اثر میزان و زمان مصرف کود نیتروژن بر تجمع و کارایی انتقال مجدد نیتروژن

در برق پرچم دو رتق گندم

عبادة بحرانی و زین العابدين طهماسبی سروستانی

چکیده
درک فیزیولوژی یکی از مهم‌ترین و پر اهمیت‌ترین شاخص‌ها در کنترل و تغییرات میکوریکوکلیومیک می‌باشد. این پروتئین‌ها با کنترل نیتروژن در روش‌های مختلف نیتریکاکلیومیک می‌باشد. در این راستا از یک روش گندم نان و یک روش گندم دوروم یا درصد‌های مختلف پروتئین‌ها تحت سطح مختلف مقدار و زمان مصرف نیتروژن با استفاده از اثر آماری اسلپس‌فاکتوریل در قالب طرح بلوکهای کامل تصادفی در سه تکرار در سه رژیم غذایی 1280-80 در مقطعه شیراز استفاده شد. ارقام با عناوین فاکتور اصلی شامل فلات و باواروس و مقدار و زمان‌های مصرف نیتروژن به صورت فاکتوریل به عنوان فاکتورهای فرعی در نظر گرفته شدند. مقدار نیتروژن در سه سطح شامل 40% و 100% و 150% نیتروژن در هر کار و زمان مصرف آن برن دست در سه سطح ترمی شکل نیتروژن در زمان کاشت = 31% 1/2میلارد با کاشت 1/2 زمان طول و سرعت 50% 1/2 میلارد با کاشت 50% 1/2 زمان طول و سرعت 80% 1/2 میلارد با کاشت 80% 1/2 زمان طول و سرعت. نتایج بدست آمده حاکی از آن یاد که بر این ارقام از نظر مقدار نیتروژن برای پرچم در مرحله رسیدگی، انتقال و کارایی انتقال مجدد نیتروژن از برق پرچم به سمت دانه، درصد پروتئین دانه و یک عامل دانه در این انتقال بر این انتقال مجدید پست و کاراتر یوندین در این انتقال به عنوان یک عامل دانه، درصد پروتئین دانه بالاتر یا به این صورت کرده. انتقال در مرحله نیتروژن به غلاب خصوصیت می‌باشد یعنی تاثیر مثبت ممکن بر این انتقال داشت. انتقال رفتار معنی داری رشته مقدم دانه نیتروژن وجود داشت که حاکی از با دانه دانه شده انتقال کاراتری بودن رهم پاواروس در انتقال مجدد نیتروژن از برق پرچم به مواد و زمان‌های مصرف نیتروژن بوده. بر طور کلی به نظر می‌رسد کاراتری انتقال مجدد نیتروژن معمول می‌باشد انتقال پروتئین دانه در این روش انتقال دانه و کارکرد دانه کماس در انتقال پروتئین دانه. به

واژه‌های کلیدی: گندم، کارایی انتقال مجدد نیتروژن، پروتئین دانه، برق پرچم

مقدمه

گیاه‌های نیتروژن در گیاه خصوصاً در مرحله ای رشد و نحوه‌گیاه که جذب نیتروژن از خاک محدود می‌گردد، یکی از

1. داشتجوی سایت کارشناسی ارشد زراعت، دانشگاه آزاد اسلامی واحد اردستان
2. استادیار زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

147
نتیجه‌گذاری که در داخل گیاه در دوره درمانی تجمع یافته است، مورد استفاده قرار می‌گیرد (1) و بر حسب رقم در گنده آمیزه‌گری نشان می‌دهد که بعداً در دوره رشد، می‌تواند نتیجه‌گذاری جدی‌شده را بین اندامها توزیع نموده و پس از یک دوره دوباره چنان، آن را به دانه انتقال دهد. سیستم متابولیکی که در آن گیاه این مجموعه فیبرداری را به‌طور کارا به گونه‌ای اثر برای تأمین حاکم را اجرا بکند در همه گونه‌ها و انتقال وجود ندارد.

بر اساس آزمایش‌های مورد عهدهای (1) میزان از در غلیب در انتقال‌های گیاهی کربن یک ماده موجود بکشید که به جلوگیری کنند. لیست در طول دوره‌های پس از گل‌دهی، کاهش میزان جذب به‌عنوان تغییرات دانه‌های پایدار کاهش می‌تواند سبب نقصان از در بارگاه‌ها و کاهش فتوسنتز شود. کریمی و همکاران (12) گزارش کرده‌اند که به‌طور تجربه‌ای آزمایشگاهی با غلات و سایر گیاهان زراعی، چنین نقصان ازینی در بارگاه‌ها ممکن است در هر مرحله‌ی از نمونه‌گیری پس از کاهش ناگهانی میزان موجود در محیط کشت، به‌سرعت جریان یافته، به‌طور کاشتی به دست آمده از در بارگاه و فتوسنتز نباید این نقش باشد. به‌طور کامل ممکن است شناسند استراحتی فتوسنتز به مقادیر انتقال از در بارگاه یا در نهایت به‌طور نهایی. در مورد (23) و در همکاران (11) گزارش کرده‌اند که در دانه‌ها ممکن است به‌عنوان نتیجه‌گذاری از در بارگاه‌ها مشاهده می‌شود که در حداکثر ۶۰ درصد نتیجه‌گذاری موجود در گیاه در مرحله سرگردانی، با مراحل گردش اشاره‌گذاری شده است و در حدود دو موم از نتیجه‌گذاری از برگ‌ها به‌طور دانه تحت شرایط حداکثر است. برگ‌ها و ساقه‌ها در مرحله سرگردانی سرچشمه بر از دست دادن نتیجه‌گذاری و این عمل با مرحله خمیری سخت‌شدن و یافته است.

اسمیت (20) گزارش کرده‌اند که تغییر کود نتیجه‌گذاری، کارایی است. انتقال مجدد آن را با باید. زیرا اتصال زیادی از انتقال بسیار نتیجه‌گذاری به دانه، ناشی از یک مصرف زود هگم نتیجه‌گذاری بوده است. رستمی و جیرانی (3) به‌طور محدود کمک که از تغییرات مطلوب نتیجه‌گذاری بوده، را به‌طور خصوص در انتقال بستری که در این مورد انتقال مجدد بیشتر می‌باشد. آزمایش‌گاهی رونده شیتر را با این انتقاد، نتیجه‌گذاری در انتقال بسیار کمی از انتقال‌های در بارگاه‌ها به‌طور مشابه دارد، نشان داد. کارایی انتقال مجدد نتیجه‌گذاری از آن‌ها راه و در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذاری در مرحله دوم و دلیل کاهش میزان جذب پس از خروج در مرحله دوم نشان داده که بزرگ در مرحله‌ی بسی به‌طور عجیب در انتقال بسیار نتیجه‌گذا
مواد و روش‌ها

این پژوهش در سال زراعی ۱۳۸۰-۸۱ در مزرعه دانشگاه دامپزشکی شیراز انجام گردید. در طول گزارش‌های ۵۲ درجه و ۲۶ دقیقه، در طول عضله جراحی ۱۲۹ دقیقه و انتفاع ۱۳۸۸ متر از سطح دریا، به اجرای آزمایشات لازم در این مزرعه بپردازیم. کل میزان برداشت در محل مورد آزمایش ۴۵۳۵۳ میلی‌متر بود. برای تعیین خصوصیات خاک، قبلاً از اجرای آزمایشات اطمینان یابیم که بالعمق ۱۵ سانتی‌متری، خاک گردیده و بعد از خشک کردن و جوش‌کردن، نمونه‌هایی از خصوصیات جریانی و شیمیایی آن تعیین شد. خاک مزرعه آزمایشی در میان روسی و سیلی، ۲ کیلوگرم ذرت و هدایت الکتریکی گزارش شده است. این فاکتور باعث افزایش خاک کردن برای بهترین خاک کردن شد. در این مزرعه، تعداد ریشه‌های دهانه و بالغ بر ۵ سانتی‌متر بود. برای تعیین میزان تولیدهای مختلف، بر اساس نمره‌های ذرت و ذرت در بالاترین رقم‌های ۲۰۳/۸۰ درصد و ۲۰۰/۵۰ میلی‌گرم در کیلوگرم پودر، طرح آماری...

مورد استفاده اصلی پلاک بالینی در فناوری انرژی بیولوژیک شامل تحقیقات فناوری دانش (Triticum aestivum L.) و بیولوژیک (Triticum durum L.) می‌باشد. در حالی که بیولوژیک (Triticum aestivum L.) و بیولوژیک (Triticum durum L.) در اولین مورد به دلیل صورت این مورد به دلیل صورت این مورد به دلیل صورت کوک تا دو روز شروع به کار نمی‌کند، باید به دلیل صورت این مورد به دلیل صورت این مورد به دلیل صورت کوک تا دو روز شروع به کار نمی‌کند، باید به دلیل صورت این مورد به دلیل صورت کوک تا دو روز شروع به کار نمی‌کند.
جدول 1. اثر رقم، مقدار مصرف و زمان مصرف نیتراتورن بر ارتباط زیست‌پزشکی نبتونز برگ در محله‌های مختلف جنگلی و سیستم‌های زیرزمینی. انتقال مجدد نبتونز، کارایی انتقال مجدد نبتونز، درصد پروتئین دانه و عملکرد دانه.

<table>
<thead>
<tr>
<th>نتیجه</th>
<th>کارایی انتقال مجدد نبتونز</th>
<th>درصد پروتئین دانه</th>
<th>عملکرد دانه</th>
<th>غلظت نبتونز برگ در محله‌های مختلف</th>
<th>مقدار مصرف نبتونز (kg ha⁻¹)</th>
<th>مقدار مصرف نبتونز (mg g⁻¹)</th>
<th>غلظت نبتونز برگ در محله‌های مختلف</th>
<th>مقدار مصرف نبتونز (mg g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فلات</td>
<td>16/44</td>
<td>6/51</td>
<td>0/53</td>
<td>15/12</td>
<td>7/90</td>
<td>9/75</td>
<td>15/12</td>
<td>7/90</td>
</tr>
<tr>
<td>پاوروس</td>
<td>16/47</td>
<td>5/46</td>
<td>0/47</td>
<td>18/56</td>
<td>6/84</td>
<td>9/79</td>
<td>18/56</td>
<td>6/84</td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشابه برای هر سه عامل آزمایشی، پرسه آزمون دانکن در سطح احتمال 0.05 و دسته‌بندی معنی‌داری ندارند.

* تمامی زمان‌ها تا T1 = 1/2 زمان کاسته 1/2 زمان کاشت 1/2 زمان کاشته و T2 = 0.13 زمان کاشت، T3 = 0.13 زمان ساقه رفتن = 1/3 زمان کاشت = 0.13 زمان ساقه رفتن.

نتایج و بحث

نتایج به‌دست آمده نشان داد که در بین دو رقم گنبد مورد مطالعه اختلاف معنی‌داری از نظر انتقال مجدد نبتونز، کارایی آن، محتوای این عنصر در محله‌های رشدگی در بزرگترین درصد پروتئین دانه و همچنین عملکرد دانه وجود دارد. با بررسی مقایسه میانگین‌ها (جدول 1) مشاهده می‌گردد که بین دو رقم از محتوای نبتونز برگ بزرگ‌تر در محله‌های رشدگی اختلاف معنی‌داری وجود ندارد. اما این رقم‌ها در محله‌های رشدگی اختلاف معنی‌داری ایجاد کرده‌اند که به طوری که رقم پاوروس مقدار کمتری نبتونز را در بزرگ‌ترین میزان نسبت به فلات نگاه داشته که در نهایت با انتقال مجدد بیشتر

- کارایی انتقال مجدد نبتونز (%) =\(\text{میانگین انتقال مجدد نبتونز} \times 100 \) /\(\text{میانگین انتقال مجدد نبتونز} \)

- مصرف نبتونز (mg g⁻¹) /\(\text{میانگین} \) /\(\text{گل دهنی} (mg g⁻¹) \)

- عملکرد دانه تیز پس از حذف خشکی‌ها، از سه خط وسط به‌طور کنت انگشی شده که کل سطح برداشت را به 0/25 متر مربع رساند.

در پایان اطلاعات به‌دست‌آمده نشان داد که از نظر فرم و اندازه کامپیوتری مورد تحقیق و از دست افراد گرفته‌اند. میانگین‌ها در مورد مصرف نبتونز برگ بزرگ‌تر در محله‌های مختلف و دانه‌های دانکن در سطح احتمال 0.05 می‌باشند مفادی به فیزیکی و میکروبیولوژیکی مصرف نبتونز برگ بزرگ‌تر در محله‌های مختلف می‌باشد.

یراسیه | 150
در این رقم به‌علاوه رفتار درصد پروتئین دانه در رقم پاواروس منجر گردیده است. این رقم ثابت است که درصد پروتئین دانه، درصد پروتئین دانه در اولین برنجهای گزارش ردیده است. کارایی تخم‌گذاری درصد پروتئین لازم برای مقایسه پروتئین در هر نقطه به‌عنوان سایر داده‌ها در این رقم به‌علاوه‌رود به‌عنوان محققان رابطه معکوس بین آفرازی عملکرد دانه و درصد پروتئین را گزارش کرده‌اند (۲۳، ۱۷، و ۱۶). به‌نظر می‌رسد اتحادیات این‌گونه ذیل در مقایسه با آتی‌های دیگری در انتقال مجدد پروتئین از اندام‌های روانی به دانه باشد. چنان که بسیاری از محققان نیز برای منطقبی تأکید داشته‌اند. (۷، ۲۳ و ۲۴).

آفرازی در مقدار معادل صفر نیتروزن کاملاً خصوصیات فوق به‌جز کارایی انتقال معادل صفر نیتروزن تأثیر معنی‌داری داشت (جدول ۱). با مشاهده میانگین‌ها در ذیل منفی مختلف نیتروزن ملاحظه می‌گردد که کارایی مقدار نیتروزن محویتی نیتروزن برق پدر تاریخ افرازی و سبب سادگی هر دو سطح یکسان در نطفه نیتروزن افرازی و همچنین انتقال معادل سطحی نیتروزن دانه کاهشی داشته‌اند. کارایی انتقال مجدد نیتروزن بر خلاف صفاق‌های با نتیجه بی‌شک، نشست و متضمن می‌باشد. کاهش یافته در مدت کم کاشته‌ها، نسبت به نزدیک‌ترین نتیجه پرچم در مدت قبلی و نسبت به نزدیک‌ترین نتیجه پرچم در مدت قبلی در این مطالعه‌ها ملاحظه می‌می‌گردد که کارایی انتقال مجدد نیتروزن در این رقم به‌علاوه رفتار درصد پروتئین دانه در رقم پاواروس منجر گردیده است. این رقم ثابت است که درصد پروتئین دانه، درصد پروتئین دانه در اولین برنجهای گزارش ردیده است. کارایی تخم‌گذاری درصد پروتئین لازم برای مقایسه پروتئین در هر نقطه به‌عنوان سایر داده‌ها در این رقم به‌علاوه‌رود به‌عنوان محققان رابطه معکوس بین آفرازی عملکرد دانه و درصد پروتئین را گزارش کرده‌اند (۲۳، ۱۷، و ۱۶). به‌نظر می‌رسد اتحادیات این‌گونه ذیل در مقایسه با آتی‌های دیگری در انتقال مجدد پروتئین از اندام‌های روانی به دانه باشد. چنان که بسیاری از محققان نیز برای منطقبی تأکید داشته‌اند. (۷، ۲۳ و ۲۴).

آفرازی در مقدار معادل صفر نیتروزن کاملاً خصوصیات فوق به‌جز کارایی انتقال معادل صفر نیتروزن تأثیر معنی‌داری داشت (جدول ۱). با مشاهده میانگین‌ها در ذیل منفی مختلف نیتروزن ملاحظه می‌گردد که کارایی مقدار نیتروزن محویتی نیتروزن برق پدر تاریخ افرازی و سبب سادگی هر دو سطح یکسان در نطفه نیتروزن افرازی و همچنین انتقال معادل سطحی نیتروزن دانه کاهشی داشته‌اند. کارایی انتقال مجدد نیتروزن بر خلاف صفاق‌های با نتیجه بی‌شک، نشست و متضمن می‌باشد. کاهش یافته در مدت کم کاشته‌ها، نسبت به نزدیک‌ترین نتیجه پرچم در مدت قبلی و نسبت به نزدیک‌ترین نتیجه پرچم در مدت قبلی در این مطالعه‌ها ملاحظه می‌می‌گردد که کارایی انتقال مجدد نیتروزن در این رقم به‌علاوه رفتار درصد پروتئین دانه در رقم پاواروس منجر گردیده است. این رقم ثابت است که درصد پروتئین دانه، درصد پروتئین دانه در اولین برنجهای گزارش ردیده است. کارایی تخم‌گذاری درصد پروتئین لازم برای مقایسه پروتئین در هر نقطه به‌عنوان سایر داده‌ها در این رقم به‌علاوه‌رود به‌عنوان محققان رابطه معکوس بین آفرازی عملکرد دانه و درصد پروتئین را گزارش کرده‌اند (۲۳، ۱۷، و ۱۶). به‌نظر می‌رسد اتحادیات این‌گونه ذیل در مقایسه با آتی‌های دیگری در انتقال مجدد پروتئین از اندام‌های روانی به دانه باشد. چنان که بسیاری از محققان نیز برای منطقبی تأکید داشته‌اند. (۷، ۲۳ و ۲۴).
پیشتری نسبت به رقم فلات با کاهش تفسیبی نیتروژن دارد. و در پایین مقدار نیتروژن در خاک، مکانیزم انتقال مجدد نیتروژن و تعیین در هر شرایط و مقدار و مزارع مصرف نیتروژن نیز ملاحظه گردید. در این باره کاربری انتقال مجدد در رقم پایاوروس در مرحله گردیده مجدد نیتروژن نیز نشان داد که این فاکتور در هر رقم مصرف با تفسیبی نیتروژن افزایش یافته اما رقم پایاوروس واکنش بهتری با افزایش تفسیبی نیتروژن در انتقال مجدد نیتروژن داشت (شکل ۴). به طور کلی با توجه به نتایج این آزمایش می‌توان نتیجه گیری نمود که کاربری انتقال مجدد نیتروژن از برج بیشتر به طور معنی‌داری افزایش یافته که با بهبود در صرفاً برخورداری دانه بالایی است. برخورداری نیز دانه پایین‌تری نیز باشد. است. همچنین، کاربری بیشتر

این مطالعه نشان داد که مقدار نیتروژن همرس هم یک و دو مرحله‌ای آن شرایط حساسیتی را در افزایش کاربری این صفت سنجید که (شکل ۴). برهمکنش مقدار و مزارع نیتروژن در انتقال مجدد

شکل ۴. اثرات مقیاس رقم و مزارع نیتروژن بر انتقال مجدد نیتروژن بر اساس آزمون دانک در سطح احتمال ۵/۰

شکل ۳. اثرات مقیاس رقم و مزارع نیتروژن بر کاربری انتقال مجدد نیتروژن بر اساس آزمون دانک در سطح احتمال ۵/۰

شکل ۲. اثرات مقیاس رقم و مقدار مصرف نیتروژن بر انتقال مجدد نیتروژن بر اساس آزمون دانک در سطح احتمال ۵/۰

شکل ۱. اثرات مقیاس رقم و مقدار مصرف نیتروژن بر کاربری انتقال مجدد نیتروژن بر اساس آزمون دانک در سطح احتمال ۵/۰

نیتروژن بی‌دین صورت بود که با افزایش در مقدار نیتروژن و تعیین در مرحله‌ای آن انتقال مجدد نیتروژن بیشتر شد (شکل ۲). در برهمکنش رقم، مقدار و مزارع مصرف نیتروژن نیز ملاحظه گردید. در این باره کاربری انتقال مجدد در رقم پایاوروس با میانگین ۷۷/۳۳ درصد در سطح ۸۰ کیلوگرم نیتروژن در هکتار و مزارع نیتروژن با کاهش در انتقال مجدد
اثر میزان و زمان مصرف کود نیتروژن بر توجه و کارایی انتقالِ مجدد نیتروژن در...

![شکل ۶] اثرات مقیاس مقدار و زمان مصرف نیتروژن بر انتقال مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال ۵%.

![شکل ۷] اثرات مقیاس رقم، مقدار و زمان مصرف نیتروژن بر کارایی انتقالِ مجدد نیتروژن بر اساس آزمون دانکن در سطح احتمال ۵%.

انتقال مجدد، عامل مهمی در افزایش درصد پروتئین دانه باشد. رقم پاوروس نیز به افزایش درصد و تقویت نیتروژن کارایی انتقال مجدد پیشتری داشته. همچنین به‌نظر می‌رسد عامل مهم دیگر در کاهش درصد پروتئین دانه در رنگ فلاته علائم پایین.

منابع مورد استفاده

1. امامی، ی. و. نیک نژاد. ۱۳۷۳. مقیاسهای پارامترهای گیاهان رعایی (ترجمه). انتشارات دانشگاه شیراز.
3. رستمی، م. و. جیریایی. ۱۳۷۷. تغییرات ازت در بافت ریشه و رابطه آن با پروتئین دانه در کندم. مجله علوم کشاورزی ایران ۲۹ (۴): ۲۴۱–۲۵۲.
4. لطفعلیان، آ. و. و. رادمهر. ۱۳۷۹. تأثیر زننیپهای کندم دوروم از نظر انتقال مجدد نیتروژن و خواص کمی و کیفی آنها در

۱۵۳