بررسی تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخشی از اراضی زراعی

سرخنگل‌های گلستان

سارا محمدزمانی، شمس ای‌ایوی و فرهاد خرم‌های

چکیده

ارزیابی عملکرد و تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخشی از اراضی زراعی، این تحقیق در یک مزرعه گندم تحت مدیریت زارعین محلی در شهر سرخنگل‌های گلستان، در شمال شرقی ایران انجام شد. نمونه برداری خاک و گندم در ۱۰۰ نقطه از روی یک نقشه سیستم‌کننده-آشیانهای در پلی برای ابتدای ۱۰۰ اثرات ورودی طراحی معکوسه می‌گردید به سپرای نمونه‌برداری در پلات‌هایی به ابعاد یک مت بزرگ مت و هر ۱۰۰ نقطه نمونه برداری در اواخر خردماه صورت پذیرفت. نتایج آماری نشان داد تمامی متغیرها از توزیع نرمال برخورد سخت رفت. در نتیجه برای تغییرات می‌تواند با خود نشان داده شود که از روی تغییرات مکانی خصوصیات خاک و تغییرات عملکرد این طرح مطالعه گوسالی خاصی ندارد و دارای راکانت مکانی می‌باشد. به همین ترتیب مکانی از روی اگر گلوی پراکنش مکانی موارد آن بوده و تغییرات مکانی که برای بررسی گردیدند نشتبه یک سطح قبلی دسترس مشاهده داشت. نتایج حاکی از این است که اگر و واپسین مکانی خاک و محتوای ناحیه در یک مزرعه که تحت مدیریت یک زارع قرار داده می‌تواند بین این متغیرها و در میاسه‌های مختلف نتایج داشته باشد. همچنین تغییرات و تغییراتی که در تغییرات خاک و سطح قبلی داشته باشد. نتایج برای تغییرات مکانی خاصی ندارد و دارای راکانت مکانی می‌باشد. به همین ترتیب مکانی از روی اگر گلوی پراکنش مکانی موارد آن بوده و تغییرات مکانی که برای بررسی گردیدند نشتبه یک سطح قبلی دسترس مشاهده داشت. نتایج حاکی از این است که اگر و واپسین مکانی خاک و محتوای ناحیه در یک مزرعه که تحت مدیریت یک زارع قرار داده می‌تواند بین این متغیرها و در میاسه‌های مختلف نتایج داشته باشد. همچنین تغییرات و تغییراتی که در تغییرات خاک و سطح قبلی داشته باشد. نتایج برای تغییرات مکانی خاصی ندارد و دارای راکانت مکانی می‌باشد. به همین ترتیب مکانی از روی اگر گلوی پراکنش مکانی موارد آن بوده و تغییرات مکانی که برای بررسی گردیدند نشتبه یک سطح قبلی دسترس مشاهده داشت. نتایج حاکی از این است که اگر و واپسین مکانی خاک و محتوای ناحیه در یک مزرعه که تحت مدیریت یک زارع قرار داده می‌تواند بین این متغیرها و در میاسه‌های مختلف نتایج داشته باشد. همچنین تغییرات و تغییراتی که در تغییرات خاک و سطح قبلی داشته باشد. نتایج برای تغییرات مکانی خاصی ندارد و دارای راکانت مکانی می‌باشد. به همین ترتیب مکانی از روی اگر گلوی پراکنش مکانی موارد آن بوده و تغییرات مکانی که برای بررسی گردیدند نشتبه یک سطح قبلی دسترس مشاهده داشت. نتایج حاکی از این است که اگر و واپسین مکانی خاک و محتوای ناحیه در یک مزرعه که تحت مدیریت یک زارع قرار داده می‌تواند بین این متغیرها و در میاسه‌های مختلف نتایج داشته باشد. همچنین تغییرات و تغییراتی که در تغییرات خاک و سطح قبلی داشته باشد. نتایج برای تغییرات مکانی خاصی ندارد و دارای راکانت مکانی می‌باشد.

واژه‌های کلیدی: تغییرات مکانی، تغییرات، کرویگری، کشاورزی دقيق، سرخنگل‌های گلستان

کشاورزی دقیق می‌پیش‌بیند. در مزرعه کشاورزی، تغییراتی عملکرد بنا به خصوصیات خاک و توجیه‌گرایی مزرعه، آقایی مقدمه

تجاری و تحلیل تغییراتی عملکرد، فراوان مهمی در تحقیقات

۱. به ترتیب دانشجویی کارشناسی ارشد و استادیاران خاکشناسی، دانشگاه علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

79
افتخارات گیلزینیک و مدیریت می‌باشد (۱۶). مشخص شده است که خصوصیات خاک یکی از عوامل عشله تغییری یک طوری تولید در زمینه به شمار می‌رود. وجود تغییرات مکانی در خصوصیات خاک و اهمیت ان تولید محصول اسیری به‌دست می‌رود. با این حال در هر فلیس از علی و میانج خصوصیات کامل نیست و آگاهی از ان برای تولید محصول و عملکرد کشاورزی برایی ضروری می‌باشد (۱۹و ۳۱).

خصوصیات خاک در ایالات تغییرات مکانی و زمانی از مقياس‌های کوچک تا بزرگ می‌باشد که تحت تأثیر خصوصیات ذاتی (نظیر فاکتورهای منجر به وضع مادی خاک)، کود درجه و تناوب زراعی (قرار می‌گیرد و ۲۳) برای درک بهتر تأثیر خصوصیات مصرفی و آگاهی دستیابی به عملادیت زراعی مناسب تایید می‌شود که تاکنون ریک دانسته و تغییری‌های خصوصیات خاک می‌باشد (۶).

امثال‌هایی که در کشور می‌توانند مدل‌های ایجادی در این زمینه صورت گرفته است. می‌باشند (۴) تحقیقی در مورد مدل سازی نکات مکانی و مسائل‌های داخلی خاک بعنوان مسئولیت برای اعمال کشاورزی دقیق در دست می‌تواند انجام داد. نتایج خاک از آن به‌کته می‌توانند تغییری‌های مورد مطالعه دارای دامنه‌ای باشد که بزرگ ترین دانل بار این بدهد که در مورد تولید کشاورزی به‌ویژه منابع خاک و آب را نمی‌توان دنیای خاک در تغییری‌های خصوصیات خاک در مزارع اغلب به وسیله روش‌های آمار کلاسیکی بکار می‌باشد. در این فرض بر تغییر (Mapping units) تکنیک‌های تغییرات درون واحد‌های نقدش (۶) برای داشتن کافی نتایج مورد مراجعه برای تغییری‌های تغییری‌های خاصیت‌های خاک و همچنین مشاهده می‌باشد. نتایج آن با داده که تزیین مکانی و علل تغییرات گرمایی داشته باشد (۲۰). حمایت از کل همیگر برقرار نمی‌شود (۳). زمان آمار (Geostatistics)
بررسی عناصر مکانی خصوصیات خاک و عملکرد گندم در پخته‌ای از...

مزوگه گندم تحت مدیریت زاریار علی انتخاب شد. در این
مدیریت در پاییز کشت گندم رقم زاغر در پنج مزرعه توسعه
زارع انجام گرفت. به این صورت خامه به‌دست آمده از انجام
عملیات
خاکوری، کاشت با روش سنتی کاشت‌های انگلیسی شد. عملیات
dاشت شامل شعله طبیعی و روش غلقه بود. در نتیجه
سپاس از پیشرفت، در مرحله پنج به زمین گرفت، بعد از
بهنگام روش و پرکردن، به‌کار رفته (کتابی و گرانت) و همراه با آن کود.

جوهر نمونه برداداری خاک از قطعه مورد نظر، شبکه بندی به
صبر سیستم‌کارکرده‌ای - آشیانیه به‌میزبان 20 در 20 متر
(60 نقطه)، 20 در 50 متر (36 نقطه) و 50 در 50 متر (17 نقطه)
و جمعاً 121 نقطه به‌وسیله هر دوین و متراژ آن است. شکل 1
نمایی از النگی نمونه برداداری را نمایش می‌دهد. نمونه برداداری
از خاک اندازه بعد از کاشت به‌وسیله مهندس (اوگر) از 10
30 سانتی‌متر از روی نقاط مختصر معلوم (جمع‌اً 100 نقطه) صورت می‌گرفت.

تجزیه‌ای آزمایشگاهی
نمونه‌ها هوا خشک گردیده و پس از اکت میلی‌متری عبور
دیده شد. در حالی که اشباع و هدایت الکتریکی در عصاره
ابشاب مواد آبی به روش اکسیداسیون (31) و از کل
استفاده از روش میکرو جودال. با هضم تر اندازه‌گیری شد
(32). فسفر قابل جذب به روش کالی‌بیومتر (20). اهمیت بر
روش تیتراسیون برعکسی استفاده کنیماً با
عصاره‌گیری با استانداردی سداسیم pH = 8/2 (31) و یک
جذب و سداسیم (مخلوط + بادال) با استخدام از دستگاه فلیم
فیلم تر در عصاره به دست آمد 1 با استاندارد آمونیوم 1
نرم‌ال (31). مخلوط فلیم فیلم فیلم تر در عصاره
انجام و پرکردن کرد.

بافت خاک با روش هیدرومتری انجام شده و بعد از آن
جهت تکریک ذرات، سوسپنسیون خاک داخل سیلندر از
خاک پوده است، دارای بیش‌ترین در مطالعه مبرور، قابل‌پذیری دسترسی
فسفر از مهم‌ترین جهت‌های مدیریت دقت مزرعه به شمار
می‌رود. در این حال آنها برکنار از دستگاه‌های معرفی
شدان در سطح مزرعه نیازمند مطالعات بیشتر می‌دانند.

گندم یکی از محصولات مهم و استراتژیک استان گلستان
بوته و شناخت خصوصیات خاک مهم روی عملکرد آن جهت
برنامه‌ریزی و اعمال مدیریت به‌همین جهت اهمیت می‌باشد. در
ارتباط با این موضوع تا کنون زمین‌امار استفاده نشده
است. لذا این مطالعه با هدف بررسی برداداری مکانی و یک‌گاه
تولید محصول گندم به‌صورت خصوصیات فیزیکی-chemیایی خاک به
کمک تکنیکی زمین‌امار در منطقه سرتخت‌کن‌های استان گلستان
انجام شده است.

مواد و روش‌ها
موضع جغرافیایی منطقه
منطقه مورد مطالعه در مجاورت شهر سرتخت‌کن‌های در حدا
25 کیلومتری شمال شرق شهرستان گرگان واقع شده (شکل 1) و
از لحاظ موضع جغرافیایی در طول جغرافیایی ً۳۹° ۵۴′ و
عرض جغرافیایی ً۳۶° ۳۹′ قرار دارد. متوسط ارتفاع منطقه از
سطح دریا ۳۰۰ متر و متوسط بارندگی ۴۰۰ میلی‌متر می‌باشد.

متوسط حداکثر و حداقل دهه حرارت سالانه به ترتیب
۳۷ و ۲/۳ درجه سانتی‌گراد است. اقلیم منطقه طبق روش
طبقه‌بندی دو مارکن و کوین یک‌درصدی و بر اساس روش
آمریکا و به‌منظور تعیین محسوب می‌باشد. از لحاظ واحد
فیزیوگرافی معنی‌دار است. جهت دست‌های دانه‌ای
مخصوص محسوب می‌شود و مواد مادی آن دارای
منشا یکی می‌باشد. طبق طبقه‌بندی آمریکایی، خاک منطقه
Fine, mixed, mesic, Fluventic
مورد مطالعه به صورت
طلب‌های بندی می‌شود (28).

مطالعات صحرایی و نموداری
برای انجام تحقیق قطعه‌های به‌ابعاد 100 در 180 متر در یک
چگونگی تغییرات آن را بیان می‌کند. اگر تغییرنما به سقف معمول بررسید و در نتیجه دانه تأثیر مشخصی داشته باشد، ساختار فضایی و شرایط صدق فرضیه ذاتی می‌تواند وجود داشته باشد. با توجه به اینکه محاسبه تابع تغییر نما برای همه جامعه مورد مطالعه امکان‌پذیر نمی‌باشد، تابع تغییر نما در یک فاصله تفکیک مشخص به وسیله تابع زیر تخمین زده می‌شود (7)؛

$$\gamma(h) = \frac{1}{N(h)} \sum_{i=1}^{N(h)} [Z(x_i + h) - Z(x_i)]^2$$

(1)

 تعادل زوج تابع نمونه‌های به کار رفته در محاسبه تابع تغییر N(h) نما در فاصله و جهت تفکیک می‌باشد. به ترتیب Z(x_i+h) و Z(x_i) مقادیر متناسب Zx_i+h و Zx_i در نقاط x_i و x_i+h تابع تغییر نما در میان فاصله تفکیک افزایش یافته و به صورت ابدال در فاصله مشخصی ثابت می‌شود. پارامترهای تغییرنما شامل انر کوپلیه‌ای، دانه‌با شعاع تأثیر و آستانه با سقف می‌باشد (24).

مدل‌ها برای شده به مقادیر تابع تغییر نما عمداً از در مدلهای کروی (معادله 2) و گوسی (معادله 4) بوده‌اند که در ذیل مختصر آن توصیف می‌شوند (7 و 10).

آنالیزهای آماری و میزان آماری داده‌های خاک و عملکرد

به منظور بررسی چگونگی توزیع داده‌ها و دستیابی به خلاصه‌ای از اطلاعات آماری خر مناسبی نتایج توزیع فراوانی بنا کمک ویژگی‌های آن شامل میانگین، میانه، حداکثر، حداکثر، انحراف معیار، ضریب تغییرات، همبستگی و کشیدگی توسط نرم‌افزار SAS مورد بررسی قرار گرفت (25). جهت بررسی آزمون نرمال بودن توزیع متغیرهای آزمون کولموگروف- اسمیرنوف استفاده شد (26).

ایران بررسی آنالیز همبستگی مکانی در شرایط صدق

فرایندهای پایین، تغییرنما (Variogram) است. تغییرنما به بررسی و شناخت ویژگی‌های ساختاری متغیر تابعی می‌باشد و

شکل 1. موقعیت جغرافیایی منطقه مورد مطالعه و نمایی از شبکه نمونه‌برداری

که‌های به شماره منش 14، 20 و 275 عبور داده

شذ (17). وزن مخصوص ظاهری با استفاده از روش کلیه و پارامتر اندازه‌گیری شد (5). در خرداد ماه 1384، به منظور تعیین عملکرد گندم، بونه‌های واقع در پلاک یک متر مربع با مركزیت 100 نقطه نمونه برداری از گندم برداشت و میزان عملکرد کل، دانه و ضریب برداشت محاسبه گردید (19).
مقدار م {}

\[
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (Z^* - Z)^2
\]

در این روابط Z مقدار مشاهده شده، Z* مقدار تخمین زده شده می‌باشد.

میانگین به روش کریجینگ پایکویکی (بلوکی) (3x3) با استفاده از برنامه GEOEAS صورت گرفت. با استفاده از اطلاعات حاصل از محاسبات تغییرنماها و روش برآورد آماری کریجینگ معنی‌دار (با فرض عدم معلوم بودن میانگین) اقدام به یکه‌های مختلف مقیاس‌های بالوگر کریجینگ داریم به ابعاد 5 در 5 متر. در نهایت نقشه کریجینگ به همراه نقشه خطای تخمین توسط سیستم VARIOWIN 2.2 (23) گردید و در پایان توزیع مکانی محصول مورد قرار گرفته، تخمین‌گرهای مختلفی از دیگر برندهای الگوی برآورد شده بررسی گردید. در این تحقیق با کاربرد این ابزار در مطالعات متغیر داده‌ها با داده‌های توزیع داده‌های برای بررسی نوع توزیع داده‌ها آنها با استفاده از Surface variogram (Software). تغییر نمایه سطحی استفاده از تغییر نمایه سطحی با استفاده از مدل عمده سطحی (Omni directional) گردید و این مدل از برنامه GEOEAS افتراقی است. مدل Solication به نمایه سطحی اصلاح داده‌ها با داده‌های طبقه‌بندی شده و این ابزار به نمایه سطحی و مدل عمده سطحی اصلاح داده شده است.

\[
\gamma(h) = C_0 + C_1 [3h/2a - \theta(h/a)^{2}], \quad h \leq a
\]

\[
\gamma(h) = C_0 + C_1 h^{\alpha}
\]

\[
\gamma(h) = C_0 + C_1 (1 - e^{-h^{2}/a^{2}})
\]

\[C_0\]

\[h \leq a\]
جدول ۱. پارامترهای آماری ویژگی‌های خاک و عملکرد گندم

<table>
<thead>
<tr>
<th>بیماری</th>
<th>شدت</th>
<th>سایر</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴۰۵</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۱۵۰۰</td>
<td>۱۵۰۰</td>
<td>۱۵۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۲۵۰۰</td>
<td>۲۵۰۰</td>
<td>۲۵۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۳۵۰۰</td>
<td>۳۵۰۰</td>
<td>۳۵۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۴۰۰۰</td>
<td>۴۰۰۰</td>
<td>۴۰۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
</tr>
<tr>
<td>۱۴۰۵</td>
<td>۵۰۰۰</td>
<td>۵۰۰۰</td>
<td>۵۰۰۰</td>
</tr>
</tbody>
</table>

نتایج و بحث

توصیف آماری متغی‌ها

توصیف آماری خصوصیات خاک و عملکرد محصول در جدول ۱ خلاصه شده است. به طور کلی در بین مقادیر CV متغیرهای مورد مطالعه، pH دارای کمترین ضریب تغییرات و برای ۰/۵ دارد. عملکرد دیت و بیشترین ضریب تغییرات و برای ۰/۵ دارد. به طور کلی، CV خصوصیات خاک مورد مطالعه از مقادیر گزارش شده در تحقیقات علمی کمتر است که می‌تواند به دلیل استفاده طولانی مدت و مدیریت یکنواخت اراضی مورد مطالعه باشد.
بررسی تغییرات مکانی خصوصیات ضخامت و عملکرد گندم در بخشی از...

شکل ۲. تغییر‌های همه‌جانبه برای متغیرهای ضخامت، عملکرد کل، ضرب برداشت و عملکرد دانه

آналیز همبستگی مکانی

برای تشخیص بقیده‌های همبستگی در تحقیق حاضر از تغییر نما سطحی استفاده شده است. برای تماسی متغیرها، نهمسانگاری آنها کنترل شد. با توجه به وجود تغییر‌های سطحی، تمامی متغیرهای همبستگی هستند. این واقعیت همبستگی آن است که تغییر‌هایی این متغیرها در جهات مختلف پیکسار است. این موضوع تأکید می‌دهد که تغییرات به فاصله بین نمونه‌ها بستگی داشته و نیازباینر بین آن است که همبستگی در داده‌ها در کل سطح منطقه مطالعه شده پایدار است.
جدول ۲ پارامترهای تغییرنا و معیارهای انتخاب مدل و کنترل اعتبار برای متغیرهای خاک و محصول

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد متغیر</th>
<th>مدل</th>
<th>سقف</th>
<th>مشخصات دانه تأخیر</th>
<th>همبستگی (r)</th>
<th>همبستگی (r)</th>
<th>همبستگی (r)</th>
<th>همبستگی (r)</th>
<th>درصد اشاره (sp) (%)*</th>
<th>مقدار %</th>
<th>مقدار %</th>
<th>مقدار %</th>
<th>مقدار %</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-log[H+]</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>EC</td>
<td>dSm⁻¹</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>g cm⁻³</td>
<td>وزن محرمانه ظاهری</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>mg kg⁻¹</td>
<td>فضای فعال استفاده</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>mg kg⁻¹</td>
<td>فضای فعال استفاده</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>ایمن</td>
<td>ماده آلی</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>CEC</td>
<td>cmol(+) kg⁻¹</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>ESP</td>
<td>عنصر صابرو</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>gr m⁻²</td>
<td>عوامل پذیرا</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
<tr>
<td>gr m⁻²</td>
<td>عوامل پذیرا</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
<td>مدل</td>
<td>سقف</td>
<td>همبستگی (r)</td>
</tr>
</tbody>
</table>

1. جدول نسبت همبستگی اثر قطعه‌ای و واریانس کل
2. کلاس همبستگی: M (متوسط)، S (قوی)
3. بدون نشانه‌ای می‌دهد که نمایانگر برقراری تثبیم خویش (Sill) بودن فرضیات باقی در داده‌های سنت. آینه از این نشان دهنده آن است که کاهش تمرکز از مجموعه داده اصلی به انسداد کافی برای توجه است که گفتگوی خویش کل داده‌های اصلی را آشکار سازد. مؤمنی (2) و پرزیکال و همکاران (۳۲) در این زمینه به نتایج مشابهی دست پیدا کرده‌اند. پارامترهای تغییرنا در خصوصیات خاک و عملکرد محصول به‌همراه مدل‌های سنتی برازش شده به آنها در جدول ۲ خلاصه شده است.

توجه: فرمول‌های مذکور در جدول می‌توانند تغییراتی را در خاک و محصول نشان دهند که باعث بهبود در عملکرد محصول می‌شوند. این تغییرات ممکن است باعث بهبود در عملکرد محصول و بهبود در کیفیت محصول نشان دهند. بنابراین، مطالعه در این زمینه بسیار اهمیت دارد.
بررسی تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخش‌های

متغیرهای رطوبت اشباعEC در حال تاپیک و عملکرد
کل مدل گوسی به دست آمده است. مدل کروی از جمله
معمولین مدل‌های زمین آماری در مورد خصوصیات خاک
است (19) و (20).

آنالیز تغییرناها نشان می‌دهد که دامنه تأثیر خصوصیات
 مختلف دارای تغییر‌پذیری است. دامنه تأثیر نامناسب از حدود
24 متر برای ازت تا 93 متر برای پنجم قابل استفاده در
نوسان می‌باشد. در غیر قابلیت خاک‌ها ازت، فسفر و
باتمانیه، ازت خاک دامنه تأثیر کوچک‌تر (99/93 متر) و پنجم
قابل استفاده دامنه تأثیر بزرگ‌تر (33 متر) به این تفاوت
می‌تواند به دلیل اختلاف در تحرک بیولوگی باشد. از که تحرک
بیشتری نسبت به سایر بیونا، دارای دامنه کوچک‌تر
می‌باشد و پنجم قابل تحرک کمتری دارند. دامنه تأثیر
بزرگ‌تری دارند. چنین از جمله مهم‌ترین عوامل مؤثر بر
تغییر‌پذیری می‌تواند بر عملیات ابزاری و کوده‌های مزروع اشکال
نمونه‌کردن بی‌رحمای نمونه بوده و باعث توزیع متفاوت
دونه‌ها و عناصر غذایی گردد.

در این زمینه، تاکید تحقیق کان و همکاران، نشان داد
نیتات کوتاه‌ترین و کربن آلی بالا و دانه‌ها و
متغیرهای دیگر شامل فسفر و پتاسیم و مقدار آب خامه
هم‌سطحی متوسط دانش‌ها که علت این تغییرات را ناشی از
تحرک بیولوگی و عوامل مکرر مانند کوده‌های و ابزاری بیان
كردن.) (8)

به طور کلی دامنه تأثیر، فاصله‌ای است که در موارد آن
نمونه‌ها به هم تأثیر داده و با ویژگی‌های کافی نشان نمی‌دهند
و آنها را می‌توان مستقل از یکدیگر محاسبه نمود. چنین
فاصله‌ای حد هم‌سطحی خصوصیات مورد نظر را مشخص
ساخته و اطلاعاتی در رابطه با حد مجاز فاصله نمونه ی برداری
آراهی می‌کند. اختلاف بین دامنه تأثیر خصوصیات مختلف
در جهان مختلف مطالعه و تحصیل گزارش شده است. نتایج قابل توجه
این است که دامنه تأثیر خصوصیات مختلف خاک، تابعی از
مقیاس مورد مطالعه و فاصله نمونه برداری می‌باشد. دو مدل
خصوصیات فوق الذکر خاک، مؤلفه‌های عملکرد محصول گندم را بیشتر تحت تأثیر قرار داده‌اند. در این زمینه ویرا و پازنگرال (20) توزیع عملکرد محصول را بیشتر در ارتباط با خصوصیات خاکی می‌دانند که دامنه تأثیر مشابهی با آن‌ها دارد.

مکانی متوسط داشت.

معیارهای انتخاب مدل و کنترل افتخار تغییرنامه متغیرهای مورد مطالعه در جدول 2 خلاصه شده است. مقادیر مبتنی بر افتخار (ME) GLUT در محلی تخمین (Unbiased) نشان می‌دهد که عملکرد کاهش گرفته از دست آمده است. مقادیر مبتنی بر میانگین اختیار (MSE) نشان می‌دهد که عملکرد کاهش گرفته از دست آمده است.

می‌بایست توجه مراحل محصول باید از تغییرنامه بین‌کاری مکانی متوسط داشته باشد.

مکانی متوسط داشت.

قرار گرفتن در کلاس حساسیت معکور در ارتباط با خصوصیات خاک (pH) می‌بایست توجه مراحل محصول باید از تغییرنامه بین‌کاری مکانی متوسط داشته باشد.

مکانی متوسط داشت.

مکانی متوسط داشت.
شکل ۳. نقشه‌های کوچک‌سازی برای برخی متغیرهای خاک و محصول
مناطقی با فسفر بهتر این ضریب افزایش یافته یا به عبارتی، انباشت (Biomass) افزایش یافته است، که انعکاسی از ورود اهداف به مدیریت مکانی مزرعه تأثیر نمی‌دهد. ولی سایر مؤلفه‌های تولید، گزارشات زیستی مکانی چندنی و تولید با خصوصیات داخلی‌های مکانی مزایای نشان می‌دهد. در مقاله می‌تواند تولید دانه و تولید

کل با خصوصیات داخلی‌های مکانی مشابهی نشان دهند و لذا

بحثهای می‌شود. چرا که به‌خود موقت تولید در مزرعه بر

اساس خصوصیات داخلی خاک، ضمن یک‌نواخت گردان ممکن شریط

مدیریت در مزرعه (نظیر مصرف یک‌نواخت سموم و آب) از

آلاین مهد فرهنگی برای شناخت مهم‌ترین فاکتورهای کنترل

کوچک تولید این محصولات.

نتایج این مطالعه همچنین نشان می‌دهد که اگر و برایش

مکانی‌های خاک و محدود به در یک مزرعه که تحت

مدیریت یک زراعت در دارای می‌تواند بین این متغیرها و در

مقياسهای مختلف تفاوت داشته باشد. تغییرتیم و پراپرمتیزی

مربط به آن می‌تواند وسرعتی کارهای طراحی طراحی شیک‌سازی

تولید و محدودیتی مناسبی در کشاورزی دقیق به

کار رود. به چنین در کشور ما ابراز و مکانیت کشاورزی دقیق

روای تولیدی است ولی می‌توان جهت صرفه‌جویی در مصرف

نهادهای کشاورزی و حفظ محیط زیست با کمک گرفتن از

تکنیک زمین‌آموزی و کریبیک و به‌بیان دنی مزرعه و ایجاد

نواحی مجزا شده، مدیریت موثری را

پیشنهاد نمود.

نتایج گیری

مکانی‌های پمپی شده در این مطالعه همگی دارای ساختار

مکانی مشابه ایستاده. استراتژی مکانی و دامنه تأثیر مکانی بیشتر تحت

تأثیر کریبیک‌زایی غیر دانه و عوامل مسیریتی می‌باشد. نتایج

متابع مورد استفاده

1. حسنی پاک، ع. (1377). زمین‌آموزی (زئوتستانسیتس) انتشارات دانشگاه تهران.

2. رفیعی‌حسینی، م. ج. (1379). تجزیه و تحلیل براکش مکانی حاصلخیز خاک و عملکرد محسوب برای مدیریت

زراعت دقیق. در مهندسی علوم خاک، صفحه 178-180.

3. محمدی، ج. (1379). مطالعات تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از نظریه زئوتستانسیتسیک-کریبیک. علوم و فنون کشاورزی و منابع طبیعی، صفحه 249-252.

4. مولوی‌آباد، ج. (1374). مدل‌سازی ساختار مکانی مغزی حاصلخیزی و موانع آلی خاک به‌معنی مبانی برای عملکرد کشاورزی دقیق در

دشت مرودشت، ایران، مجله علوم خاک و آب، ویژه نامه خاک‌شناسی و آب‌زیایی اراضی، صفحه 12-12.

