بررسی تأثیر گلخانه‌های معدنی، ساکارز و بزیل آدنین بر آگاهی رشد شاخه‌های رونده

(Nephrolepis exaltata Schott cv. Bostoniensis)

سرخس بوستونی (Nephrolepis exaltata Schott cv. Bostoniensis)

چکیده

بررسی تأثیر گلخانه‌های معدنی، ساکارز و بزیل آدنین بر آگاهی رشد شاخه‌های رونده که در دو وسیله حیاتی متفاوت انجام شد، نشان می‌دهد که بهترین همانندی مداوم، ساکارز و بزیل آدنین است. این نتایج به ترتیب در صورت تغییر در اندازه‌گیری رشد شاخه‌های آگاهی، بهترین نتایج را دارد. این تغییرات باعث افزایش در آگاهی رشد شاخه‌های رونده می‌گردد.

مرهنه شبیه‌نما حاجی آباد، بوسف حمید اوغلو و رضا فتوحی فخري ۱

مقدمه

T. Nephrolepis (Nephrolepis exaltata Schott cv. Bostoniensis)

یک سرخس غلیفی و بومی نواحی گرمسیری و نیمه‌گرمسیری جهان به شمار می‌رود. رقم بوستونی مداوم ترین رقم نرفولپس است و امروزه به عنوان یکی از محیط‌برنگاران گیاهان بوستونی شناخته می‌شود.

1. بوی تربیت دانشجوی سابق کارشناسی ارشد، استادیار و دانشیار با پذیرش، دانشکده کشاورزی، دانشگاه یزد.
محیط داری در هورمون BA به سرعت تکثیر شده و با انتقال آنها به محیط بدون هورمون به آسانی تولید شاخص‌های می‌کند. کامپلوم و همکاران (6) اعلام کردند که کشت آغازین در غلظت‌های کم MS دارای رشد سریع‌تری می‌شدند. با اکسلال (16) با آزمایش‌هایی بان که غلظت نمک‌هایی بر اساس استقرار، آغازش، نام‌های، و رشد هورمون‌های سری‌خرس که از اسپور، ساقه، رونده و شاخص‌های آمری‌زیادی دارد. کامپلوم و همکاران (11) از کشت درون شیوه‌های نوک ساقه رونده سری‌خرس بوستونی در محیط BA در عرض زمان بین 2 میلی‌گرم در لیتر MS دارای 112 غلظت کردن. پرترودت و همکاران (2) در تحقیق ریزوم‌های روزوم، برگ و نوک ریشه اسپوروفیت (Polypodium combricum) را به محیط زمین MS در با کیتین به ناهید و با وا ترکیب با NAA کشت کرده و گزارش کرده که تنظیم کننده رشد NAA نسبت به کیتین در ترکیب با BA مؤثر است و در مورد ریزوم‌های ساقه ارایش میزان محیط کشت، طول شاخص‌های تولیدی نتیجه کافی می‌یابد. (Ziv) 19 (11) توصیف غلظت نمک‌هایی با MS و 30 گرم در لیتر گربه در برای کشت مبتنی سری‌خرس بوستونی مناسب‌یافته. با توجه به اهمیت تولید درون شیوه‌های سری‌خرس بوستونی و همچنین وجود گزارش‌های مختلف و پارادکس در مورد محیط کشت مناسب برای زیرافزاری این گیاه، در این تحقیق، میزان غلظت‌های مختلف نمک‌هایی معمول محیط کشت MS ساکارز و هورمون BA و روی کشت ساقه‌های رونده سری‌خرس بوستونی مورد آزمون قرار گرفته و بهترین ترکیب‌ها جهت کشت و آغازش رشد ساقه‌های رونده معرفی شدند.

مواد و روش‌ها

گندزدایی نمک‌های گیاهی در این آزمایش از گیاهان مادره سری‌خرس بوستونی پر رشد که دارای برگ‌هایی به طول بین 50-55 میلی‌متر و تعداد زیادی ساقه رونده پودرند استفاده شد. این گیاهان قبل از انتقال به

رونه به عنوان شکل می‌گیرد (1 و 2). اما شاخص‌های حاصل از

این روش تا تک حرکات با تعداد محدودی برگ تولید می‌کنند (15). در همه روش‌های تولید آبی این گیاه از طریق کشت درون شیوه‌های امری متفاوت شده است (1). بورنگ و Murashige (14) (and Skoog (14)) وجود یافته قابلیت آلمی و ترکیب هورمون‌های رشد در محیط آغازش بر پراوی و کیتین شاخص‌های تولیدی اثر دارد. آنها گزارش کرده که شرود رشد در نصف غلظت NAA سبب قسمت اصلی می‌باشد و طول ساقه رونده 112 غلظت کردن. برترودت و همکاران (2) در تحقیق ریزوم‌های روزوم، برگ و نوک ریشه اسپوروفیت

(Glaphydris combricum) که نمک‌هایی در MS از بسیار معروف در شاخص‌های حاصل از نظر شکل و کیفیت نیز از یک‌نواختی بیشتری برخوردار بودند. آنها استفاده از کیتین و استیکر NAA با هم‌مزار در محیط‌آغازش برای تولید بیشترین تعداد شاخص‌های تولیدی و طول ترین شاخص‌های (37 میلی‌متر) را در محیط بدون کیتین و دارای 0/1 میلی‌گرم در لیتر NAA در 40 غلظت کردن. در پژوهشی که روی برخی از گیاهان نفروپلیس پیستورا (Nephrolepis bisserata Schott) (NAA 30 گرم در لیتر MS) NAA (30 گرم در لیتر MS) در 7، 10 و 15 میلی‌متر با در نظر گرفته شد که غلظت کردن هر یک از شیوه‌های مختلف غلظت کردن 14 و 17 میکرو‌گرم بر لیتر و تنظیم کننده رشد ساقه گیاهی این ساقه مورد بررسی قرار گرفته و گزارش شد که در محیط نصف غلظت NAA برای این ساقه مورد تولید بهترین نتیجه‌گیری کرد. در MS 30 گرم در لیتر ساکارز تعداد شاخص‌های بیشتر و طول تری تولید می‌شد و غلظت تنظیم کننده‌های رشد بر این صفات از بین‌جای (37 میکرو‌گرم و 13 میکرو‌گرم) (پاپ و همکاران (32) در حال 1987) غلظت NAA ترکیبی روزی کشت درون شیوه‌های نفوشپلیس کورده‌فلونیا (Nephrolepis cordifolia (L) Presl) (Glahydris combricum) که در یک چهارم غلظت NAA و در حضور 0/5 میلی‌گرم در لیتر (Green globalar bodies) (BA) با ترکیب (GGB) تولید می‌شود که این اجسام سیم در صورت بازکردن در
نتایج و بحث
کشت و آغازه شدید ساقه‌های رونده

1. اثر غلظت نمک‌های معدنی بر صفات اندام‌زه‌گری شده

در سطح احتمال پیوسته اثر غلظت نمک‌های موضعی آغازه شده بر تعداد و طول شاخه‌های تویید شده از ساقه‌های رونده معمولاً بود. در مقایسه میانگین‌ها مشاهده می‌شد. نصف غلظت نمک‌های MS با نرخ 5 تا 3 نشان‌گاه در گروه MS با نرخ 3 نشان‌گاه در گروه MS قارگر می‌گردد. اما میانگین بین طول شاخه‌ها (12 میلی‌متر) در یک چهارم غلظت نمک‌های MS به دست آمد (آگه) و نصف غلظت نمک‌های MS با نرخ 8 میلی‌متر در گروه MS قارگر (جدول 1) را برای هر میکرومتر از غلظت‌های کاهش پرتاب نمک‌های MS برابر آغازه شدید ساقه‌های رونده استفاده می‌شود (10). اما مسلم است که با توجه به نقش‌های معتقد و اساسی این عناصر در رشد و نمو، وجود مقدار پیشین آنها برای تخمین و طول شاخه سلولی که لازم است نگاهی پیش‌نمایی نمک‌های شاخه‌ای است. احتمالاً نصف MS غلظت نمک‌های MS نسبت به یک چهارم غلظت نمک‌های MS نسبت مناسب‌تری از عناصر معدنی را در مراکز تخمین سلولی

آزمایشگاه بیدم چند هفته در شرایط کتن‌شده گلخانه‌های

نگه‌داری شدند. فقعه ساقدان رونده (200*400*600 مم طول) بعد

از جداسازی از گیاه مادری به دقت شسته شدند و پس از

خشک کردن به گفته صفحه، ادامه کار ثانویه آنها در اتاق

و در شرایط استریلیت صورت گرفت. به (Clean room)

تمیز (مخفی) نمک‌های ساقدانی به سرعت 20 درجه باریکه

حرقی در کلیه 15 نانویی در

دیده، به مدت 15 دقیقه استفاده شد. به مصرف کاهش کشش

سطح 2 طوره توسط 15 نانویی و مخلوط کننده روش شد. در

پایان عمل نمک‌های MS با میکرو فشار به مدت 5.3

و 10 دقیقه صورت گرفت تا بقا، اکنون، مساس می‌گردد کننده از

سطح نمونه شسته شود.

کشت و آغازه شدید ساقه‌های رونده

به مصرف استریلیت ساقه‌های رونده MS با مصرف

کشت و تعویض بهترین آغازه خشکی، دو مرحله مختلط

حاوری 3 غلظت هورمون BA (250*50*300) 1 و 2 میلی‌گرم در لیتر)

4 غلظت از نمک‌های معدنی

ساقه‌های 20 و 30 میلی‌گرم در لیتر به (BA) (1 و 2 و 3 میلی‌گرم در لیتر) به مصرف کاهش کشش سطح 4 طوره توسط 2 میلی‌گرم در لیتر

ین میکرو فشار در داخل شیشه‌های مربی در 4 تکرار و در هر

تکرار 3 روز نمونه استفاده شد. شیشه‌هایی که ریزش نموده

اینها کشت شده بودند در داخل اتاق شرود دارای 2000 لوکس

نور و در دمای 27 درجه باریکه با طول روز 16 ساعت

روش‌های نگه‌داری شدند. از درجه 3 هفته بعد از کشت، میزان

آزمایشگاه و تقسیم و طول شاخه سلولی، که لازم است توجه به نشان‌های

نیاز از افزایش طول آنها است، ضروری است. احتمالاً نصف MS

غلظت نمک‌های MS نسبت به یک چهارم غلظت نمک‌های MS نسبت مناسب‌تری از عناصر معدنی را در مراکز تخمین سلولی

زمان نور، زمان ظهور اولین برهنه و وجود اجسام سبز کروی

Downloaded from ipp.tut.ac.ir at 12:38 IRDT on Tuesday July 23rd 2019
جدول ۱. مقایسه میانگین اثر غلظت نمک‌های MS بر تعداد و طول شاخه‌ها

<table>
<thead>
<tr>
<th>طول شاخه‌ها (میلی‌متر)</th>
<th>تعداد شاخه‌ها</th>
<th>صفت تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰</td>
<td>۵</td>
<td>۱/۲ MS</td>
</tr>
<tr>
<td>۱۴۰</td>
<td>۶</td>
<td>۱/۴ MS</td>
</tr>
<tr>
<td>۱۱۰</td>
<td>۵</td>
<td>۳ کرم در لیر ساکارز</td>
</tr>
<tr>
<td>۸۰</td>
<td>۴</td>
<td>۲۰ گرم در لیر ساکارز</td>
</tr>
<tr>
<td>۷۰</td>
<td>۴</td>
<td>۷ mg/l BA</td>
</tr>
<tr>
<td>۸۰</td>
<td>۴</td>
<td>۱ mg/l BA</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۳</td>
<td>>۵ mg/l BA</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشابه، در سطح ۵/آزمندان دارای تفاوت معنی‌دار نیستند.

فرآمی‌کند. در ضمن با مروری بر تحقیق‌های آنجام شده روی میزان‌های متابولیک سرطان‌های رونده گونه‌های مختلف تغذیه‌سنجی می‌شود که در آزمون‌ها در غلظت‌های کمتر نمک‌های معدنی شاخه‌ها افزایش طول نشان می‌دهند. به نظر می‌رسد در سرخس‌های برنج طول شاخه‌ها به مقدار کمتر نمک‌های معدنی نیاز دارند (۱۷ و ۱۹). چون میزان غلظت نمک‌ها در یک چهارم غلظت MS کمتر است این افزایش طول شاخه‌ها در این محیط بیشتر مورد انتظار است.

۲. اثر غلظت‌های ساکارز بر صفات اندازه‌گیری شده

اثر غلظت‌های مختلف ساکارز بر تعداد شاخه‌ها در سطح احتمال ۵ درصد و بر طول شاخه‌ها در سطح احتمال ۱ درصد مغناطیسی به‌وجود آمده‌اند. مقایسه میانگین تعداد شاخه‌های ناشی از تغذیه مواد غذایی دارک‌پوش در این تحقیق مشاهده شد که در غلظت ۳۰ گرم در لیر ساکارز با تغذیه میانگین ۵ شاخه‌های نسبت به ۲۰ گرم در لیر ساکارز ۴ شاخه‌های در سطح بالاتری قرار دارند (جدول ۱) طول شاخه‌ها تغذیه‌های نازک یا میانگین طول ۱۱ میلی‌متر در غلظت ۳۰ گرم در لیر ساکارز مشاهده می‌شود غلظت ۲۰ گرم در لیر ساکارز با طول میانگین ۸ میلی‌متر در گروه ۵ قرار می‌گیرد.
گرم در لیر ساکارز نیز برای بی‌آرا، مناسب‌سازه‌های رونده سرخس پیوسته کافی باشد.

اثر غلظت‌های مختلف BA بر صفات اندازه‌گیری شده

اثر غلظت‌های BA بر تعداد شاخه‌خراز و طول شاخه‌خراز اختلاف معنی‌داری نشان داد. با توجه به مقایسه میانگین‌های حاصل از آزمون داتنک، بیشترین تعداد شاخه‌خراز در غلظت 4 میلی‌گرم تا ماینگین‌های تولید 4 شاخه‌خراز از هر ساقه رونده مشاهده شده‌است.

مشود (گروه a) و غلظت 5 میلی‌گرم در لیر BA بر تولید 3 شاخه‌خراز از هر ساقه رونده کرمان حاکم یکدا (گروه b). شاخه‌خراز یک دنیا در لیر MS با ماینگین تولید 4 شاخه‌خراز از نظر آماری با گروه‌های دیگر و دوم اختلاف معنی‌داری نداشت (گروه ab). تیمار 5 میلی‌گرم در لیر BA و MS شاخه‌خراز یک و 2 میلی‌گرم به BA شاخه‌خراز در گروه a و تیمار‌های یک و 2 میلی‌گرم ترتیب با 7 و 8 میلی‌تر در گروه b قرار می‌گیرد (جدول 1).

بهرچند گزارش‌های مختلف در مورد ترکب‌های مختل کشت آغازی واکس رونده فزری نیست و وجود اکتا در کلیه این محیط‌ها اثبات‌ها از یک سیستم‌زایش به‌نیازی بنا در ترکب با یک اکسین نیازی شده است. تاکوم و همکاران (18) در روزافزون‌ها مانند استروپیپورس از طریق کشت جوانه‌های جانی روز این گیاه عوامل کودن که ناحیه نوز جوانه‌ها دارای سلول‌های غلطی می‌باشند. این سلول‌ها جوانه‌های تولید می‌کند که تحت تأثیر بافت‌های اطراف در حالت غیرفعال باید مانند. وقیت تنظیم کنن‌ها رشد مناسب در محیط کشت این انتخاب ها به کار می‌روند. غالب‌بیان انتهای و حالت غیرفعال جوانه‌ها کنترل شده و فرآیندهای موثر و مستقیم در بین سلول‌های جوانه‌ها در نهایت منجر به تشکیل آگازه‌های جدید جوانه می‌گردد. به طور مشابه در مورد سرخس پیوسته نیز مشاهده می‌شود که نوک ساقه رونده سرخس پیوسته در ای با جوانه‌ها است. چون جوانه‌ها محل غفلت استرک اکسین‌ها هم شمار می‌رود (19). پس می‌توان گفت میزان اکسین درونی در محل جوانه‌های ساقه رونده بالا است.

مکت‌نشی نمک‌های معدنی و مورسون BA بر صفات اندازه‌گیری شده

مکت‌نشی نمک‌های معدنی و ساکارز بر تعداد شاخه‌خراز در سطح 5 درصد و بر طول شاخه‌خراز در سطح احتمال یک درصد معنی‌دار بود. با توجه مقایسه میانگین‌های اثر مکت‌نشی معدنی و ساکارز بر تعداد و طول شاخه‌خراز، بیشترین تعداد شاخه‌خراز در تیمار‌های دارای نصف غلظت نمک‌های MS و 30 گرم در لیر BA و MS و 30 گرم در لیر ساکارز به دست آمد (جدول 2).

مکت‌نشی نمک‌های معدنی MS و هورمون BA بر تعداد شاخه‌خراز

مکت‌نشی نمک‌های معدنی و هورسون BA بر تعداد شاخه‌خراز در سطح احتمال یک درصد و بر طول شاخه‌خراز در سطح احتمال 5 درصد معنی‌دار بود. در مقایسه میانگین‌های تعداد
جدول ۲ مقایسه میانگین اثرات متغیر نمک‌های معدنی و ساکارز بر تعداد و طول شاخاسه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>طول شاخاسه (میلی‌متر)</th>
<th>تعداد شاخاسه</th>
</tr>
</thead>
<tbody>
<tr>
<td>8^a</td>
<td>35</td>
<td>1/4 MS</td>
</tr>
<tr>
<td>7^d</td>
<td>50</td>
<td>1/2 MS</td>
</tr>
<tr>
<td>14^b</td>
<td>30</td>
<td>1/2 MS</td>
</tr>
<tr>
<td>16^f</td>
<td>30</td>
<td>1/2 MS</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف کوچک در سطح ۵/۰ آزمون دانکن دارای تفاوت معنی‌داری نبودند.

جدول ۳ مقایسه میانگین همکنش نمک‌های معدنی و هورمون BA بر تعداد و طول شاخاسه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>طول شاخاسه (میلی‌متر)</th>
<th>تعداد شاخاسه</th>
</tr>
</thead>
<tbody>
<tr>
<td>8^a</td>
<td>35</td>
<td>1/4 mg/l BA + 1/2 MS</td>
</tr>
<tr>
<td>7^d</td>
<td>50</td>
<td>1/2 mg/l BA + 1/2 MS</td>
</tr>
<tr>
<td>14^b</td>
<td>30</td>
<td>1/2 mg/l BA + 1/2 MS</td>
</tr>
<tr>
<td>16^f</td>
<td>30</td>
<td>1/2 mg/l BA + 1/2 MS</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف کوچک در سطح ۵/۰ آزمون دانکن دارای تفاوت معنی‌داری نبودند.

همان‌طور که در جدول ۳ مشاهده می‌شود در غلظت ۲ میلی‌گرم MS و ۲ mg/l BA و یک چهارم غلظت MS تعداد شاخاسه بیشتری نسبت به همیشه دارای تغییراتی در نمک‌های بیشتری است. این نتایج به معنی‌داری با هم ندارند. بنابراین می‌توان نتیجه گرفت که MS غلظت بالای BA اثر نمک‌های معدنی را تحت تاثیر قرار می‌دهد و به همین دلیل تعداد شاخاسه بیشتری در یک چهارم غلظت MS به همراه ۲ میلی‌گرم در لیتر BA تولید می‌شود.

فاصله MS و ۲ mg/l BA قرار کردن (جدول ۳) و ۲ میلی‌گرم در لیتر BA قرار نمود که براساس نتایج به دست آمده از اثرات ساده آن‌ها با هم روبرو کرد. تمام تیمارهای دارای تغییرات غلظت نمک MS تعداد شاخاسه بیشتری نسبت به یک چهارم غلظت MS تولید شود. اما

۱۴۸
جدول ۴. مقایسه میانگین همکنشی ساکارز و هورمون BA بر تعداد و طول شاخه‌ری

<table>
<thead>
<tr>
<th>طول شاخه‌ری (میلیتر)</th>
<th>تعادل شاخه‌ری</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۰</td>
<td>۶۰ + ساکارز</td>
<td>۱/۳ mg/L BA</td>
</tr>
<tr>
<td>۶۰</td>
<td>۵۰ + ساکارز</td>
<td>۳/۵ mg/L BA</td>
</tr>
<tr>
<td>۵۰</td>
<td>۴۰ + ساکارز</td>
<td>۳/۵ mg/L BA</td>
</tr>
<tr>
<td>۴۰</td>
<td>۴۰ + ساکارز</td>
<td>۲/۵ mg/L BA</td>
</tr>
<tr>
<td>۳۰</td>
<td>۳۰ + ساکارز</td>
<td>۳/۵ mg/L BA</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۰ + ساکارز</td>
<td>۱/۵ mg/L BA</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰ + ساکارز</td>
<td>۱/۵ mg/L BA</td>
</tr>
<tr>
<td>۰۰</td>
<td>۰۰ + ساکارز</td>
<td>۰/۵ mg/L BA</td>
</tr>
</tbody>
</table>

امکان‌های دارای عرض مشاهده در سطح ۵/آزمون دانکن دارای تفاوت معنی‌دار نیستند.

۶ همکنشی ساکارز و هورمون BA بر صفات اندازه‌گیری شده

همکنشی ساکارز و هورمون BA بر تعادل و طول شاخه‌ری

در سطح احتمال ۵ درصد معنی‌دار بود. با آزمون دانکن کلی تیمارهای دارای ۲۰ گرم در لیتر ساکارز و ۲ میلی‌گرم BA میانگین ۲ شاخه‌ری در کروه Q ۵ قرار گرفتند. تفاوت معنی‌داری نداشت. سابر تیمارها نیز در گروه ۵ قرار نکردند. (جدول ۴). کمترین تعداد شاخه‌ری نیز در تیمارهای دارای ۲۰ گرم در لیتر ساکارز و ۲/۵ میلی‌گرم BA میانگین ۲/۵ میلی‌گرم BA در لیتر ۵ قرار گرفتند. گروه ۱۸ میلی‌گرم در لیتر شاخه‌ری نیز داد تیمارهای حاصل ۳۰ گرم در لیتر ساکارز و ۲/۵ میلی‌گرم BA در لیتر ۵ قرار گرفتند.

همان‌طور که در مورد اثبات ساده مشاهده شد در اینجا نیز اثر غلظت‌های ساکارز مورد استفاده بر تعادل شاخه‌ری بیشتر بود. میزان سیروکین‌های عامل اصلی موثر بر تعادل شاخه‌ری تولید شده از هر ساقه رونده است بطوری که در غلظت‌های بالاتر سیروکین‌های تعادل شاخه‌ری پیش‌ترویج مشاهده می‌شود. بطور مشابه در طول شاخه‌ری نیز می‌توان چنین گفت که اثر غلظت‌های بالاتر ساکارز افزایش طول شاخه‌ری مهیا شده در اثر ساکارز است. گروه هرچند در افق پیش‌ترویج طول شاخه‌ری می‌تواند.
جدول 5. مقداری برای افزایش نمک‌هایی معدنی، ساکارز و نیز آدنین در مرحله آغازنی رشد ساقه رونده

<table>
<thead>
<tr>
<th>طول شاخس‌های (میلی‌متر)</th>
<th>تعداد شاخس‌های</th>
<th>محیط کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0،03</td>
<td>MS₁ (٪) MS + 3g/1 ساکارز + 2 mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،06</td>
<td>MS₂ (٪) MS + 3g/1 ساکارز + 1 mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،09</td>
<td>MS₃ (٪) MS + 3g/1 ساکارز + 0.5 mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،12</td>
<td>MS₄ (٪) MS + 2g/1 ساکارز + mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،15</td>
<td>MS₅ (٪) MS + 1g/1 ساکارز + 0.5 mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،18</td>
<td>MS₆ (٪) MS + 2g/1 ساکارز + mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،21</td>
<td>MS₇ (٪) MS + 1g/1 ساکارز + 0.5 mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،24</td>
<td>MS₈ (٪) MS + 0g/1 ساکارز + 0.5 mg/1 BA</td>
<td></td>
</tr>
<tr>
<td>0،27</td>
<td>MS₉ (٪)</td>
<td></td>
</tr>
<tr>
<td>0،30</td>
<td>MS₁₀ (٪)</td>
<td></td>
</tr>
<tr>
<td>0،33</td>
<td>MS₁₁ (٪)</td>
<td></td>
</tr>
<tr>
<td>0،36</td>
<td>MS₁₂ (٪)</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای هر فاصله مشاهده در سطح ۵٪ آزمون دانکن دارای تفاوت معنی‌دار نیستند.

8. بررسی صفات کیفی ارزیابی شده در آغازنی رشد ساقه‌های روئی سرخ‌پوستی

حدود 9 روز بعد از کشت در تمامی تنوع‌های دارای نصف غلظت نمک‌هایی ۳۰ و ۵۰ گرم در لیتر ساکارز، ترمه و جذب آب مشاهده شد. در طی پنج روز بعدی به ترتیب در گروه‌های ۳۰ و ۵۰ گرم بر لیتر ساکارز یک چهارم غلظت MS و ۳۰ و ۵۰ گرم در لیتر ساکارز نیز مشاهده شد. چون و رشد اولین یک چهارم با گروه‌های به BA تریپ در ۵/۵ میلی‌گرم در لیتر BA و سپس در ۵ میلی‌گرم در لیتر BA، مشاهده شد. در مطالعات با تاثیر نسبت BA و BA در ۵/۵ میلی‌گرم در لیتر BA، مشاهده شد. در این تحقیق نیز مشاهده شد که اکسید سبز کروی در کلیه تیمارهای دارای یک چهارم غلظت MS گرم در لیتر BA، توپیک شده‌اند به جر در تیمار یک چهارم میلی‌گرم در لیتر BA غلظت ۲۰ گرم در لیتر ساکارز که اکسید سبز کروی فقط در غلظت یک میلی‌گرم در لیتر BA مشاهده شدند. مطالعات مکرو‌وسکوپی اکسید سبز کروی نشانگر ماهیت
بتیجه‌گیری

غلطت نمک‌های معدنی و هورمون بروز آلدشین بر تعداد
شاخه‌سازی اثر مثبت و بر طول شاخه‌سازی اثر منفی داشتند. به
طوری که با افزایش غلطت آنها، تعداد شاخه‌سازی افزایش و طول
آنها کاهش می‌یابد. اثر غلطت‌های ساکر همزمان با کاهش تعداد
آزمون بروز روی تعداد و طول شاخه‌سازی زیادی با هم
نداشتند. بنابراین تعداد و طول کوچک شاخه‌سازی‌ها برای
ریزابایی مقید است (۱) و معمولاً از شاخه‌سازی‌های حاصل از این
آزمون برای مراحل کنترل استفاده می‌شود (۵) می‌تواند کست‌های
از نظر تعداد و طول شاخه‌سازی نظر MS، MS، MS، MS، MS،
معنی‌داری با هم ندارند. لذا با در نظر گرفتن این مسئله که یکی

پائه‌سازی

بدین‌ویژه از هم‌فکری و مساعدت آقای مهدی‌نصبی جواهری در کلیه
مراحل این پژوهش تشكیل شده.

منابع مورد استفاده

1. خوشکی، م. ۱۳۷۴. روش‌های تکثیرگیاه‌زیمتی. انتشارات دانشگاه شیراز.

2. معاونت آزموز و پژوهش سازمان پارک‌ها و فضای سبز شهر تهران. ۱۳۷۶. تکثیرگیاهان آبی‌پایینی (ترجمه). سازمان پارک‌ها و

