کنترل زننده تحمیل به شوری در گندم با استفاده از تجزیه میانگین و واریانس نسل‌ها

چکیده
نحوه توارث صفات فیزیولوژیکی مرتبط با تحمیل به شوری شامل مقدار تجمع سدیم، پتاسیم، نسبت پتاسیم به سدیم در بزرگ‌های گندم و وزن خشک اندازه‌های هواپیمای در شش نسل پایه (B1, B2, P, P, P, P, P) مورد مطالعه قرار گرفتند. نتایج نشان داد که تفاوت بین تلافی‌های مختلف و میکروسکوپی در نتیجه یا جرای مقدار پتاسیم در تلافی برگشته زیاد است. به عبارتی کارچیا نیک نازاد به کارچیا که در طول احتمال پنجم درصد همگونی گردید. تجزیه میانگین و نسبت نسل‌های مدل افزایشی - گالیبی را بیان می‌کرد.

اشکوس دهداری، عبدالملک رضا ای، سنیدع محمد میر محمدی میدی

واژه‌های کلیدی: آزمون مقایسه‌ مشترک وزنی، تجزیه میانگین و واریانس نسل‌ها، تحمیل به شوری، گندم نان، واریانس بی‌پردازه
بوجود این شکوه تولید محصولات گیاهی را در اثر نقاط
دینی از طریق تاثیرات بیونی، ایجاد تنش اسسیدی و اختلال
در سطح مواد غذایی محدود کرده است، ما مکانیسم واقعی آن
به خویش مشخص نشده است. تحلیل به شوری اغلب بستگی به
آنتونومی و فیزیولوژی چیده گیاه دارد. این واقعیت با اتخاذ
روش مناسب جهت بهبود تحلیل به شوری در گیاهان را
مشکل تر کرده است. در حال حاضر این ابزاری وجود دارد که
تولید به شوری در گیاهان از طریق انتخاب برای صفاتی که در
شرایط شور به شدت نتیجه تأثیر قدرت کردن افزایش یافته.
تحصیلات زیادی در جهت شناسایی مکانیسم و افزایش تحلیل
به شوری در گیاهان بر اساس تجمع پاییز (5)، دفع پاییز
(7 و 14)، اسپرمولتی های سزارک آل (13)، و پارامترهای شدت
(20، 15، 10 اطلاع اطلاعاتی به تصویب صفتات یا یک روش جمع
شرایط) تا تحلیل ایجاد شد. فلوری و پرو (7) اطلاعات داشته‌اند که
صدام وارد به گیاه در گونه‌های حساس ممکن است به علت
اثرب مسی یا مجبور به دلیل آنها در سنلهای بزرگ باشد.
دوارک و همکاران (5) با تلاشی گونه‌های E. elongate
با گندم نان توانستند تحلیل به شوری را به گندم
E. elongate با انتقال عضلان و انسداد تحلیل به شوری در
گیاهان داشته‌اند. آنها در مطالعه ای انجام داده‌اند که
با وجود ارتباطی که به داشته‌اند از پیوندهای شریانی و
دیواره‌های بی‌شکلا تحلیل نشان دهنده در مطالعات دیگر
(14 و 25) ارتباطی بین سمت در گونه مشاهده شده است.
رگیدی گونه کننده این صفت که به صورت نسبت تاپیسی به
سیدم معکوس یا بی بی گسترانه گونه گروهی قرار
دارند (5).

یافته‌ها اصلی مناسب بستگی به الگوی توزیع,
نوعی ژن‌های متحول آن و ماهیت عمل زن دارد. اطلاعات از چگونه
توارث تحلیل به شوری در گونه‌های مختلف می‌توانند تعیین
کنند. شیفت انتخاب و تعداد دوره‌های انتخاب باشد (8).
کنترل زنبوری تحلیل به شوری در گندم با استفاده از تجهیزه میکروسیستم و...

حاسیال از نمونه‌های استاندارد تیتانیوم شدند و نسبت نیمه‌پایه‌به سدیم محاسبه گردید. آزمایش و اعمال برخی از این ابزار پیش آمده بافت و در بخش‌های مختلف رشد انسان‌های هواپیمای هر بوته از محل یقه برداشت و به مدت 20 روز در دمای 25 درجه سانتی‌گراد خشک و عملکرد بلوئوزیک مورد بررسی قرار گرفت.

تجزیه و تحلیل آماری

ابتدا به کمک آزمون t نمودار معنی‌داری نشان داد. به دنبال آن، با استفاده از آزمون مواردی آزمون کارگر گرفته و سپس با توجه به روش کاری از مدل‌های مشترک و زنی برآورده (Joint scaling test) شدند. سپس مقادیر مورد انتشار میانگین نسخه محاسبه و مقادیر آزمون‌های محاسبه با آزمون t بررسی شد. این آزمون به صورت زیر محاسبه شد:

\[r\bar{B}_{c_{1}} - \bar{P} - \bar{F} = A \]
\[r\bar{B}_{c_{2}} - \bar{P} - \bar{F} = B \]
\[r\bar{F} - \bar{P} - \bar{F} = C \]

در صورت عدم کاملاً باز شدن شیعه برای افزودن کلید سدیم و کلرید، کلسیم (با نسبت 1:3) آب‌ها و در نهایت هدایت الکتریکی مورد نظر به مقدار 25/72 سیم زیمنس بر متر از گذشت می‌روز به دست آمد. این آزمایش خارج از گلخانه و بدون کنترل درجه حرارت و در دما طبیعی اصفهان در ماه‌های آبان تا دی ماه انجام گردید. در هنگام پرداختی سقف مجزا جرای آزمایش بویش به دست آمد. با توجه به نتایج گروهی و تقریباً به طور یک روز در یک بوته به معنی‌دار شور بایستی خارج از آب‌سازی شده باشد. این آزمایش تکراری به دست آمد. این آزمایش به دست آمد با گروهی که به طور کامل باز شده بوته از دمای خالص قطع و میزان سدیم و پتانسیم آنها به صورت زیر کاملاً برف کرده بود:

جرح زیر اندام‌گیری شده:

بهاگ زیرکه به‌طور کاملاً برداشت شده با آب مقطع شسته شدند و به مدت 20 روز در دمای 25 درجه سانتی‌گراد مورد بررسی قرار گرفت. سپس نمونه‌ها توزین و به دست آمده از عصاره‌گیری به وسیله یک دستگاه فلزیوم (Flame photometry) مدل کوچک‌ترین واریانس به کمک‌کننده ای واریانس به مدل.

پتانسیم و سدیم آنها اندام‌گیری مشاهده با مقایسه با نمونار
جدول 1. میانگین و واریانس های مشاهده شده برای والدی و نسل های مختلف حاصل از تلاقی آنها برای سدیم و پتاسیم (میکرو مول بر گرم وزن خشک). نسبت پتاسیم به سدیم و وزن خشک بونه (گرم)

<table>
<thead>
<tr>
<th>تلاقی نسل</th>
<th>سدیم</th>
<th>پتاسیم</th>
<th>میانگین مشاهده شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارچا</td>
<td>2425</td>
<td>56422/7</td>
<td>21 1/2</td>
</tr>
<tr>
<td>نیک نژاد</td>
<td>2524</td>
<td>94237/7</td>
<td>1/2</td>
</tr>
<tr>
<td>نسل اول</td>
<td>2381/5</td>
<td>3082</td>
<td>71/2</td>
</tr>
<tr>
<td>نسل دوم</td>
<td>2381</td>
<td>3082</td>
<td>71/2</td>
</tr>
<tr>
<td>نسل 1</td>
<td>212429/9</td>
<td>3082</td>
<td>71/2</td>
</tr>
<tr>
<td>نسل 2</td>
<td>212429/9</td>
<td>3082</td>
<td>71/2</td>
</tr>
</tbody>
</table>

نتایج

نتایج حاصل از آزمون 1 حاکی از عدم تفاوت معنی‌دار بین تلاقی‌های مستقیم و معکوس در تمامی نسل‌ها برای کلیه صفات بزرگ پتاسیم در تلاقی برونگش است خارج از کارچا و نیک نژاد کارچا (k1) (که 212429/9) بود (داده‌ها نشان دادند). نتایج در تلاقی فوق از داده‌های تلاقی مستقیم استفاده شد. مشاهدات مربوط به تلاقی‌ها مستقیم و معکوس به صورت تغییر در نقاط پذیرفتند.

الف) تلاقی کارچا × نیک نژاد

جدول 1 میانگین و واریانس مشاهده شده برای صفات مختلف را نشان می‌دهد. همان‌گونه که ملاحظه می‌شود نسل 1 نیک نژاد و والد کارچا به ترتیب بالاترین و کمترین میانگینها برای سدیم داشتند. کمترین میانگینها برای میزان پتاسیم و وزن خشک بونه (گرم)
جدول ۲ برآورد پارامترهای مختلف در پراش مدل سه پارامتری برای صفات مورد مطالعه در دولت تلاقي گندم

<table>
<thead>
<tr>
<th>(\chi^2)</th>
<th>([h])</th>
<th>([d])</th>
<th>(m)</th>
<th>تلاقي</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>39/82±12/39</td>
<td>20/64±9/05</td>
<td>21/68±19/51</td>
<td>سدیم</td>
<td></td>
</tr>
<tr>
<td>6.95</td>
<td>159/99±23/99</td>
<td>144/86±21/62</td>
<td>211/82±13/26</td>
<td>نتایج</td>
<td></td>
</tr>
<tr>
<td>23/45</td>
<td>0/57±0/17</td>
<td>1/27±0/27</td>
<td>0/51±0/24</td>
<td>پتاسیم به سدیم</td>
<td></td>
</tr>
<tr>
<td>4/01</td>
<td>1/02±0/34</td>
<td>1/04±0/16</td>
<td>1/04±0/16</td>
<td>وزن خشک</td>
<td></td>
</tr>
</tbody>
</table>

* *: به ترتیب معنی‌دار در سطح احتمال ۰.۰۵ و ۰.۰۱

جدول ۳ آزمون‌های مقیاس \(C \) و \(B \) برای صفات مورد مطالعه در دولت تلاقي گندم

<table>
<thead>
<tr>
<th>(C)</th>
<th>(B)</th>
<th>(A)</th>
<th>تلاقي</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/59±18/57</td>
<td>10/9±11/92</td>
<td>9/58±12/79</td>
<td>سدیم</td>
<td></td>
</tr>
<tr>
<td>54/9±38/97</td>
<td>9/5±48/97</td>
<td>42/67±50/19</td>
<td>نتایج</td>
<td></td>
</tr>
<tr>
<td>4/9±23/76</td>
<td>-1/14±0/88</td>
<td>-0/22±0/24</td>
<td>پتاسیم به سدیم</td>
<td></td>
</tr>
<tr>
<td>3/35±13/08</td>
<td>-0/21±0/12</td>
<td>0/157±0/61</td>
<td>وزن خشک</td>
<td></td>
</tr>
</tbody>
</table>

* * : به ترتیب معنی‌دار در سطح احتمال ۰.۰۵ و ۰.۰۱

میزان پتاسیم و وزن خشک و پارامتر \([h] \) برای تمامی صفات به‌جز برای صفت معمول در شد. با توجه به نتایج میزان ملاقات می‌شود که مدل سه پارامتری برای پیش‌بینی سدیم و وزن خشک کفایت می‌کند و این نتیجه به وسیله آزمون‌های مقیاس \(A \) و \(B \) نیز تأیید شده‌است (جدول ۳). اما برای صفت‌های مربوط به \(C \) و \(B \) رتبه‌بندی صفات مربوط به \(C \) و \(B \) از نظر معنی‌دار و در کازی از جدول ۲ ارورهای مشابه با رویدادی در دولت تلاقي گندم به‌روش روش‌های مناسب (می‌تواند

\(x_0^2 - x_1^2 - x_2^2 - x_3^2 = C \) و \(x_1^2 - x_2^2 - x_3^2 = B \) و \(x_1^2 - x_2^2 - x_3^2 = A \)
فیلم‌های فیلم‌زایی، زیبایی طبیعی، و سال‌های گذرگذاری. (الف) / تابستان 1386

شش پارامتری بر روی تابع ناهضلال از مدل شش پارامتری، برای کلیه صفات معنی‌دار (جدول 4). همان‌گونه که ملاحظه می‌شود، پارامتر [d] فقط برای پنجمین معنی‌دار فرآیند و برای دو صفت دیگر معنی‌دار نشده است. از این پارامتر یافته‌ها، برای یک پارامتر به‌طور هم‌اکنون از سایر تغییرات مربوط به ضریب ولایت تهیه شده است.

نتایج آزمون‌های بارانیت (نقطه از 17 تا 17) نشان داد که می‌توان از میانگین واریانس هرین و نیز از این نتایج واریانس‌ها محاسبه کرده‌اند از طریق تایپی مکانی به‌طور مبهم است. (جدول 17). در این صورت به کارگیری ضریب یک برای این واریانس در تمامی نسل‌ها مجاز است. (جدول 17).

بر امردها اجزای واریانس به روش وزین و به‌طور مرحله‌ای (19) در جدول 6 آورده شده‌اند. واریانس محاسبه در تمامی مدل‌ها و برای تمامی صفات معنی‌دار بود. نتایج آزمون مربع کای برای بررسی مدل معنی‌دار و نشان دهنده عدم کافیت مدل بود. بنابراین نمادهای دیگری با پارامتری‌های مشابه آزمون مدل بود. مناسب سنجش مدل به‌طور کلی حداکثر به عنوان مدل مناسب انتخاب شد. مناسب‌ترین مدل پارامتر سه‌گانه پارامتر (محیطی، افزایشی و غلیبی) بود (\(\chi^2 = 8/18 \)) که در آن واریانس محیطی و غلیبی از نظر آماری معنی‌دار بودند.

مدل پارامتری برای میزان پنجم، نسبت پنجم به سه‌گانه ورود خشک نسبت‌های مدل‌های مدل‌های اجزاء واریانس‌ها محیطی و غلیبی، برای نسبت پنجم به سه‌گانه واریانس‌های محیطی و افزایشی، ولایت در نهایت برای ورود خشک واریانس‌های محیطی، افزایشی و غلیبی معنی‌دار بودند.

از واریانس محیطی مدل‌های فوق برای پارامتر میزان توزیع زننده در نشان‌های در حال تغییرات استفاده شد. مقادیر

\[F \] محاسبه از نسبت واریانس هر سال واریانس محیطی در سه سال در حال تغییرات برای مقادیر سه‌گانه و نسبت معنی‌دار

\[[d] \] گردد. برای نسبت تایپی مکانی به سه‌گانه مدل داده برای

\[BC \] فوق برای رکورد
جدول 4. پارامترهای مختلف در پریاژ مدل شب پرامتری برای صفتهای مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>تلاقی</th>
<th>صفت</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارچیا پنتاسیم</td>
<td>$80^{+2/3}_{-0/3}$</td>
<td>8^{+5}_{-5}</td>
</tr>
<tr>
<td>نیک نژاد</td>
<td>155^{+8}_{-8}</td>
<td>1^{+3}_{-3}</td>
</tr>
<tr>
<td>نیک نژاد شوراواکی</td>
<td>$20^{+0/5}_{-0/5}$</td>
<td>$0^{+0/5}_{-0/5}$</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی دار در سطوح احتمال پنج و یک درصد.

جدول 5. پارامترهای مختلف در پریاژ مدل بینج پرامتری برای صفتهای مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>χ^2</th>
<th>تلاقی</th>
<th>صفت</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارچیا پنتاسیم</td>
<td>5^{+3}_{-3}</td>
<td>1^{+3}_{-3}</td>
<td></td>
</tr>
<tr>
<td>نیک نژاد</td>
<td>30^{+5}_{-5}</td>
<td>2^{+3}_{-3}</td>
<td></td>
</tr>
<tr>
<td>نیک نژاد شوراواکی</td>
<td>$20^{+0/5}_{-0/5}$</td>
<td>$1^{+0/5}_{-0/5}$</td>
<td></td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی دار در سطوح احتمال پنج و یک درصد.
جدول ۶ برای ورودی های مختلف و برآورد پارامترهای واریانس به روش وزنی هیمن (11) برای صفات مورد مطالعه در ثلاثه کارچیا و یک تازه

<table>
<thead>
<tr>
<th>صفت</th>
<th>واریانس پارامتر مدل</th>
<th>(E) واریانس محیطی</th>
<th>(D) واریانس افزایشی</th>
<th>(H) واریانس غلیط</th>
<th>کوریپیانس مربع کای</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱/۰۲**</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۳/۰۸</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۲/۲۸</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۱/۸۲</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۱/۳۳</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۲/۰۲**</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۳/۱</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۲/۶۲</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۲/۴۵</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۱/۹۱</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۲/۸۳**</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۳/۰</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۳/۰</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۲/۹</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۱/۸</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۳۳/۰۵**</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۷/۸۰</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۴/۲۱</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۵/۱۵</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>۵/۱۵</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
</tbody>
</table>

** و***: به ترتیب معنی دار در سطوح احتمال پنج و یک درصد

محیطی، افزایشی، غلیط، کوریپیانس
جدول 7: بررسی مدل‌های مختلف و برآورد پارامترهای واریانس به روش وزنی هیمن (11) برای صفات مورد مطالعه در تالابی شورواکی و نیک نزد

<table>
<thead>
<tr>
<th>صفت</th>
<th>مجموع کای (H)</th>
<th>واریانس فاصله (D)</th>
<th>واریانس محیطی (E)</th>
<th>واریانس موجود در مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>ویزیورین</td>
<td>88</td>
<td>672/6</td>
<td>888/6</td>
<td>1111/6</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>56</td>
<td>77</td>
<td>999/6</td>
<td>1605/6</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>48</td>
<td>53</td>
<td>898/6</td>
<td>1328/6</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>72</td>
<td>2356</td>
<td>4990</td>
<td>9873</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>12</td>
<td>123</td>
<td>223</td>
<td>1939</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>64</td>
<td>231</td>
<td>399</td>
<td>1598</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>82</td>
<td>32</td>
<td>599</td>
<td>1293</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>92</td>
<td>24</td>
<td>299</td>
<td>1693</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>42</td>
<td>24</td>
<td>299</td>
<td>1693</td>
</tr>
<tr>
<td>ویزیورین</td>
<td>07</td>
<td>24</td>
<td>299</td>
<td>1693</td>
</tr>
</tbody>
</table>

ویزیورین به ترتیب معنی دار در سطوح احتمال پنج و یک درصد. مدل انلاین برای بررسی پیشنهادی به صورت H=993±/822 بود.
جدول 8. درجه گلیبت و وراثت پذیری عمومی و خصوصی و پیشرفت زنتیکی برای صفات مورد مطالعه در دو تلافی گندم نان

<table>
<thead>
<tr>
<th>تلافی</th>
<th>صفت</th>
<th>درجه گلیبت</th>
<th>وراثت پذیری عمومی (h^2_u)</th>
<th>وراثت پذیری خصوصی (h^2_s)</th>
<th>واکنش به انخاب (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سبز</td>
<td>1/38</td>
<td>224/40</td>
<td>6/40</td>
<td>1/25</td>
<td></td>
</tr>
<tr>
<td>پاتیسیم</td>
<td>1/24</td>
<td>88/65</td>
<td>32/20</td>
<td>2/24</td>
<td></td>
</tr>
<tr>
<td>هر</td>
<td>0/29</td>
<td>2/24</td>
<td>22/48</td>
<td>0/63</td>
<td></td>
</tr>
<tr>
<td>وزن خشک</td>
<td>0/14</td>
<td>6/28</td>
<td>30/84</td>
<td>0/24</td>
<td></td>
</tr>
<tr>
<td>سبز</td>
<td>3/40</td>
<td>33/75</td>
<td>7/47</td>
<td>3/53</td>
<td></td>
</tr>
<tr>
<td>پاتیسیم</td>
<td>1/93</td>
<td>61/97</td>
<td>57/53</td>
<td>1/59</td>
<td></td>
</tr>
<tr>
<td>هر</td>
<td>0/23</td>
<td>11/25</td>
<td>26/79</td>
<td>1/66</td>
<td></td>
</tr>
<tr>
<td>وزن خشک</td>
<td>0/85</td>
<td>11/24</td>
<td>52/84</td>
<td>0/42</td>
<td></td>
</tr>
</tbody>
</table>

$$R = k \sqrt{\frac{V}{h^2_n}} n, \ h^2_n = \frac{D}{D + H + E}, \ h^2_s = \frac{D + H}{D + H + E}, \ \bar{A} = \sqrt{\frac{H}{D}}$$

نتایج به آزمون لون با پارتلت (نقطه از 17) دیده نشان داد که جنین مقدار پاتیسیم هنگامی که وضعیت نسبتاً مشابه با تالاک کارنیا X تکی نزدیکی به منابع، تجمع زنتیکی در نسل های در حال تفکیک در این تلاقی بیشتر بود. در عین حال مقدار F در نسل دوم برای سبز در BC1 نسبت پاتیسیم به سبز می‌تواند مقدار گردد.

درجه گلیبت برای تمام صفات به واجز 5 درصد از جمله 8 پاتیسیم بالاترین وراثت پذیری عمومی و نسبت پاتیسیم به سبز کمترین آن را داشت. بالاترین و کمترین مقدار پذیری خصوصی به واجز 5 درصد مقدار پاتیسیم برای صفات مضاعف می‌باشد به مرتبه بنیائی پذیری و نسبت پاتیسیم به سبز کمترین آن را با درصد 0 درصد انتخاب نشان داد.

بحث

نتایج نشان داد که مدل‌های برای مقدار سبزیجات شده برابر واجز مقداری صفات سبزیجات پاتیسیم و وزن خشک در شرایط بارندگی استفاده شد و این مدل در آن تلافی‌ها مختلفی می‌باشد. این مدل برای نسل‌های مختلفی متغیر بود. این مدل 5 پاتیسیم و ۵ مدل سبزیجات می‌تواند در آن یافته‌های منظوری و افزایشی می‌باشد.
کنترل زئیتوکسیک حمله به شوری در گندم با استفاده از تجزیه میانگین و...

انتخاب والدین در بررسی این موضوع می‌باشد. برای مقدار سدیم و نسبت پاتاسیم به سدیم در تلاقی دوم (زن‌هایی که باعث افزایش این صفات می‌شوند) نسبت به زن‌هایی که باعث کاهش آنها می‌شود غالباً هستند. برای مقدار [h] معنی‌دار و بزرگ‌تر از [d] می‌باشد. در حالی که در تلاقی نیک تازد با کاریکا ایستاژی نقش مهمی در توزیع نسبت پاتاسیم به سدیم داشت. اما در تلاقی نیک تازد با شوروایک مدل هادافاواشی - غالبیت کفایت کرد. این موضوع بیانگر اهمیت

نقطه زئیتوکسیک حمله به شوری در گندم با استفاده از تجزیه میانگین و...

