کنترل زنیکی تحمیل به شوی در گندم با استفاده از تجزیه میانگین و واریانس نسل‌ها

چکیده
نحوه توارث صفات فیزیولوژیکی مرتبط با تحمیل به شوی شامل مقادیر تجمع گندم، تناسیم، نسبت پناسیم به سدیم در بزرگ‌های جوان گندم و وزن خشک نهایی در حاصل از نتایج لایه‌های موازی (BC1، BC2، F1، F2، P1، P2) نشان داد که ترکیبی‌های مختلف مراکز میانگین و نسبت پناسیم به سدیم در بزرگ‌های جوان و شویی، در سن متوسط رشد وزن خشک و در پایان فصل رشد وزن خشک نهایی در حاصل از ترکیبی‌های میانگین و نسبت پناسیم به سدیم در بزرگ‌های جوان با توجه به نتایجی که در صد میلی‌متر داریم، همکاری می‌کنند.

اشکوس دهداری، عبدالحید رضایی، سید علی محمد میر محمدی میدی

1. استادیار اصلاح نهایی، دانشگاه کشاورزی، اسلام‌آباد، یاسوج
2. به ترتیب استاد و دانشیار اصلاح نهایی، دانشگاه کشاورزی، اسلام‌آباد، صنعت‌الاصفهان

واژه‌های کلیدی: آزمون مقیاس مشترک وزنی، تجزیه میانگین و واریانس نسل‌ها، تحمیل به شوی، گندم ناد، واریانس نسل‌ها
مقدمه
با وجود اینکه شوری تولید محصولات گیاهی را در اثر نقاط مورد اعتقادات قرار گرفته (12). تویین (11) دریافت که تحمیل به شوری در جو و روانی دهنده است اما دکتر زنینیکی آن خیلی پیچیده است. سانزهکا و همکاران (24) در مطالعات نسل های در حال تغییر دارای اثر می‌باشد. در شرایط شوری و روانی دهنده عمومی برای کل ماه خشکی، میزان سدیم و نیترات در می‌باشد و دستور 42 درصد غارزه کرده. فولاد (8) با بررسی نحوه توزیع صفات تحمیل به شوری در گیاهان را مشکلتر کرده است. در حال حین امیدواری وجود دارد که تحمیل به شوری در گیاهان از طریق انتخاب درمانی که در شرایط شوری و روانی دهنده است تحت تأثیر قرار می‌گیرد افزایش یافدد.

تحقیقات زدهای در جهت شناسایی مکانیسم و افزایش تحمیل به شوری در گیاهان بر اساس تجمع يومی (5) دفع يومی (7 و 26)، اسمولتی های سازگار آلی (13) و پاراماکروهای ردید (15، 16) صورت گرفته است. شان (25) اظهار داشت که آب گیری از صفات مطلوب با یک روش جمع‌آوری تأثیر احتمالی از افزایش کارایی در میزان تجمیع يومی (سدیم و نیترات) و ماه خشکی خیلی بیشتر از سایر اثرات دانست.

اطلاعات کمی در خصوص کنترل زنینیکی تحمیل به شوری از طریق تجویز میانگین و واریانس نسل ها در گندم وجود دارد. استفاده از تجویز میانگین نسل های بر اساس پلارمهای زنینیکی به دلیل ممحاسب آری که می‌تواند در مطالعات دگرگونی و نهایی به انتقال دهنده. آنها در مطالعات بارود و توسط افراد توسط پلارمهای زنینیکی تحمیل به شوری در گندم با استفاده از نسل پایه حاصل از تلاقی‌های نیک تازه با کاریچیا و شوراواکی بر اساس مقادیر سدیم، نیترات و سدیم نسبت پسیو به سدیم در بیشتر گونه‌ها جوان و وزن خشک گونه‌های انتخابی از زیستی، رشد تراها و اجارا گردیده است.

مواد و روش‌ها
در سال ۱۳۷۹ در گندم رقم خارجی کاریچیا و شوراواکی در خاکی از مرکز بنیاد تحقیقات سفره و دزرت (سیبت) با
کنترل زنیکی تحلیل به شوری در گلدن با استفاده از تجزیه مانگینی و ...

حاص‌الزا از نمونه‌های استاندارد استفاده شدند و نسبت تناسب به سدیم محاسبه گردید. آزمایش و اعمال تیمار‌های آدامه‌ای با فاصله‌ای متفاوت در محیط درمانی و در اندازه‌گیری رشد اندام‌های هواپیمای هور پوته از محل تأسیس برداشت و به مدت دو روز در دمای ۷۰ درجه سانتی‌گراد خشک و عملکرد بیولوژیکی توزین شد.

تجزیه و تحلیل آماری

ابتدا به کمک آزمون t تفاوت بین میانگین نتایج تولید شده و معکوس مورد آزمون قرار گرفت، و سپس با توجه به روش کارایی (نقله از ۱۹) پارامترهای (Joint scaling test) برآورده شدند. سپس مقایسه مورد انتظار میانگین نتایج محاصله و کفایت مدل سه پارامتری C و A میان آزمون t بررسی شد. این آزمون به صورت زیر محاسبه شدند:

\[
\begin{align*}
\mathbf{t} = & A \\
\mathbf{t} = & B \\
\mathbf{t} = & C
\end{align*}
\]

در صورت عدم کفایت مدل سه پارامتری، مدل‌های مختلف از جمله مدل شش پارامتری (جینکس و جونز) به روش وزنی، \(m \) (۱۱) بر اساس داده شدند و پارامترهای مربوط به هر یک از فیکتیو (h) و \(i \) و \(j \) و \(k \) به ترتیب میانگین، اثرهای افزایشی، غلیظت‌تی افزایشی، غلیظت‌تی افزایشی و غلیظت‌تی افزایشی برآورده و کفایت مدل به کمک آزمون معیار کای ۲ و معنی‌دار بود. در نتیجه آزمون t توانایی داده شد و توجه به ترتیب میانگین، اثرهای افزایشی و غلیظت‌تی افزایشی به‌عنوان یکی از دو راه‌حل آن می‌باشد.

همچنین این پژوهش در محیط فضای فلک می‌باشد: به‌عنوان یکی از دو راه‌حل آن می‌باشد. به‌طور کلی، در گلدن با استفاده از تجزیه مانگینی و ...

۱۸۱
جدول 1. میانگین و واریانس های مشاهده شده برای والدها و نسل های مختلف حاصل از تلاقی آنها برای سدیم و پتاسیم (میکرو موی پر گرم وزن خشک)، نسبت پتاسیم به سدیم و وزن خشک بونه (گرم)

<table>
<thead>
<tr>
<th>تلاقی نسل</th>
<th>سدیم</th>
<th>پتاسیم</th>
<th>وزن خشک</th>
<th>میانگین مشاهده شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارچیا</td>
<td>2.98</td>
<td>2.245</td>
<td>0.943</td>
<td>2.245</td>
</tr>
<tr>
<td>نیک نژاد</td>
<td>0.78</td>
<td>0.78</td>
<td>0.56</td>
<td>0.666</td>
</tr>
<tr>
<td>نسل اول</td>
<td>0.78</td>
<td>0.78</td>
<td>0.56</td>
<td>0.666</td>
</tr>
<tr>
<td>نسل دوم</td>
<td>0.78</td>
<td>0.78</td>
<td>0.56</td>
<td>0.666</td>
</tr>
</tbody>
</table>

نتایج

نتایج حاصل از آزمون 1 حاکی از عدم تفاوت معنی‌دار بین تلاقی‌های مستقیم و معکوس در تمامی نسل‌ها برای کلیه صفات بجز پتاسیم در تلاقی پرتقالی بین کارچیا و نیک نژاد کارچیا (5%) بود (داده‌ها نشان دادند). بنابراین به منظور تخمین بهتر بارامترها، به جز پتاسیم در تلاقی فوق الذکر به طرف دیگر تلاقی مستقیم استفاده شد. مشاهدات مربوط به تلاقی‌های مستقیم و معکوس به صورت توان در نظر گرفته شدند.

الف) تلاقی کارچیا × نیک نژاد

جدول 1 میانگین و واریانس مشاهده شده برای صفات مختلف را نشان می‌دهد. همان گونه که ملاحظه می‌شود نسل F2 وارد کارچیا به ترتیب بالاترین و کمترین میانگین را برای سدیم داشتند. کمترین میانگینها برای میزان پتاسیم و وزن وزن خشک بونه (گرم)

نبودن آن، از میانگین واریانس سه نسل به عنوان واریانس محیطی استفاده می‌گردد. در غیر این صورت از ضرایب خاص واریانس محیطی در هر نسل در حال فناکیک استفاده شد. میکرو موی پر گرم وزنی هیمن (11) و به طور مرحله‌ای مدل‌های مختلف برآورش داده شدند. از نسبت واریانس هر نسل در حال فناکیک به واریانس محیطی مدل اندازه‌گیری نوع زنیکی موجود در آن نسل بررسی شد و استفاده از پارتک‌های موجود در مدل وارون های دیپی های عمومی و خصوصی و متوسط غاییت (I) محاسبه شدند. واکنش نسبت به انتخاب با استفاده از فرمول

\[R = k \sqrt{\frac{V_f}{h_n}} \]

که با فرض پنجم درصد انتخاب معادل 0.2 در نظر گرفته شد (6).
جدول 2 برآورد پارامترهای مختلف در بررسی مدل سه پارامتری برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>x^2</th>
<th>$[h]$</th>
<th>$[d]$</th>
<th>m</th>
<th>صفت تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0/8^{**}$</td>
<td>$39/8/29/12$</td>
<td>$20/6/7/2/9$</td>
<td>$21/0/8/8/7/1$</td>
<td>سدیم</td>
</tr>
<tr>
<td>$69/95^{**}$</td>
<td>$159/9/9/2/13/2/1$</td>
<td>$149/8/6/2/9/2/1$</td>
<td>$111/0/8/7/2/1$</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>$27/01^{**}$</td>
<td>$0/256/2/24$</td>
<td>$158/2/2/24$</td>
<td>$153/1/7/2/24$</td>
<td>پتاسیم به سدیم</td>
</tr>
<tr>
<td>$0/591$</td>
<td>$1/0/2/0/2/3/4$</td>
<td>$0/245/2/1/6$</td>
<td>$3/0/245/2/1/6$</td>
<td>وزن خشک</td>
</tr>
</tbody>
</table>

جدول 3 آزمون‌های مقیاس C و B A برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>صفت تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$18/59/18/3/77$</td>
<td>$10/0/9/11/7/52$</td>
<td>$9/5/8/12/1/79$</td>
<td>سدیم</td>
</tr>
<tr>
<td>$29/8/3/3/4/78$</td>
<td>$1/15/2/4/8/88$</td>
<td>$0/0/231/2/8/2$</td>
<td>پتاسیم به سدیم</td>
</tr>
<tr>
<td>$7/354/1/7/2/8$</td>
<td>$0/0/231/2/8/2$</td>
<td>$0/0/157/2/8/15$</td>
<td>وزن خشک</td>
</tr>
</tbody>
</table>

جدول 3 آزمون‌های مقیاس C و B A برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>صفت تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8/3/3/8/4/79$</td>
<td>$92/6/5/7/4$</td>
<td>$59/7/6/7/4/73$</td>
<td>سدیم</td>
</tr>
<tr>
<td>$29/8/3/3/4/78$</td>
<td>$123/6/2/4/9/3$</td>
<td>$175/1/6/2/4/9/19$</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>$1/5/8/9/5$</td>
<td>$0/12/2/4/78$</td>
<td>$0/0/121/2/4/78$</td>
<td>پتاسیم به سدیم</td>
</tr>
<tr>
<td>$1/5/8/9/5$</td>
<td>$0/0/5/5/5/6$</td>
<td>$0/0/191/2/4/9$</td>
<td>وزن خشک</td>
</tr>
</tbody>
</table>

میزان پتاسیم و وزن خشک و پارامتر [h] برای تمامی صفات به‌جز برای مدل معنی‌دار شد. با توجه به نتایج مربوط به تلاقی برگشنی 1 (تلاقی برگشنی با کارچی) بود نسل دوم بالاترین میانگینها را برای صفت اکسیر و بالاترین واریانس‌ها برای چهار صفت مورد مطالعه به خود اختصاص داد. نتایج برآورد پارامترها در مدل سه پارامتری به روش وزنی در جدول 2 اورده شده است. در تلاقی کارچی و نیک نژاد (متحمل عدم کفایت مدل و بروز افراد اثرات ایستاژی و بررسی مدل

$E_t = 2E_t - 2E_t^* - R_t^* - R_t = C$ و $\frac{2}{E_t} = B$ و $\frac{1}{E_t^*} = B$ و $\frac{2}{E_t^*} - R_t^* - R_t = A$

$F_{PCB} = 13$ و $F_{PCB} = 13$
شش پابرتامی بود. طبق نتایج حاصل از مدل شش پابرتامی، برای کلیه صفات معنی‌داری (جدول 4) همگونی که ملاحظه
می‌شد، پابرتام برای داده‌های شش پابرتامی و برای دو
صفت در می‌گردد. نتایج این آزمایش از این نتایج است
در این پابرتام نسبت پاسیم به سدیم، اثر ایپیستازی افرازی
قابلیت بیایدر داده‌های دیگر کدام از صفات و اثر مقیاس قابل
قابلیت بیایدر داده‌های دیگر کدام از صفات و اثر مقیاس قابل

نتایج آزمون لون با رابلته (نقطه از 17) نشان داد که می‌توان
از میانگین واریانس و دلیل نسیان برای تعیین واریانس
محیطی برای تیمی صفات استفاده کرد.(17) در این صورت
با کاربری ضریب یک برای این واریانس در تیمی نسل‌ها
می‌باشد.(17)

بر اوجه اجزای واریانس به روش وظیفه و به طور
مرحله‌ای (19) در جدول 6 آورده شده‌اند. واریانس محیطی در
تمایز مدل‌ها و برای تمام صفات معنی‌دار بود. نتایج آزمون
مریع کار برای بررسی مدل معنی‌دار و نشان داده عمد کافی
مدل بود. بنابراین مدل‌های دیگری یا پارامترهای زیان‌داده آزمون
شدند و در نهایت مدل با مربع کاه حداکتی به عنوان مدل
مناسب انتخاب شد. مناسب‌ترین مدل برای سدیم شامل سه
پارامتر (محیطی، افرازی و غالبیت) بود (18/834) که در آن
واریانس‌های محیطی و غالبیت از نظر آماری معنی‌دار بودند.

محل شریان پابرتامی برای میزان پاسیم، نسبت پاسیم به سدیم
و زون خشک مناسب‌ترین مدل نشان داده شد. برای مقدار
پابرتامی اجزای واریانس محیطی و غالبیت، برای نسبت
پاسیم به سدیم واریانس‌های محیطی و افرازی و در نهایت
برای وزن خشک واریانس‌های محیطی، افرازی و غالبیت

معنی‌دار بودند.

از واریانس محیطی مدلهای فوق برای پارامتر مشابه

زنیکی در نسل‌های در حال تفکیک استفاده شد. مقادیر
حاصل از نسبت واریانس هر نسل و واریانس محیطی در هر
سه نسل در حال تفکیک داده‌های مقدار سدیم و پاسیم معنی‌دار
گردیدند. برای نسبت پاسیم به سدیم مقدار F فوق برای

BC 2 ×
جدول 4: پارامترهای مختلف در برآورد مدل شش پرامتری برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>[l]</th>
<th>[j]</th>
<th>[i]</th>
<th>[h]</th>
<th>[d]</th>
<th>m</th>
<th>صفت</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۶۸۵۴±۱۳۹/۸</td>
<td>۶/۷۳۶۵±۶۳/۸</td>
<td>۶/۸۸۵۷±۸۲/۸</td>
<td>۶/۱۱۹۱/۷±۲/۱۶/۶۷</td>
<td>۶/۳۰۰۳±۱۶/۰۰۰</td>
<td>۸/۴۰۲۰±۸۵۳۲</td>
<td>پتاسیم</td>
<td>کارچیا</td>
</tr>
<tr>
<td>۱۳/۵۴±۲/۵</td>
<td>۱۲/۸۱±۱/۵</td>
<td>۱۵/۱۳±۲/۹</td>
<td>۱۷/۹۹±۱/۵</td>
<td>۲۷/۸۰±۲۴/۴</td>
<td>۲۲/۹۳±۲۶/۶</td>
<td>پتاسیم</td>
<td>نیک نژاد</td>
</tr>
</tbody>
</table>

خ: پتاسیم به سادم

ش: شوراواکی

* و **: به ترتیب معنی دار در سطوح احتمال ۱٪ و ۵٪ در صد

جدول 5: پارامترهای مختلف در برآورد مدل پنج پرامتری برای صفات مورد مطالعه در دو تلاقی گندم

<table>
<thead>
<tr>
<th>χ²</th>
<th>[l]</th>
<th>[i]</th>
<th>[h]</th>
<th>[d]</th>
<th>m</th>
<th>صفت</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۳۲</td>
<td>۶/۵۲۹۹±۱۳۹/۸</td>
<td>۶/۸۴/۱۶</td>
<td>۶/۱۱۹۱/۷±۲/۱۶/۶۷</td>
<td>۶/۲۲۲۲±۱۶/۰۰۰</td>
<td>۸/۴۰۲۰±۸۵۳۲</td>
<td>پتاسیم</td>
<td>کارچیا</td>
</tr>
<tr>
<td>۰/۶۰</td>
<td>۱۵/۷۳۸۴±۶۴/۸</td>
<td>۱۵/۱۳±۲/۹</td>
<td>۱۵/۱۳±۲/۹</td>
<td>۱۵/۱۳±۲/۹</td>
<td>۱۵/۱۳±۲/۹</td>
<td>پتاسیم</td>
<td>نیک نژاد</td>
</tr>
</tbody>
</table>

خ: پتاسیم به سادم

ش: شوراواکی

* و **: به ترتیب معنی دار در سطوح احتمال ۱٪ و ۵٪ در صد
جدول 6 برآورد مدل‌های مختلف و برآورد پارامترهای واریانس به روش وزنی هیمن (111) برای صفات مورد مطالعه در تلاش کارچیا و نیک تزار

<table>
<thead>
<tr>
<th>مربع کای</th>
<th>کورینیانس (H)</th>
<th>واریانس غلیبت (D)</th>
<th>واریانس افزایشی (E)</th>
<th>واریانس پارامتر مدل</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>6162 **</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17233 ** 91/10</td>
</tr>
<tr>
<td>381</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17499/7 12/21</td>
</tr>
<tr>
<td>978</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17499/7 12/21</td>
</tr>
<tr>
<td>875</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17499/7 12/21</td>
</tr>
<tr>
<td>333</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17499/7 12/21</td>
</tr>
<tr>
<td>200 **</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>9190 ** 10/5</td>
</tr>
<tr>
<td>2/3</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>9190 ** 10/5</td>
</tr>
<tr>
<td>2/3</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>9190 ** 10/5</td>
</tr>
<tr>
<td>1/9</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>9190 ** 10/5</td>
</tr>
<tr>
<td>40 **</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>3744 ** 7/9</td>
</tr>
<tr>
<td>30 **</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>3744 ** 7/9</td>
</tr>
<tr>
<td>28 **</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>3744 ** 7/9</td>
</tr>
<tr>
<td>33/05 **</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17285 ** 1/7</td>
</tr>
<tr>
<td>2/30</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17285 ** 1/7</td>
</tr>
<tr>
<td>2/21</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17285 ** 1/7</td>
</tr>
<tr>
<td>0/10</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17285 ** 1/7</td>
</tr>
<tr>
<td>0/10</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>17285 ** 1/7</td>
</tr>
</tbody>
</table>

** و **: به ترتیب معنی دار در سطح احتمال پنج و یک درصد

** محیطی

** افزایشی

** غلیبت

** محیطی، افزایشی، غلیبت

** محیطی، غلیبت، غلیبت

** محیطی، غلیبت، محیطی

** محیطی، غلیبت، محیطی

** محیطی، محیطی، محیطی
جدول ۷ بررسی مدل‌های مختلف و پایداری پارامترهای واریانس به روش وسیع‌های (11) برای صفات مورد مطالعه در تلاقی شوراواکی و نیک‌زرد

<table>
<thead>
<tr>
<th>صفت</th>
<th>واریانس موجود در مدل</th>
<th>واریانس فاکتور (E)</th>
<th>واریانس میانگین (D)</th>
<th>واریانس غلیط (C)</th>
<th>کورواریانس (G)</th>
<th>مربع کای (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴/۴۳</td>
<td>میان‌دستی</td>
<td>۸۸۸۸/۳۳۳۳ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
<tr>
<td>۲۱/۶۸</td>
<td>میان‌دستی</td>
<td>۸۹۹۹/۸۹۹۹ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
<tr>
<td>۲۸/۲۸</td>
<td>میان‌دستی</td>
<td>۹۶۸۴/۹۶۸۴ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
<tr>
<td>۲۲/۲۲</td>
<td>میان‌دستی</td>
<td>۱۰۵۴/۱۰۵۴ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
<tr>
<td>۱/۹۴</td>
<td>میان‌دستی</td>
<td>۱/۷۸۸۹ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
<tr>
<td>۴/۷۶</td>
<td>میان‌دستی</td>
<td>۱/۵۹۹۸ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
<tr>
<td>۱/۸۲</td>
<td>میان‌دستی</td>
<td>۱/۵۹۹۸ ± ۲۲۲۲/۲۲۲۲</td>
</tr>
</tbody>
</table>

: به ترتیب عملکرد در مقام احتمال پیچ و چرخ درصد. مدل انتخابی برای نسبت پنیم به سبک به صورت ۱/۱۵۰ و H = ۸/۲۲ یک برد.
جدول ۸. درجه غالبیت و روابط پذیری عمومی و خصوصی، و پیشرفت بینتکی برای صفات مورد مطالعه در ۲۰۰ کنی نگهداری کرد.

<table>
<thead>
<tr>
<th>(R)</th>
<th>صفت</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدایی</td>
<td>سدیم</td>
<td>۱/۳۸</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>۱/۹۹</td>
<td></td>
</tr>
<tr>
<td>پتاسیم به سدیم</td>
<td>۱/۲۹</td>
<td></td>
</tr>
<tr>
<td>وزن خشک</td>
<td>۱/۳۹</td>
<td></td>
</tr>
<tr>
<td>وزن خشک به سدیم</td>
<td>۳/۲۰</td>
<td></td>
</tr>
<tr>
<td>پتاسیم به سدیم</td>
<td>۷/۵۹</td>
<td></td>
</tr>
<tr>
<td>پتاسیم به سدیم</td>
<td>۱/۶۶</td>
<td></td>
</tr>
<tr>
<td>وزن خشک به سدیم</td>
<td>۳/۵</td>
<td></td>
</tr>
</tbody>
</table>

$$R = k \sqrt{\frac{\bar{V}_k \cdot h_n^2}{n}} \quad \text{و} \quad h_n = \frac{D}{D + H + E}, \quad h_n' = \frac{D + H}{D + H + E}$$

نتایج به آزمون لون با پارتلت (نقطه ۱۷) در تلاقی و دو بیانگر واریانس محیطی مدل‌های فوق آزمون F نشان داد که با جرای مقدار پتاسیم که وضعیت نسبتاً مشابه با تلاقی کاریا X نتیجه نشان می‌شود تناوع زنیکی در سل‌های در حال تفکیک در این دسته بیشتر بود. در عین حال مقدار F در سل دوم برای سدیم و در BC1 برابر به نسبت پتاسیم به سدیم مقدار پدیده نشان داد. درجه غالبیت برای تمامی صفات بزرگ وزن خشک بیشتر از یک بود (جدول ۸). پتاسیم بالابرین و روابط پذیری عمومی و نسبت پتاسیم به سدیم کمترین را داشت. بالابرین و کمترین و روابط پذیری خصوصی به نسبت وزن خشک و مقدار پتاسیم اختصاص یافته مقدار سیم بیشترین پیشرفت زنیکی و نسبت پتاسیم به سدیم کمترین آن را با فرض ۵ درصد انتخاب نشان دادند.

بحث

نتایج نشان دادن که مدل‌های بیارش داده شده برای مقدار صفات سدیم، پتاسیم و وزن خشک در سل‌های شور و بیشتر به نوع والدین نسبت و تقریباً روند یکسانی داشتند. اما برای نسبت تلاقی به مدل‌های مداکر (جدول ۷) مدل دیگری شاهد عدد واریانس محیطی (مربط بالا برتر و مربوط به والدین گیگر در نسل اول) بیارش داده شده که در آن ضرایب E1 و E2 برای نسل‌های مختلف نتایج بود. این مدل ۵ پارامتر بود که در آن واریانس‌های محیطی، افزایشی و
کنترل زنیتیک تحمل به شوری در گندم با استفاده از تجزیه میانگین و...

افزاریان زنیتیک می‌توانند با توجه به ورودی‌پذیری خصوصی بایای صفات مربوط با آن می‌توانند از کار یک تبدیل بالا در درازایت نیک نازد با کاریک اوستایی نقض می‌دهند در هرکدام که در تلااقی پتنامی به سبدیم داشته، اما در تلااقی نیک نازد با شرودوری مدل شاد آفسانی - غالیبیت کفایت کرد. این موضوع بیانگر اهمیت انتخاب واین‌دن در بررسی این صفت می‌باشد. برای مقایسه سبدیم و نیک پتنامی به سبدیم در تلااقی دوم زن‌هایی که باعث افزایش این صفات می‌شود، نیک به زن‌هایی که باعث کاهش آنها می‌شود غالب هستند. زیرا مقدار [h] معنی‌دار و بزرگ‌تر از [d] می‌باشد. در هر چند که در تلااقی اول این موضوع برای مقدار تیپسیم به سبدیم و نیک پتیسیم در کنترل این صفات می‌باشد، اما این مقایسه برای نسبت پتنامی به سبدیم و وزن خشک معمایی [h] و [d] است. به طوری که برای هر دو تلااقی معنی‌دار بودند (جدول ۵). ولی برای نسبت پتنامی به سبدیم و وزن خشک وضعیت متفاوت بودید خرید [h] نسبت پتنامی به سبدیم در هر دو تلااقی معنی‌دار نبود ولی [h] معنی‌دار مگر [h] که می‌تواند وجود غالیبیت ناپیچ است (۱۷). در H تلااقی کاریچی و نیک نازد برابر وزن خشک [h] غیر معنی‌دار و معنی‌دار بودید ولی وجود غالیبیت چندین چهته می‌باشد، اما در تلااقی دیگر این برای پدیدار معنی‌دار نشان می‌داد ولی با به عبارت دیگر غالیبیت وجود نداشت (۱۷). به طور کلی تغییر زنیتیک و ورود پذیری عمومی و خصوصی صفات در تلااقی کاریچی × نیک نازد خلیل به‌کار رفته در تلااقی دیگر بود. دلیل این امر که در تصمیم‌گیری برای انتخاب روش اصلاحی سبب مهم می‌باشد.
نتیجه‌گیری

بر اساس نتایج حاصل برای طراحی یک برنامه به‌نژادی تحمل به شوری در مرحله اول باید دستیابی به انتخاب نمونه‌که از نظر صفات مهم مرتبط با تحمل تفاوت‌های زیادی داشته باشد. این امر باعث ایجاد تمعین در حال تکیکی می‌شود. بنابراین پیشنهاد می‌شود که این آزمایش با انتخاب والدین متحمل و تلاقی آن با ارتفاع حس دانال شود (مثلاً روان به عنوان تحمل و فقس به عنوان حساسیت، گم بعدی با توجه به نتایج حاصل از این آزمایش انتخاب روش اصلاحی است. همان‌گونه که ملاحظه شد برای برخی صفات مثل مقادیر سدیم و تنش آترب آزمایش مبسط در عملیات را داشته‌اند، علاوه بر این وجود اپژنتیکی ممنوع در کنترل برخی صفات در نیاز باید در نظر گرفت. این نوع اثر متقابل مشکل در جهت اصلاح صفات مطلوب به‌وجود نمی‌آید (18). اثر متقابل‌افرایشی اپژنتیکی نیز که برای مقدار سدیم و نسبت تنش دارد به‌مدت فاصله اول معنی‌دار بود، جزء اپژنتیکی قابل تثبیت می‌باشد. بنابراین می‌توان به‌نژادی برای تحمل به شوری انتخاب دوره‌ای و به دنبال آن روش شجوردی و تلاقی دو والدی با یک روش انتخاب برای تحمل در نظر گرفت. وجود اپژنتیکی غلیبیت بالاترگر لزوم انتخاب برای تحمل به شوری در نسل‌های پیش‌ترهای عیین‌نامه‌ترین این اثرات می‌باشد.

منابع مورد استفاده

Downloaded from ijpput.ac.ir at 19:14 IRDT on Saturday March 28th 2020