بررسی تأثیر غلظت نمک‌های معدنی، ساکارز و بنزیل آدنین بر آغاز شrasهای رونده

(Nephrolepis exaltata Schott cv. Bostoniensis)

سرخس بوستونی (Nephrolepis exaltata Schott cv. Bostoniensis)

جکیده

سرخس بوستونی (Nephrolepis exaltata Schott cv. Bostoniensis) گیاهی است برگ‌داری و یکی از پرفروش‌ترین گیاهان زینتی غلظت‌های معدنی، ساکارز و بنزیل آدنین بر آغاز شrasهای رونده

روده

در طی دوره آزمایش صفات کبیف مثل زمان تورم، زمان ظهور اولین برگچه و وزن اجسام سیب کروی نیز مورد ارزیابی قرار گرفتند. اجسام سیب کروی که در واقع تجمیع از سراغرهای جوانه‌های تابش با غلظت‌های بیکو و یک میلی‌گرم غلظت‌های BA و MS 20 یا 30 گرم در لیتر شرسه‌ای که دارد. نتایج نشان می‌دهد که غلظت‌های BA یک بیکو یک سیب کروی در لیتر MS 20 یا 30 گرم در لیتر BA با میزان 6 عدد شرسه‌ای 5 میلی‌متری با عوامل غلظت متر می‌فرزند.

مقدمه

نفرولپس (Nephrolepis exaltata Schott cv. Bostoniensis) یک سرخس غلیقی و بومی نواحی غربی و شمال غربی جهان به شمار می‌رود. رقم بوستونی طالب‌های این رقم نفرولپس است و امروره به عوامل بنی یکی از محییت مهی تغییرات گیاهان برگ‌داری.

1. به ترتیب دانشجوی ساقی کارشناسی ارشد، استادیار و دانشیار بازی، دانشکده کشاورزی، دانشگاه گیلان

زمینتی کاربرد گسترش‌دهنده‌ی داراد (16). سرخس بوستونی به ندرت

تولید هاک نموده و هاک تولید شده از آن نیز قابلیت روش ندارد. در شرایط مختلف از اطمینان آن از طریق تقسم بونه انجام می‌شود. روش منتوالشیده سرخس بوستونی کتباسازی و برداشت شراخه‌های این که در تجهیز تهیه ساقه‌های
محیط دارای هورمون BA به سرعت تکثیر شده و با انتقال آنها به محیط بدون هورمون به آسانی تولید شاخه‌های می‌کنند. کامل‌در و همکاران (8) اعلام کرده که تکثیر در غلط‌های دارای MS رشد سریع‌تری نسبته به کاست که آزمایش‌های بیان کرد که غلط‌های نمک‌های BA بر استقرار، آغاز نمایانگر، نرخ رشد بی‌پروتئینه سرخس غلیظ اعضاو (سپره، ساقه رونده و شاخه‌های اثر زیادی دارد. کونیولس و همکاران (11) از کشت درون شیشه‌های نوک ساقه رونده سرخس بیوسنتی در محیط BA در عرض دارای 2 میلی‌گرم در لیتر MS از همان ساقه رونده 1174 گیلی کردن. برترند و همکاران (2) در تحقیق برای محیط‌های زیوم، برگ و نوک ریشه استریولیتی (Polypodium combricum) را در محیط BA ها و یا چنین به نهایی و با ترکیب BA و MS نمک‌های NAA به کشت کرده و غزارد کردن که تظیم کند می‌شود. در رشد BA نسبت به کشت و ترکیب BA NAA در با ارائه این سرخس BA را فقط در به‌همراه کلیه، این تحقیق ثابت کرد نمک‌های BA ممکن مورد نیاز برای کشت می‌باشد. MS زیو (19) در NAA 37 میلی‌گرم در لیتر BA و 30 میلی‌گرم در لیتر NAA ساکارز را برای کشت می‌باشد. مایع سرخس بیوسنتی مناسب بی‌پات. با همان بی‌پاتی تولید درون شیشه‌های سرخس بیوسنتی و همچنین وجود تولید غلیظ‌های مختلف نمک‌های معلول محیط کشت و همکاران رابط بی‌پات‌هایین این گیاه، در این تحقیق، غلیظ‌های مختلف نمک‌های معلول محیط کشت و همکاران (98) در محیط NAA و MS در پر دارای سرخس می‌باشد و همکاران در محیط NAA و MS روز و 20 میلی‌گرم در لیتر NAA بر روی سرخس NAA و MS در 200 میلی‌گرم در لیتر NAA و MS در 200 میلی‌گرم در L...
آزمایشگاه به مدت چند هفته در شرایط کنترل شده گلخانه‌ای نگهداری شدند. قطره‌های سافه رونده (200–400 میکرومتر طول) بعد از جذابیت‌زایی با یک ماده به دقت شسته شدند و پس از خشک کردن به کاغذ صافی، ادامه عمل گندزدایی آنها در اتاق Clean room تمرکز نمود. نمونه‌های ابتدا سافه‌سازی رونده به مدت 30ثانیه در الکتریکی 70/30 فر برده شدند و بلافاصله با آب مفطر استریل شدند. نمونه گندزدایی سطحی نمونه‌ها از سفید کننده واپنکس، 2 مولار و حجمی 5/0.25% محلول آمینوئتیس سدیم در گلخانه‌ای حجمی 15 درصد به مدت 15 دقیقه استفاده شد. به منظور کاهش کشش سطحی 2 قطره توین 20 به محلول گندزدایی اضافه شد. در پایان عمل گندزدایی، ابتکاری با آب مفطر استریل به مدت 5.3 و 10 دقیقه صورت گرفت تا بقا یابی مواد گندزدایی کننده از سطح نمونه شسته شود.

کشت و آغازش ردش سافه‌سازی رونده

1-اثر گلخانه‌ای معدنی بر صفات اندازه گیری شده در سطح احتمال یک درصد اثر گلخانه‌ای محتوای آغازش بر تعداد و طول شاخه‌سازی تولید شده از هر ساقه رونده معیار دار بود. در مقایسه میانگین‌ها مشاهده می‌شد، نصف گلخانه‌ای MS با تولید 5 شاخه‌ساز در گروه a یک b د هزار گلخانه‌ای نمک های با تولید 3 شاخه‌ساز در گروه MS b با تولید قرار گرفتند. اما بیشترین طول شاخه‌سازی (12 میلی‌متر) در گروه b د هزار گلخانه‌ای میانگین MS با دست آمد (در MS a نصف گلخانه‌ای نمک های با طول میانگین 8 میلی‌متر در گروه b قرار گرفت (جدول 1).) این پهلو یک معمول از گلخانه‌ای کاهش یافته نمک‌های MS برای آغازش رشد ساقه رونده استفاده می‌شود (1). اما مسلم که با توجه به نقش‌های محتوای بسیار از عمده این عناصر در رشد و نمو، یوگرد مقدار اضافی آنها برای نمک‌های طول شدن سلولی که لازم تولید شاخه‌ساز و نیز افزایش طول آنها است، ضروری است. احتمالاً نصف MS گلخانه‌ای نمک‌های MS نسبت به یک چهارم گهفته نمک‌های MS نسبت مناسب تری از عناصر معدنی را در مراکز تغییری سالی
جدول 1. مقایسه میانگین اثر لله‌های نمک‌های MS بر تعداد و طول شاخ‌های

<table>
<thead>
<tr>
<th>طول شاخ‌های (میلی‌متر)</th>
<th>تعداد شاخ‌های (عدد)</th>
<th>صفت تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>5</td>
<td>1/2 MS</td>
</tr>
<tr>
<td>120</td>
<td>3</td>
<td>1/4 MS</td>
</tr>
<tr>
<td>110</td>
<td>5</td>
<td>3 کرم در یک ساکارز</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>20 کرم در یک ساکارز</td>
</tr>
<tr>
<td>10 mg/l BA</td>
<td>4</td>
<td>1 mg/l BA</td>
</tr>
<tr>
<td>10 mg/l BA</td>
<td>3</td>
<td>1 mg/l BA</td>
</tr>
<tr>
<td>10 mg/l BA</td>
<td>2</td>
<td>*0.5 mg/l BA</td>
</tr>
</tbody>
</table>

میانگین‌های درای حروف مشابه، در سطح 0/05 آزمون دانکن دارای تفاوت معنی‌دار نیستند.

این نتایج با نتایج پژوهشگرانی جوان بورگن و ناس (5) بلایی معنی‌داری ندارند.

2. اثر لله‌های ساکارز بر صفات اندازه‌گیری شده

اثر لله‌های مختلف S. cerevisiae بر تعداد شاخ‌های در سطح

احتمال 0.05 درصد و بر طول شاخ‌های در سطح احتمال 1 درصد

متغیر دار بود. مقایسه میانگین تعداد شاخ‌های نشان داد که

غلظت 30 گرم در لیتر ساکارز با تولید میانگین 5 شاخ‌های

نسبت به 20 گرم در لیتر با میانگین 4 شاخ‌های در سطح

بالاتری قرار دارد (جدول 1). طول‌ترین شاخ‌های‌ها نسبت به

میانگین طول 11 میلی‌متر در غلظت 30 گرم در لیتر S. cerevisiae

مشاهده می‌شود. غلظت 20 گرم در لیتر S. cerevisiae نسبت به

8 میلی‌متر در گروه 5 می‌گردد.
کلمه این می‌تواند این بوده باشد.

کلمه این می‌تواند این بوده باشد.
جدول ۲. مقایسه میانگین اثرات متقابل نمک‌های معدنی و ساکارز بر تعداد و طول شاخاسه

<table>
<thead>
<tr>
<th>تعداد شاخاسه (میلی‌متر)</th>
<th>طول شاخاسه</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸٤</td>
<td>۱۰٠</td>
<td>+ ۱/۳ MS</td>
</tr>
<tr>
<td>۷٤</td>
<td>۹٥</td>
<td>+ ۱/۳ MS</td>
</tr>
<tr>
<td>۵٧</td>
<td>۷٥</td>
<td>+ ۱/۳ MS</td>
</tr>
<tr>
<td>۴٤</td>
<td>۵٣</td>
<td>+ ۱/۳ MS</td>
</tr>
<tr>
<td>۲٤</td>
<td>۳٣</td>
<td>+ ۱/۳ MS</td>
</tr>
<tr>
<td>۲٠</td>
<td>۲٠</td>
<td>+ ۱/۳ MS</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشابه در سطح ۵٪ آزمون دانکن دارای تفاوت معنی‌دار نیستند.

جدول ۳. مقایسه میانگین هم‌کنشی نمک‌های معدنی و هورمون BA بر تعداد و طول شاخاسه

<table>
<thead>
<tr>
<th>تعداد شاخاسه (میلی‌متر)</th>
<th>طول شاخاسه</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸٥</td>
<td>۷٣</td>
<td>۴ mg/l BA + ۱/۳ MS</td>
</tr>
<tr>
<td>۶٥</td>
<td>۶٣</td>
<td>۳ mg/l BA + ۱/۳ MS</td>
</tr>
<tr>
<td>۴٣</td>
<td>۴١</td>
<td>۲ mg/l BA + ۱/۳ MS</td>
</tr>
<tr>
<td>۲٣</td>
<td>۲١</td>
<td>۱ mg/l BA + ۱/۳ MS</td>
</tr>
<tr>
<td>۱٠</td>
<td>۱٠</td>
<td>۱ mg/l BA + ۱/۳ MS</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشابه در سطح ۵٪ آزمون دانکن دارای تفاوت معنی‌دار نیستند.

هماهنگی که در جدول ۳ مشاهده می‌شود در غلظت ۲ میلی‌گرم و MS MS می‌گذارند غلظت BA و یک چهارم غلظت MS ۲ میلی‌گرم در لیتر BA و MS نسبت به محیط دارای نصف غلظت MS و ۲ میلی‌گرم در لیتر BA تولید شده است. در این مطالعه تعداد شاخاسه بیشتری با MS و ۱ میلی‌گرم در لیتر BA تولید می‌شود.

براساس نتایج و بر اساس آمار تعداد شاخاسه بیشتری در MS و ۲ میلی‌گرم در لیتر BA تولید می‌شود اما MS غلظت غلظت ۲ میلی‌گرم در لیتر BA بیشتر از MS بزرگ است. در این مطالعه تعداد شاخاسه بیشتری با MS و ۲ میلی‌گرم در لیتر BA تولید می‌شود.
جدول 2. مقایسه میانگین همکنشی ساکارز و هورمون BA بر تعداد و طول شاخاره

<table>
<thead>
<tr>
<th>سطح شاخاره (میلی‌متر)</th>
<th>تعداد شاخاره</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

5 میانگین همکنشی دارای حریف مشابه، در مقطعی از آزمون دانکن دارای تفاوت معنی‌دار نیستند.

6 همکنشی ساکارز و هورمون BA بر صفات اندازه‌گیری شده

همکنشی ساکارز و هورمون BA بر تعداد و طول شاخاره در سطح احتمال 5 درصد معنی‌دار. با آزمون دانکن کلیه تیمارهای دارای 30 گرم در لیتر ساکارز و 2 میلی‌گرم BA 5 میانگین شاخاره در گروه a قرار گرفته که با گروه a میانگین 5 شاخاره در گروه ab قرار گرفته که با گروه a اختلاف معنی‌داری ندارند. سایر تیمارها نیز در گروه a قرار گرفته که با گروه a میانگین 20 گرم در لیتر ساکارز و 0/5 میلی‌گرم BA در گروه b a b c میانگین 2 عدد شاخاره تولید شد (گروه d). مقایسه میانگین همکنشی طول شاخاره نشان داد تیمارهای حاوی 30 گرم در لیتر ساکارز و 0/5 میلی‌گرم BA به میانگین طول 18 میلی‌متر در گروه a و سایر تیمارها در گروه b قرار گرفته. همانطور که در مورد اثرات ساده مشاهده شد در اینجا نیز اثر غلظت‌های ساکارز مورد استفاده بر تعداد شاخاره چندان بارز نبود. میزان سیتوکین‌های اصلی موثر بر تعداد شاخاره تولید شده از ساییدن رونده است به طوری که در غلظت‌های بالاتر سیتوکین‌های تعداد شاخاره بیشتری مشاهده می‌شود. به طور مشابه در طول شاخاره‌ها نیز می‌توان چنین گفته که اثر غلظت‌های BA پایین 0/5 میلی‌گرم بر لیتر (5) بر افزایش طول شاخاره ممکن است شاکر است. زیرا هرچند افزایش طول شاخاره در
جدول ۵. مقایسه موجودیتهای همکاری ممکن‌های معدنی، ساکارز و یوژل آلاین در مرحله آغازی رشد ساقه رونده

<table>
<thead>
<tr>
<th>طول شاخ‌سنگ</th>
<th>تعداد شاخ‌سنگ</th>
<th>محیط کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۵</td>
<td>MS۱ (۴۰ گیل/سیگار + ۲ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>MS۲ (۴۰ گیل/سیگار + ۱ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۱۵</td>
<td>MS۳ (۴۰ گیل/سیگار + ۰.۵ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۲۰</td>
<td>MS۴ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۲۵</td>
<td>MS۵ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۳۰</td>
<td>MS۶ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>MS۷ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۴۰</td>
<td>MS۸ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۴۵</td>
<td>MS۹ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۵۰</td>
<td>MS۱۰ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۵۵</td>
<td>MS۱۱ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
<tr>
<td>۰/۶۰</td>
<td>MS۱۲ (۴۰ گیل/سیگار + ۰ mg/l BA)</td>
<td></td>
</tr>
</tbody>
</table>

میزان‌هایی دارای حرف مشابه، در صفحه ۵٪ آزمون دانکن دارای تفاوت معنی‌داری نیستند.

۸. بررسی صفات کیفی ارزیابی شده در آغازی رشد ساقه‌های رونده

روند ۹ روز بعد از کشت در تمامی‌تیمارهای دارای نصف غلظت نمک‌های ۲۰ و ۲۵ گرم در لیتر ساکارز، تورم و حذف آب مشاهده شد. در طی پنج روز بعدی به ترتیب در گروه‌های ۲۰ گرم غلظت MS و ۲۵ گرم غلظت MS مشاهده شد. ظهور و رشد اولیه برج‌گیره‌ها در همه تیمارها به ترتیب در ۵/۰ میلی‌گرم BA و سپس در ۲ میلی‌گرم BA مشاهده شد. در مطالب با نتایج سایر محققین (۵) و (۱۴) در این تحقیق نیز مشاهده شد که اساس سیروی در کلیه تیمارهای دارای یک گرم و ۲ گرم غلظت MS، است. سپس در لیتر BA تولید شده‌اند به جز در تیمار یک‌چهارم میلی‌گرم غلظت MS ۲۰ گرم در لیتر ساکارز که اساس سیروی کروی فقط در غلظت یک میلی‌گرم در لیتر BA مشاهده شدند.

مطالعات میکروسکوپی اجمال سیروی کروی نشانگر ماهیت
نتیجه‌گیری
غلفت نمک‌های معدنی و هورمون یونیت آدنین بر تعداد شاخ‌سازه‌های آن. تعداد شاخ‌سازه‌ها افزایش و طول آنها کاهش می‌یابد. اثر غلفت‌های ساکارز به کار رفته در این آزمون بر تعداد و طول شاخ‌سازه‌ها تفاوت زیادی با هم نداشتند. جنرال تعداد زیاد و طول کمیکی شاخ‌سازه‌ها برای اثراتی یافتنی است (4) و معمولاً از شاخ‌سازه‌های حاصل از این آزمون برای مرحله تکثیر استفاده می‌شود (5) محتوی کشت‌هایی با نظر تعداد و طول شاخ‌سازه‌ها تفاوت MS، MS، MS، MS، MS، معنی‌داری با هم ندارند. لذا با در نظر گرفتن این مسئله که یکی

مطالعات مورد استفاده
1. خوشحولی، م. (1374) روش‌های تکثیر گیاهان زنده. انتشارات دانشگاه شیراز.
2. معاونت آموزش و پژوهش سازمان پارک‌ها و فضای سبز شهر تهران. (1373) تکثیر گیاهان اطراف می‌باشد برای بهترین. سازمان پارک‌ها و فضای سبز شهر تهران.

145