌های آبیاری بر کاراپی مصرف عناصر غذایی

نتایج تجزیه و تحلیل کاراپی مصرف کود در گیاه آفتاکنگان در جدول ۴ ارائه شده است. نتایج نشان می‌دهد که کاراپی مصرف
جدول ۵ مقایسه کارایی مصرف کود آفتابگردان در تیمارهای مختلف آبیاری

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مقدار آب مصرفی m³/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۶۴۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۷۴۴۰</td>
</tr>
<tr>
<td>۳</td>
<td>۸۲۴۰</td>
</tr>
<tr>
<td>۴</td>
<td>۹۳۴۰</td>
</tr>
</tbody>
</table>

بیانگین‌های هر ستون که حداکثر دارای یک حرف مشترک هستند، بر پایه آزمون چند نامه‌ای دانکن و در سطح احتمال ۰/۰۵ اختلاف معنی‌دار ندارند.

کود آفتابگردان تحت تأثیر میزان آب آبیاری، مقدار کود مصرفی و اثر متقابل هر دو عامل فارق می‌گردد. مقایسه بیانگین‌های کارایی مصرف کود آب آزمون دانکن در سطح ۱% در تیمارهای مختلف آبیاری در جدول ۵ ارائه شده است.

نتایج به‌ندرست آمده در جدول ۵ نشان می‌دهد که تیمارهای آبیاری اثر معنی‌داری در سطح ۱% بر کارایی مصرف از در تولید دانه و ماده خشک کل دارند. در بین تیمارهای آبیاری تیمار ۱۱ با ۲۸ و ۱۵ درصد بیشترین و تیمار ۱۵ و ۵ درصد کمترین کارایی مصرف از در تولید دانه ماده خشک کل و دانه دارند. همین طور نتایج نشان داد که کارایی مصرف پنیسیم با افزایش میزان آب مصرفی افزایش می‌یابد. در بین تیمارهای آبیاری تیمار ۱۱ با ۲۸ و ۱۵ درصد بیشترین و تیمار ۱۵ و ۵ درصد کمترین کارایی مصرف پنیسیم را در تولید ماده خشک دارند (جدول ۵). با این حال بیشترین کارایی مصرف پنیسیم در تیمار دانه در میزان ۲۵ درصد و کمترین مقدار آن در تیمار ۱۱ با ۱۹ درصد حاصل گردید. در تولید دانه با افزایش میزان آب مصرفی نسبت به تیمار ۱۱۰۰ تا میزان نیاز آبی کارایی مصرف پنیسیم کاهش نشان داد. اما نتایج نشان داد که کارایی مصرف سبزیجت با افزایش میزان آب مصرفی کاهش می‌یابد. علی‌رغم اینکه تأثیر بیشتر سبزیجت در شرایط قارچی‌ایه‌ای آب ارتباط دارد با افزایش مقدار آب در داخل کلیس محلول خشک با سبزیجت بهتر و اکتشاد داده و باعث ترکیب ترکبات تامحلول سبزیجت در

خاک می‌گردد. در نتیجه امکان جذب و فسف سبزیجت توسعه گذشته کاشت یافته و کارایی مصرف سبزیجت کاشت می‌یابد. در بین تیمارهای آبیاری تیمار ۱۱۱ و ۱۲ درصد بیشترین کارایی مصرف سبزیجت را به ترتیب برای تولید ماده خشک و تولید دانه دارند. نتایج نشان می‌دهد که با افزایش مقدار آب مصرفی کارایی مصرف از در تولید دانه و ماده خشک کل افزایش یافته است. در بین تیمارهای آبیاری تیمار ۱۱۱ با ۲۸ و ۱۵ درصد بیشترین و تیمار ۱۵ و ۵ درصد کمترین کارایی مصرف از در تولید دانه ماده خشک کل و دانه دارند. همین طور نتایج نشان داد که کارایی مصرف پنیسیم با افزایش میزان آب مصرفی افزایش می‌یابد. در بین تیمارهای آبیاری تیمار ۱۱۱ با ۲۸ و ۱۵ درصد بیشترین و تیمار ۱۵ و ۵ درصد کمترین کارایی مصرف پنیسیم را در تولید ماده خشک دارند (جدول ۵). با این حال بیشترین کارایی مصرف پنیسیم در تیمار دانه در میزان ۲۵ درصد و کمترین مقدار آن در تیمار ۱۱۱ با ۱۹ درصد حاصل گردید. در تولید دانه با افزایش میزان آب مصرفی نسبت به تیمار ۱۱۰۰ تا میزان نیاز آبی کارایی مصرف پنیسیم کاهش نشان داد. اما نتایج نشان داد که کارایی مصرف سبزیجت با افزایش میزان آب مصرفی کاهش می‌یابد. علی‌رغم اینکه تأثیر بیشتر سبزیجت در شرایط قارچی‌ایه‌ای آب ارتباط دارد با افزایش مقدار آب در داخل کلیس محلول خشک با سبزیجت بهتر و اکتشاد داده و باعث ترکیب ترکبات تامحلول سبزیجت در

۷۰
جدول 4 مقایسه کارایی مصرف کود آتابی وگذار در تیمارهای مختلف کودی

<table>
<thead>
<tr>
<th>کارایی مصرف کود (درصد)</th>
<th>ماده خشک کل</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F₁</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F₄</td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اثر</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شیارین آب و هوای خشک کارایی مصرف آب، شیارین به وسیله ی همیشه نوع کود، زمان و روش مصرف کود، نوع خاک و شیارین قلمیکی دارد. کارابین و همکاران در آزمایش با مصرف کود آب و هوای خشک از 2 طبقه (شرکت، 100 و 1000 کیلوگرم) در هر شرکت و 3 سطح آبیاری (33، 66 و 100 درصد) بر روی گندم تیپه گرفته که ایجی در کارایی از توسط دانه تأثیر ممکن داری در سطح آماده 70/21. با افزایش مصرف آب میزان اثر بردایش شده توسط گندم آبیاری به دقت. بسترین از 100 کیلوگرم آب در تیمار آبیاری کامل تولید با مصرف 110 کیلوگرم آب در تیمار آبیاری کامل و مصرف می‌باشد.

ماده خشک و دانه دانه. اختلاف معن‌دار دانه‌بند

ماده خشک و دانه دانه، اختلاف معن‌داری بین تیمار و 1 و 1 وجود نداشت. کارایی مصرف آب، شیارین و تیمار با مصرف 2 و 3 در جدول 10 و 11 در اراضی تحت کشت آب در آمیزی کارایی مصرف از 11 در اراضی کم‌اصله، هک‌الله اندی یا 46 در مناطق متفاوت ارجا با مراعات گزارش‌های 16-19 درصد. ویرس و همکاران (14) در 35 و 100 درصد و داتا و دوک (9) مقدار آن 87 درصد. گزارش کردند. در این پژوهش کمترین کارایی مصرف از 30 درصد به دست آمده. تأثیر این پژوهش با تأثیر آنها مطلوب دارد.

اث تیمارهای گروه 3 کربن کارایی مصرف کود

مقایسه میانگین‌های کربنی کیسی مصرف کود با آزمون دانکنز در سطح 1/4 در تیمارهای مختلف کودی در جدول 6 ارائه شده است.

نتایج بدست آمده از جدول 6 نشان می‌دهد که تیمارهای کودی اثر معنی‌داری در سطح 1/4 بر کارایی مصرف آب در تولید دانه و ماده خشک کل دانه. در بین تیمارهای کودی نیبورگ (10) و فیلی و مک اینچ (13) بیشتر نشا یاد که در
در این آزمایش مقداری از یک مواد نشان می‌دهد که یک بیشتر است. بنابراین، بیشترین مقدار مصرف کودی تیمار

F_2 با 18 درصد بیشتری و F_3 با 12 و 9 درصد کمتری کارایی مصرف از F_1 است. با توجه به نتایج تشریح

این اتفاقی است که کودی تیمار F_3 نسبت به F_1 بیشتر از F_2 مصرف می‌شود.

با توجه به نتایج تشریح، می‌توان گفت که افزایش مقدار مصرف کودی F_3 باعث کاهش می‌گردد.

با توجه به نتایج مورد نظر، می‌توان گفت که افزایش مقدار مصرف کودی F_3 باعث کاهش می‌گردد.

با توجه به نتایج مورد نظر، می‌توان گفت که افزایش مقدار مصرف کودی F_3 باعث کاهش می‌گردد.

با توجه به نتایج مورد نظر، می‌توان گفت که افزایش مقدار مصرف کودی F_3 باعث کاهش می‌گردد.
کارایی مصرف کود در آنتیگوانا با سیستم کود-آبیاری

اصلی) نوع و میزان مصرف کود، روش کوددهی و روش آبیاری

می‌توان نام بردا. اثر مقابل آب و کود بر کارایی مصرف کودها

جدول ۷ اثر مقابل آب و کود بر کارایی مصرف از، فسفر، پتاسیم و اثر تجمیع این سه عنصر را بر کارایی

باید I₈F₁ کود کودی نشان می‌دهد. تیمار دارند که در هر

۵۱ درصد بیشترین کارایی مصرف از را به ترتیب در عملکرد دانه و ماده خشک نشان می‌دهد. تیمار

۲۲ درصد و پتاسیم I₈F₁ کود مصرف فسفر را به ترتیب در عملکرد دانه و ماده

۳۲ درصد و I₈F₁ کود مصرف از آن کاهش داشته که با تناوب آنها مقابله دارد. در

این پژوهش نیز در تیمارهای کودی با افزایش مصرف از،

کاردی آن کاهش داشته که با تناوب آنها مقابله دارد. در

۲۴ درصد بیشترین مصرف پتاسیم را به ترتیب در

عملکرد دانه و ماده خشک نشان می‌دهد. اثر تجمیع کودها

بر کارایی مصرف از آنها داده که تیمار I₈F₁ کود

۶۰ درصد و I₈F₁ کود مصرف کودها

را به ترتیب در عملکرد دانه و ماده خشک دارد.

نتیجه‌گیری

نتایج نشان داد که افزایش مصرف کود کارایی مصرف

از، فسفر و پتاسیم را در مزراع برنج کشاورزان در ۲ کشور افریقایی بررسی کردند. آنها بیانگی کارایی مصرف از زوایا ۵۰ درصد، کارایی

کود مصرف از ۳۳ درصد و کارایی مصرف پتاسیم را

۶۵ درصد کود کردند. آنها همچنین در دو ایستگاه

تحقیقات کارایی مصرف از ۴۹ و ۶۵ درصد، کارایی

مصرف از فسفر ۵۲ درصد و ۴۴ درصد و کارایی مصرف پتاسیم را

۵۳ و ۶۵ درصد کردند. مقایسه کارایی مصرف از، فسفر

و پتاسیم (NPK) و پتاسیم (K₈N₈P₈) یا مزراع برنج کشاورزان در ۱۵ هم در

ایستگاه‌های تحقیقات کارایی مصرف پتاسیم بیشتر از از و

کارایی مصرف از بیشتر از فسفر (K₈N₈P₈) است. در این

پژوهش تنها تغییرات با تکنیک‌ها مشابه، اما از نظر مقدار

کارایی مصرف کود تفاوت وجود دارد، از قبیل علل تفاوت در

نابیج را نوع گیاه، شرایط محیطی (مقدار آب، نوع خاک و

۷۳
جدول ۲: میانگین گزارش‌های مصرف گلداری در عملکرد ذخیره و کل ماده خشک در تیمارهای آزمایشی آفت‌پروران

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نامی</th>
<th>انتخاب</th>
<th>فسفر</th>
<th>NPK</th>
<th>ماده خشک</th>
<th>ماده خشک</th>
<th>ماده خشک</th>
<th>ماده خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. F₀</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I. F₁</td>
<td>۵۸</td>
<td>۱۹</td>
<td>۱۳</td>
<td>۳۷</td>
<td>۳۳</td>
<td>۱۶</td>
<td>۱۸</td>
<td>۴۸</td>
</tr>
<tr>
<td>I. F₂</td>
<td>۵۳</td>
<td>۲۲</td>
<td>۵۵</td>
<td>۵۰</td>
<td>۲۲</td>
<td>۱۵</td>
<td>۱۸</td>
<td>۴۸</td>
</tr>
<tr>
<td>I. F₃</td>
<td>۹</td>
<td>۵</td>
<td>۳۱</td>
<td>۶</td>
<td>۷</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۸</td>
</tr>
<tr>
<td>I. F₄</td>
<td>۵</td>
<td>۱۱</td>
<td>۲۵</td>
<td>۵</td>
<td>۷</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۸</td>
</tr>
<tr>
<td>I. F₅</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I. F₆</td>
<td>۱۹</td>
<td>۲۲</td>
<td>۴۹</td>
<td>۲۴</td>
<td>۶</td>
<td>۵</td>
<td>۵</td>
<td>۱۶</td>
</tr>
<tr>
<td>I. F₇</td>
<td>۵۷</td>
<td>۳۱</td>
<td>۷۱</td>
<td>۴۱</td>
<td>۴</td>
<td>۳</td>
<td>۳</td>
<td>۱۶</td>
</tr>
<tr>
<td>I. F₈</td>
<td>۱۷</td>
<td>۱۳</td>
<td>۷۱</td>
<td>۴۱</td>
<td>۴</td>
<td>۳</td>
<td>۳</td>
<td>۱۶</td>
</tr>
<tr>
<td>I. F₉</td>
<td>۱۰</td>
<td>۴۱</td>
<td>۲۴</td>
<td>۱۷</td>
<td>۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۸</td>
</tr>
<tr>
<td>I. F₁₀</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I. F₁₁</td>
<td>۵۱</td>
<td>۷</td>
<td>۶۳</td>
<td>۲۵</td>
<td>۴</td>
<td>۱۶</td>
<td>۱۸</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₂</td>
<td>۳۷</td>
<td>۱۹</td>
<td>۶۹</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۱۶</td>
<td>۱۷</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₃</td>
<td>۱۷</td>
<td>۱۲</td>
<td>۷۴</td>
<td>۱۶</td>
<td>۱۷</td>
<td>۱۵</td>
<td>۱۴</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₄</td>
<td>۱۰</td>
<td>۴۱</td>
<td>۵۷</td>
<td>۳۴</td>
<td>۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₅</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I. F₁₆</td>
<td>۶۱</td>
<td>۲۶</td>
<td>۵۷</td>
<td>۵۲</td>
<td>۱۶</td>
<td>۲</td>
<td>۱۶</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₇</td>
<td>۳۴</td>
<td>۳۳</td>
<td>۶۸</td>
<td>۵۲</td>
<td>۱۶</td>
<td>۲</td>
<td>۱۶</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₈</td>
<td>۴۵</td>
<td>۱۴</td>
<td>۸۴</td>
<td>۱۵</td>
<td>۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₁₉</td>
<td>۱۰</td>
<td>۸۵</td>
<td>۶۷</td>
<td>۳۷</td>
<td>۲</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۴۴</td>
</tr>
<tr>
<td>I. F₂₀</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

منابع مورد استفاده

۱. علی اخیانی، م. ۱۳۷۶. تشریح روش‌های تجزیه شیمیایی خاک، انتشارات مؤسسه تحقیقات خاک و آب، تهران.
۲. ملکوشک، م. ج. و م. غیبی. ۱۳۷۹. اقتصادی و آماری بنایت در کشاورزی، گیاه و میوه در راستای افزایش عملکرد کمی و کیفی محصولات استان آذربایجان شرقی، چاب دور، نشر آموزش کشاورزی، تهران.

74

