بررسی اثرات سطوح مختلف شوری و نیترولن بر تنظیم کندنهای اسمزی و
جذب عناصر غذایی در گندم

مقطعی حیدری، حسین ا. نادیان، عبدالملکی بخشنده، خلیف عالمی سعید و قدرت ا. فتحی

چکیده

به نظر بررسی اثرات سطوح مختلف شوری و نیترولن بر جذب عناصر غذایی پر مصرف در سالو دانه (رقم چرامان) و نیز تجمع پروپن و کربوهیدرات در دو مرحله گل‌دهی و شیری شدن دانه در گرگ برپه، آزمایشی در شرایط آب و هواپیمای خوزستان (آهواز) در پرورش به صورت کشت‌های خرد شده و در قابل طرح یلومک‌های کامل تصادفی با سه نرکار در دو سال زراعی 1387-1388 و 24-27 ایفا گردید. در این آزمایش پنج سطح شوری آب آبیاری 0/15 (شاهد)، 0/15 و 20 سیزمش بر متر علت فاکتور اصلی و سه سطح نیترولن 0/0 و 150 و 250 کیلوگرم نیترولن در هکتار از کود نیترات آمونیم به علت فاکتور نزدیک هر کوهشده. سطوح شوری به همراه آب آبیاری و این اصطحاب از نمک‌های NaCl و CaCl2 و به تناسب 5 قسمت کلرید سدیم و 1 قسمت کلرید کلسیم و نیز به خاک یا آن ترس. لوم اضافه شدند. نتایج نشان داد که به استناد می‌زین در دانه شوری سبب افزایش میزان جذب و تجمع عنصر نیترولن، کلسیم و منیزیم در سالو دانه گردان در هر دو سال آزمایش گردید. از مقدار پناسیم در هر دو گیاه در دو سال با افزایش سطح شوری کاسته شد. در بین عناصر غذايی اندزاگی گیاه در هر دو سال آزمایش، پیشینگ غلظت در شوری 20 دسی‌زمینس بر متر مربوط به عنصر سدیم در سالو دانه که از افزایش عادل 17 و 22 دی‌زا به تری در سالو دانه اول و دوم به به بخش شاهد برخوردار بود که نیترولن (ب) نمی‌پذیره و منیزیم در دانه بر تجمع عنصر نیترولن، کلسیم، نمی‌پذیره و منیزیم در حسی بر بخش سیستم بر غلظت این عنصر در و دو گیاه که در دو سال آزمایی به افزایش میزان شوری بر مقدار تجمع کربوهیدرات و پروپن در دو مرحله گل‌دهی و شیری شدن دانه در گرگ برپه افزوده شد. نیترولن به تجربه این و دو تری به مرحله گل‌دهی افزوده استفاده از تری افزوده و کربوهیدرات پرپه در مرحله کنست. شد.

واژه‌های کلیدی: شوری، نیترولن، عناصر غذایی، تنظیم کندنهای اسمزی و گندم

1. دانشجوی سابق دکتری زراعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و مهندسی طبیعی رامی و در حال حاضر استادیار زراعت، دانشکده کشاورزی، دانشگاه زابل

2. به ترتیب استادیار، دانشیار، استادیار و دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه علوم کشاورزی و مهندسی طبیعی رامین، ملتانی، اهواز

193
مقدمه
تجمع میکروگراند در خاک‌های مناطق خشک و نیمه‌خشک دنیا یکی از مسئله مهم شناختی است که به‌طور گسترده‌ای بر تولید گیاهان زراعی باعث می‌گردد (۲۴). گیاه‌های زراعی از لحاظ تحلیل نسبت به اصلاح تجمع یافته در محیط رویه (شور) تا حد زیادی منفی‌سازی و این مقاومت به عوامل‌های مهمی تولید شده از ورود بی‌رحمانگی به بی‌رحمانگی به دست و گیاه‌های قابلیت تولید ترکیبات سازگارکننده (نطسه کننده‌های اساسی) به‌طور مطلق می‌باشند. (۱۵ و ۲۰).

مطالعات بی‌رحمانگی نشان داد که در گیاهان تحت تنش شوری تعدادی از ترکیبات آنی (محلول‌های سازگارکننده) تجربه می‌کنند. این ترکیبات تداخلی در فرآیندهای بی‌رحمانگی گیاه‌های توان کننده از این ترکیبات می‌توان به انواعی از گریپهریدارهای محلول (ماتیانول، ساکارز، رافینوز، الکوک ساکارید) و ترکیبات گالاکتان (آسید آمینه، پروتئین و گلیسین - بی‌رحمانگی) اشاره کرد. ترکیبات سازگار کننده نقش مهمی در بهبود تنظیم اسیدی در گیاهان تحت تنش دارند (۲). در طی بروز نشت شوری علائم تیبات گیاهان جز کاهش آب، تجمع یکی از بی‌رحمانگی در غلظت بالا در یافته گیاهان می‌تواند منجر به ایجاد سمیت و یا عدم توانایی فاصله شود. به دلیل فرآیندهای غلظت محیط در وید Na⁺ و Ca²⁺ در خاک و آب‌های شور از جذب یکی از عناصر الکلور و کربنات کربنات از نظریه

K⁺، Na⁺/Ca²⁺ و Mg²⁺ در بافت گیاهان به وجود

Na⁺/NO₃⁻ و Ca²⁺/Mg²⁺ Na⁺

ما آید (۱۴) .
مواد و روش‌ها
این بررسی در سال‌های زراعی 1382 و 1383 انجام شده است.

مزروع تعیین کننده اصلی آن از نظر دراجات عرض جغرافیایی 31 درجه و 36 دقیقه و در مدت 50 متری از سطح دریای ادرار کردگی می‌باشد.

30 ساله بارانگاتیک و دمای سالانه محل آزمایش ترتیب متوسط حداکثر 32.2 درجه سانتی‌گراد بود. متوسط حداکثر دما 31.8 درجه سانتی‌گراد بود و متوسط حداقل دما 14.6 درجه سانتی‌گراد بود.

آزمایش به صورت کرت‌های خرده شده و بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار انجام گردید.

پنج سلسله شوری (شاخص، آب آیاسپر و ناکارکین و نمک) ا ثالث تیماری

میزان کل آب پاش که در فواصل زمانی 8 روز بعد از 30 و 30 سانتی‌متر متوسط، مصرف از زمان اول تیمار شوری در مزرعه و در بزرگی بروکسی 1/5 میلی‌متر به میزان 11 میلی‌متر بود (اثربخش 2/75 میلی‌متر آب آبیاری حاول تیمار شوری و 2/75 میلی‌متر آب بارانگاتیک) میزان کل آب مصرف در نتیجه اثرات اکثریت آب آبیاری حاوی تیمار شوری و 8/1 میلی‌متر آب حاصل از بارانگاتیک بود. در هر کیلوگرم نیترات کود به عون، 0.5 کیلوگرم نیترات می‌تواند در هزار کیلوگرم آب کود 150 دسی‌زیمتر بر متر بیش از مصرف از 30 سانتی‌متری در مزرعه قابل بررسی باشد. نتیجه‌گیری از این آزمایش مورد بررسی قرار گرفت.

کرت‌های اصلی 50/1 و 50/2 از این بررسی بر اساس سوپر فسفات تریبل محاسبه و مصرف شد.

اندازه‌گیری‌ها

الف) تنظیم کندنده‌امسی در مرحله گل‌دهی و شیری شدن دانه‌ها (کد 51 و 41 براساس مقياس زاوکس) کربوهیدرات با استفاده از اکل اتانول 95/٪ و براساس روش استخراج سولفونیک استفاده شد. در این روش 60 گرم از نمونه به همراه 100 گرم آب اکسیژن سه ساعت در حرارت 80 درجه سانتی‌گراد حرارت داده شد. سپس به سی‌سی از این نمونه 1 سی‌سی قلیل در 75 درجه سانتی‌گراد برای تعیین رطوبت کندنده‌امسی استفاده شد.
جدول 1. خصوصیات فیزیکی و شیمیایی خاک قطعه آزمایش قبل از کاشت در عمق 0-30 سانتی‌متر

<table>
<thead>
<tr>
<th>نوع خاک</th>
<th>رس</th>
<th>سیلت</th>
<th>نان</th>
<th>دم‌دراز اجرای بافت خاک</th>
<th>عناصر قابل جذب (پی بر ام)</th>
<th>هدايت الکتریکی</th>
<th>pH</th>
<th>ادhta كل</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>سال</th>
<th>(دسي زيمنتس بر متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Loam</td>
<td>240</td>
<td>7</td>
<td>6/3</td>
<td>7/7</td>
<td>1/7</td>
<td>1382-83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>242</td>
<td>7</td>
<td>8/25</td>
<td>8</td>
<td>1/22</td>
<td>1383-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. شوری آب آب ابری و میزان شوری عصاره اشاع خاک در مرحله برداشت

<table>
<thead>
<tr>
<th>عمق</th>
<th>شاهد</th>
<th>شاهد</th>
<th>شاهد</th>
<th>شاهد</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ cm</td>
<td>۱۳۸۴</td>
<td>۱۳۸۳</td>
<td>۱۳۸۴</td>
<td>۱۳۸۴</td>
<td>۱۳۸۴</td>
</tr>
<tr>
<td>۴۰ cm</td>
<td>۱۳۸۴</td>
<td>۱۳۸۴</td>
<td>۱۳۸۴</td>
<td>۱۳۸۴</td>
<td>۱۳۸۴</td>
</tr>
</tbody>
</table>

نمودن برداری

<table>
<thead>
<tr>
<th>سانتی‌متر</th>
<th>دسی زيمنتس بر متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۳۰ cm</td>
<td>۱۳۸۲/۰۳</td>
</tr>
<tr>
<td>۳۰-۶۰ cm</td>
<td>۱۳۸۳/۰۶</td>
</tr>
<tr>
<td>۶۰-۹۰ cm</td>
<td>۱۳۸۴/۰۹</td>
</tr>
<tr>
<td>۹۰-۱۲۰ cm</td>
<td>۱۳۸۵/۱۲</td>
</tr>
</tbody>
</table>

میانگین
بررسی اثرات سطوح مختلف شوری و نیتروژن بر تنظیم کندنهای اسوزی و...

نانش می‌دهد که شوری در هر دو سال آزمایش تأثیر معنی‌داری بر فلت‌شنای عناصرنیتروژن، کلسیم، پتاسیم و سادیم در ساقه و دانه دارد. در هر دو سال شوری در سه سطح زیسترس بر متر داشت. افزایش سطح شوری در سالهای دیگر می‌تواند این اثر را بر مصرف کلسیم، مینیم و نیتروژن در سال به ترتیب از افزایش معادل ۵۳/۱ و ۹۰/۴ درصد نسبت به شاهد برخودار بود. در سال دوم میزان این افزایش به ترتیب به‌طور کاملاً در سطح شوری ۵۰ دسی زیسترس بر متر بر متر داشت و از افزایش معادل ۸۸ در سال اول و ۹۴ درصد در سال دوم نسبت به شاهد برخودار بود (جدول ۴ و ۷).

تیمار شوری بر فلت‌شنای عناصر کلسیم و نیتروژن در داده‌ها افزود. افزایش سطح در سال اول نتیجه‌ی ۱۵ دسی زیسترس بر متر از افزایش داشت. با بالا رفتن سطح شوری از مقدار آن‌ها تا حدی کاسته‌شده مقدار کلسیم و نیتروژن در شوری ۱۵ دسی زیسترس بر متر از افزایش معادل ۱۴/۹ و ۱۸/۳ درصد نسبت به شاهد برخودار بود. در سال دوم بیشترین میزان این عناصر در شوری ۲۰ دسی زیسترس بر متر بسته آمد و از افزایش معادل ۲۲/۷ و ۲۶/۲ درصد نسبت به شاهد برخودار بودند (جدول ۴ و ۷).

نتایج تجربه‌ی آماری در مورد عنصر پتاسیم و مینیم در بذر نشان داد که در هر دو سال آزمایش، اثر شوری نهایی بر فلت‌شنای پتانسیم معنی‌دار است. با بالا رفتن شوری از شاهد تا سطح ۲۰ دسی زیسترس بر متر از فلت‌شنای این نوع عنصر بمرکز کاسته شد و این کاهش از لحاظ آماری نهایی پتانسیم معنی‌دار بود. مقایسه‌ی میانگین نشان داد که کاهش کندنهای پتانسیم در شوری ۱۰ دسی زیسترس بر متر نسبت به شاهد بریار/۱۰۰ درصد در سال اول و ۱۲۰ درصد در سال دوم بود (جدول ۴ و ۷).

رابطه بین شوری و قابلیت در دسترس بودن عناصر غذایی

98% اضافه و در نهایت میزان نور جذبی در ۲۴۳ نانوتروم با

دستگاه اسیتروفوتو می‌شود. میزان کربوهیدرات

استخراج براساس میکروگرم گلوکز در هر گرم وزن تراژ

جدول استاندارد به دست آمد. جهت اندازه‌گیری پرولیز

روح بی‌داری و همکاران استفاده شده (۲۰). در پژوهش نیز میزان نور جذبی در ۲۵۰ نانوتروم در دستگاه اسیتروفوتو

قرار گرفت. میزان پرولیز پستانی براساس میکروالوم

بر گرم وزن تراژ جدول استاندارد به دست آمد.

(ب) عناصر غذایی

بعد از برداشت نهایی گیاهان، جهت اندازه‌گیری کربوهیدرات،

نمونه‌هایی به صورت تصمیمی از ساقه و دانه هر تیمار در هر

یک از سه تکرار به نمونه‌ای از آسیاب و با روش خاک‌دری‌کردن

خشک عناصر مسیم، پتاسیم، کلسیم، مینیم، استخراج شدند.

برای اندازه‌گیری مقدار این عناصر به چند عناصری و

پتانسیل که از نسبت درصد فرمول استفاده شد. پنج عناصر با

استفاده از دستگاه اسیتروفتو اسپرسن اسپرسنیک گرفتند. برای

نیتروژن از روش کانال استفاده شد. در نهایت داده‌ها براساس

SAS آزمایش و براساس طرح استفاده شده با نرم افزار آماری

تجربه واریانس و میانگین‌ها به روش دانکین در سطح ۵%

مقایسه شدند.

نتایج و بحث

(الف) عناصر غذایی

نتایج تجربه‌ی آماری هر یک از سال‌های آزمایش به صورت

جدول‌های (جدول ۳ و ۵) و تجربه مرکب داده‌ها (جدول ۴ و ۷)
جدول ۳ تجربه واریانس نیتروژن، کلسیم و منیزیم در ساقه و بذر

<table>
<thead>
<tr>
<th>منابع</th>
<th>تغییرات</th>
<th>تکرار</th>
<th>شبیه‌ساز</th>
<th>شوری (S)</th>
<th>خطای a</th>
<th>نیتروژن (N)</th>
<th>خطای b</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسیم</td>
<td>درجه داری</td>
<td>2.3</td>
<td>0.4</td>
<td>0.33</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>منیزیم</td>
<td>درجه داری</td>
<td>2.2</td>
<td>0.4</td>
<td>0.33</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>نیتروژن</td>
<td>درجه داری</td>
<td>2.2</td>
<td>0.4</td>
<td>0.33</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>
جدول 4. مقایسه میانگین‌های مربوط به عناصر نیتروژن، کلسیم و منیزیم

<table>
<thead>
<tr>
<th>عوامل</th>
<th>نیتروژن</th>
<th>کلسیم</th>
<th>منیزیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش</td>
<td>1384</td>
<td>1383</td>
<td>1384</td>
</tr>
<tr>
<td>بذر</td>
<td>1384</td>
<td>1383</td>
<td>1384</td>
</tr>
<tr>
<td>ساچه</td>
<td>1384</td>
<td>1383</td>
<td>1384</td>
</tr>
</tbody>
</table>

توجه: شیوع (دستی زیرشیوه بر متر) و نیتروژن (گیلگرم در هكتار)
جدول 5. تجزیه مرکب عناصر نیتروژن، کلسیم و مینزیم

<table>
<thead>
<tr>
<th>منابع</th>
<th>درجه</th>
<th>تغییرات</th>
<th>نیتروژن</th>
<th>کلسیم</th>
<th>میزیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>1</td>
<td>8/8**</td>
<td>1/4**</td>
<td>1/5**</td>
<td></td>
</tr>
<tr>
<td>سال × نیتروژن</td>
<td>2</td>
<td>9/9**</td>
<td>1/2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شوری</td>
<td>4</td>
<td>1/1**</td>
<td>1/4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سال × شوری</td>
<td>4</td>
<td>1/1**</td>
<td>1/4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سال</td>
<td>16</td>
<td>0/002</td>
<td>1/1**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن</td>
<td>2</td>
<td>1/1**</td>
<td>1/4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سال × نیتروژن</td>
<td>2</td>
<td>1/1**</td>
<td>1/4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شوری × نیتروژن</td>
<td>8</td>
<td>1/1**</td>
<td>1/4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سال × شوری × نیتروژن</td>
<td>8</td>
<td>1/1**</td>
<td>1/4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شیب</td>
<td>40</td>
<td>0/003</td>
<td>1/1**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%CV

* و **: به ترتیب عدم اختلاف معنی‌دار، اختلاف معنی‌دار در سطح 1 و 5%.
جدول ۶: نتایج تجزیه و اریانس مربوط به عناصر سدیم و پتاسیم و نسبت پتاسیم به سدیم

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>سدیم</th>
<th>پتاسیم</th>
<th>پتاسیم به سدیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>بذر</td>
<td>1384</td>
<td>1382</td>
<td>1383</td>
<td>1382</td>
</tr>
<tr>
<td>ساقه</td>
<td>1384</td>
<td>1382</td>
<td>1383</td>
<td>1382</td>
</tr>
<tr>
<td>شوری (S)</td>
<td>3</td>
<td>376 **</td>
<td>367 **</td>
<td>1411 **</td>
</tr>
<tr>
<td>طیف نیتروژن (N)</td>
<td>2</td>
<td>21 **</td>
<td>21 **</td>
<td>11 **</td>
</tr>
<tr>
<td>شوری (S)</td>
<td>8</td>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
</tr>
<tr>
<td>شوری (S)</td>
<td>20</td>
<td>9/22</td>
<td>9/22</td>
<td>9/22</td>
</tr>
<tr>
<td>درصد CV</td>
<td>%</td>
<td>151</td>
<td>9/44</td>
<td>9/44</td>
</tr>
<tr>
<td>سال</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
<td>نرخ</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1384</td>
<td>7.5</td>
<td>7.6</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>1385</td>
<td>7.9</td>
<td>8.0</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>1386</td>
<td>8.3</td>
<td>8.4</td>
<td>8.5</td>
<td>8.6</td>
</tr>
</tbody>
</table>

توجه: بهتر است اغلب اطلاعات را با نظر به منبع مقاله بررسی کنید.
جدول 8. تجزیه مکرک عناصر سدیم و پتاسیم

<table>
<thead>
<tr>
<th>درجه</th>
<th>متغیرات</th>
<th>سدیم</th>
<th>پتاسیم</th>
<th>نسبت پتاسیم به سدیم</th>
<th>سال</th>
<th>تبریز</th>
<th>سال</th>
<th>تبریز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td>678/9**</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td>678/9**</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td>678/9**</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td>678/9**</td>
<td>1234/9**</td>
<td>678/9**</td>
<td>345/9**</td>
<td></td>
</tr>
</tbody>
</table>

** p : به ترتیب عدم اختلاف معنی دار، اختلاف معنی دار در سطح 0.01 و 0.05

بیشترین این افزایش مربوط به عصار سدیم بوده است که در میزان عناصر غذایی در خاک دارد. مطالعات فیزیولوژیک نشان داده که تنش بیشتر آثار سویی بر رشد گیاهان دارد (1). این امر به تغییرات و تعادل عناصر غذایی تاثیر زیادی دارد (9-10). در این آزمایش، سبب افزایش میزان تجمع عناصر پرصرف هم در بخش هوایی و هم در بخش نازی آب داشته است. این نتایج با گزارش‌های فرانکوئیس و همکاران و ارشاد و همکاران مطابقت دارد (11). به طور کلی، گزارش گردنده که عملاً اصلی خسارت ناشی از تنش شوری در برخی بیماران میزان سدیم و در نتیجه سبب نیاز در گیاه است (28). زمانی که میزان سدیم افزایش می‌یابد آن مکان است منجر به تغییرات در فشار اسیدی سولو شد. این عامل موجب پلاملوسیز و کاهش جذب انتخاب سولولهای ریشه‌ای می‌شود. در این آزمایش سلول‌های هواپیمایی گیاهان با سندرد تغییرات قابل ملاحظه اعمال گردید که این سلول‌ها در سطح قابل معنی‌دار، نتیجه‌گیری از آزمایش‌ها را داشته که این سلول‌ها در سطح قابل معنی‌دار نیست. در واقع به شوری تا حدی بر غلظت عناصر کلسیم، مسیم و پتاسیم در سلولهای ریشه‌ای جذب می‌شود. این گزارش همچنین با گزارش‌های فرانکوئیس و همکاران و ارشاد و همکاران مطابقت دارد (11).
اهرت و همکاران اعلام کردند که در بسیاری از گیاهان خانواده گل‌ریز سدیم به عنوان عامل اصلی خسارت ناشی از سمیت بیوتی‌ه (17). گیاهی سدیم در محلول خاک منجر که کافی گذب دیگر عنصر گیاهی توسط گیاه می‌شود. چرا که سدیم به‌طور مستقیم سبب تداخل در جذب و انتقال دیگر عنصر گیاهی از طریق بالاموسماتی سلول‌های ریشه می‌شود. هم چنین به‌صورت ناشی از تاثیر خاک می‌تواند از رشد ریشه و جذب دیگر عنصر گیاهی بهبود یابد.

کود نیتروژن در هر دو سال آزمایش اثر معنی‌داری بر غلظت عنصر کلسیم و پتاسیم نمی‌نماید. در سال ۱ و نیتروژن و سدیم در هنگام داشتند. نیتروژن و اکسید نیتروژن در سال دوم و پتاسیم دانه در هر دو سال تحت تأثیر نیتروژن قرار نگرفت (جدول ۱ و ۲). تجزیه مرکز داده‌ها نشان داد که نیتروژن در اثر معنی‌داری بر غلظت تمامی این عناصر در هر دو بخش جه زیر می‌بایست به نمایش می‌آید. نیتروژن از کلسیم و پتاسیم در دانه افزوده شد. در حالی که نیتروژن در اثر نیتروژن به شکل بیشتر به وجود آمد. در حالی که نیتروژن به شکل بیشتر به وجود آمد. در حالی که نیتروژن به شکل بیشتر به وجود آمد. در حالی که نیتروژن به شکل بیشتر به وجود آمد. در حالی که نیتروژن به شکل بیشتر به وجود آمد. در حالی که نیتروژن به شکل بیشتر به وجود آم

شیری شدن دانه، در برخی پژوهای دیگر به دلیل استفاده از نیتروژن، تیمار کود نیتروژن نیز به مقدار نیازی بر غلظت آن در سطح مختلف شرایط افزود. این امر نیاز به یکی یا دو افزایش درصد نیترورزان در دو بخش این رقم از گیاهان کودین، دلیل افزایش کلسیم در دو بخش گیاه در هر دو سال آزمایش می‌تواند مربوط واکنش این رقم از گیاهان به استفاده از نیتروژن کلسیم در طی اعمال تشخیص شوری با نیتروژن کلسیم باشد. گرانی و گروه غرب در کنترل گیاهان تحت نشانه‌های هنگام سپیده، بیشتر رفت و در نتیجه کلسیم در بخش بی‌گیاهان نشود (۱۴).

در جدول ۴ و ۵ مشاهدات که از تیمار شاهد ناشی می‌باشد. شوری در ۵ دسی‌زمین بر متر تقویت قابل ملاحظه‌ای در میزان تجمع عنصر کلسیم، کلسیم و نیتروژن در بخش هواپیم و وجود ندارد. حتی در این سطح مقدار تیمار تیمار جاده بسیار بیشتر از سیدیم است و مقدار کلسیم نیز از سیمی بیشتر است. اما با بالای رفت و در سطح ۵ دسی‌زمین بر متر به بعد روند جدی‌گرایی گیاه به هم خورده و از میزان جاده عنصر نیتروژن، کلسیم و مزینی نسبت به سدیم به مقدار قابل ملاحظه و چشم‌گیری کاسته می‌شود.

میزان افزایش فون سدیم در بذر در شوری ۲۰ دسی‌زمین بر متر نسبت به شاهد در سال ۶/۶ و در سال ۷/۵ برای بذر این افزایش افزایش نیتروژن و کلسیم در هر دو سال ۱/۵ برای بذر.

بود (جدول ۴ و ۵).
ترفن سطح کود مقدار افرازی سدیم بیماران چشمگیری کاهش یافته و در سال اول در سیال ابزار افرازی در سطح کودی 150 نسبت به 100 کیلوگرم نیتروژن در هکتر برابر 5/8 درصد و در بعد 9/8 درصد بود. در سال دوم تغییر بسیار سطح سیال در این و سطح مشاهده نشده اما مقدار افرازی آن در بد برای 1/16 درصد بود (جدول 7). این امر نشان داده تأثیر مثبت کود نیتروژن بیا بر میزان از جذب بیشتری یون سدیم است. این تاثیج با تغییر کانون و گروه متابولیت دارد که اعلام کردن که با به کارگیری و مصرف نیتروژن بالاتر از حد اینیمود تیز برای شرایط بدون ناش، بیمار رشد و جذب عناصر غذایی در شرایط فشار شوری افزوده می‌شود (14). از این رو می‌توان نتیجه گرفت که نیتروژن می‌تواند از جذب بیشتر بیان سدیم، جذب عناصر ضروری را در شرایط ناش شوری بهبود بخشد.

اثر مقابل شوری و نیتروژن بجی در موارد پاتاسم و نیتروژن دانه، یکی از ساله و دانه در هر دو سال کلسیم دانه در سال دوم و سدیم ساقه نما در سال اول در سیال موارد در هر دو سال آزمایش معین دارد. این تاثیج به خوبی نشان می‌دهد که تأثیر خلفی نمک در تغییرات مختلف نیتروژن پیکان نیست و اثر تنش شوری بر جذب عناصر درگذم به میزان به کارگیری و مصرف کود نیتروژن تغییر می‌کند.

ب) نسبت N

تابع تجزیه واریانس (جدول 6) نشان می‌دهد که شوری تأثیر معنی‌داری بر نسبت جذب پاتاسم به سدیم در بخش هواپیما و دانه گندم رقم چرمان در هر دو سال آزمایش دارد. با بالاترین نسبت سطح شوری به مدت 100 کیلوگرم بیمار از نسبت 20 دسی ژیمنس بر متر از این نسبت در بخش هواپیما و دانه گندم کاهش و در بخش هواپیما و دانه گندم کاهش شد. بالاترین نسبت پاتاسم به سدیم در دو بخش هواپیما و دانه گندم مربوط به نیتروژن 20 دسی ژیمنس بر متر بوده (جدول 7).

ک) نتایج پاتاسم اسیر

نتایج تجزیه آماری هر یک از سال‌های آزمایش به صورت مجزا (جدول 9) و تجزیه مکرر داده‌ها (جدول 11) نشان می‌دهد که اثر شوری بر میزان تجمع کربوهیدرات و پروپن برد پرح در دو محله گلده و شیری شدن دانه‌ها معنی‌دار است. با افرازی سطح شوری بر میزان تجمع این دو ترکیب در دو نیتروژن سبز برد پرح در دو محله گلده و شیری شدن دانه‌ها
جدول 9. تجزیه واریانس کربوهیدرات و پرولین بر پرچم در دور محلة

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>مرحله کلی</th>
<th>شری شدن دانه</th>
<th>درجه گریان</th>
<th>درجه آزادی</th>
<th>تکرار</th>
<th>شوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>برولین</td>
<td>1388</td>
<td>1384</td>
<td>2</td>
<td>14/12/9</td>
<td>1/5</td>
<td>1/6</td>
</tr>
<tr>
<td>کربوهیدرات</td>
<td>1384</td>
<td>1383</td>
<td>2</td>
<td>14/13/9</td>
<td>1/5</td>
<td>1/6</td>
</tr>
</tbody>
</table>

جدول 10. مقایسه میانگین های پرولین و کربوهیدرات بر پرچم

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>مرحله کلی</th>
<th>شری شدن دانه</th>
<th>عوامل</th>
<th>آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>برولین</td>
<td>1384</td>
<td>1383</td>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>کربوهیدرات</td>
<td>1384</td>
<td>1383</td>
<td></td>
<td>S2</td>
</tr>
</tbody>
</table>

از کنون کشاورزی و منابع طبیعی / سال بازدهم / شماره چهلم (الف) / تابستان 1386

آزمایش گریان دو گرم برم به بود. مقدار برولین در این سطح برابر/16 و 136 میکروگرم بر گرم وزنتر و کربوهیدرات برابر/23 و 28 میکروگرم گلوکز در گرم وزنتر به ترتیب در سال اول و دوم آزمایش بود (جدول 10). در مرحله شری شدن دانه کمترین میزان پرولین و کربوهیدرات برگ پرچم مربوط به شوری شاهد و بیشترین آن افزوده شد. در مرحله کلی دهه کمترین میزان پرولین در هر دو سال آزمایش در سطح شوری 50 دسی زیمنس بر متر بود. مقدار برولین در این سطح برابر/18 و 136 میکروگرم بر گرم وزنتر و کربوهیدرات برابر/23 و 28 میکروگرم گلوکز در گرم وزنتر به ترتیب در سال اول و دوم آزمایش بود (جدول 10). در مرحله شری شدن دانه کمترین میزان پرولین و کربوهیدرات برگ پرچم مربوط به شوری شاهد و بیشترین آن 206
جدول 11. تجزیه مرکب کربوهیدرات پروپیلین

<table>
<thead>
<tr>
<th>درجه</th>
<th>کربوهیدرات</th>
<th>پرولین</th>
<th>کل دهی</th>
<th>شیری دهنده‌ها</th>
<th>متابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزادي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>سال</td>
<td></td>
<td></td>
<td>6%</td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>سال x تکرار</td>
<td></td>
<td>3%</td>
<td>10%</td>
<td></td>
<td>58%</td>
</tr>
<tr>
<td>شوری</td>
<td></td>
<td>2%</td>
<td>4%</td>
<td></td>
<td>98%</td>
</tr>
<tr>
<td>سال x شوری</td>
<td></td>
<td>4%</td>
<td>1%</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>اشباه</td>
<td></td>
<td>7%</td>
<td>16%</td>
<td></td>
<td>7%</td>
</tr>
<tr>
<td>نیتروزون</td>
<td></td>
<td>2%</td>
<td>3%</td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>سال x نیتروزون</td>
<td></td>
<td>2%</td>
<td>8%</td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>شوری x نیتروزون</td>
<td></td>
<td>8%</td>
<td>3%</td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>سال x شوری x نیتروزون</td>
<td></td>
<td>8%</td>
<td>6%</td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>اشباه</td>
<td></td>
<td>2%</td>
<td>20%</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>%CV</td>
<td></td>
<td>15/9</td>
<td>14/4</td>
<td></td>
<td>162/3%</td>
</tr>
</tbody>
</table>

آب سلولی می‌شود. در این بین، تغییر در میزان کربوهیدرات‌ها از همبستگی زیادی برخوردار است. چرا که این ترکیبات رابطه مستقیمی با فرآیند ترکیب‌های فیزیولوژیکی گیاه همانند فیونسیتو و تفسیر دارند (8).

در آزمایش توسط کریپس و گالبا در مورد تأثیر شوری و خشکی بر درمان تجمیع کربوهیدرات در ارقام مختلف گندم سرخ نمونه، نشان داد که کربوهیدرات‌های محلول (گلوکز، فروکوز، ساکاراز و فورتکان) در سفرنگ و غیر فیونسیتویی به طور معنی‌داری با افزایش سطح شوری و خشکی در ارقام داریب با ارقام متفاوت افزایش می‌یابد.

میزان تغییر در سطح آب و شوری در این بین، تغییر در میزان کربوهیدرات‌ها و این برخی از فرآیندها در معرض تنش بر میزان کربوهیدرات‌های محلول به سبب تبدیل شدن ساکاراز به فنیلاکاریل افزوده می‌شود، در ضرورت وجود آن نیز کاهش خواهد داشت. در پژوهش حاضر تز دیده شد (9) که در هو در سال آزمایش، از سطح شوری دست یافتن به طور معنی‌داری افزایش قابل ملاحظه‌ای در میزان تجمیع کربوهیدرات پرولین در باین سیب و پرک پرچ در هر دو مرحله گل دهنده و شیری دهنده‌ها مربوط به شوری 20 دسی زیمنس بر متر بودن. میزان افزایش پرولین در سطح شوری 20 دسی زیمنس بر متر نسبت به شاهد برای 0.4/5 و 1.2/7 درصد به بررسی برای سال اول و دوم بود. این میزان افزایش برای کربوهیدرات برابر 0.8/4 درصد در سال اول و 0.8/7 درصد در سال دوم بود (جدول 10).

افزایش میزان تنبیه کندنده‌های استرسی آلی (پرولین و کربوهیدرات) در بافت سیب‌گیاهان می‌تواند بی‌پرهیز بروز شوری توسط بسیاری از محفوظات گیاهان شده است. سولنا و همکاران آن را در بررسی گزارش (17) افزایش غلظت این دو ترکیب در هر دو مرحله گل دهنده و شیری دهنده‌ها در گندم چمن زرد و جدول نوعی ترکیب نشان دادند و اگاهی این را در ترکیبات آلی برای آزمایش می‌باشد. مورگان افزایش ترکیبات سازگار کندن (کربوهیدرات، استفدها آمیزه، پونه‌های عضوی و استفدهای آتی) را به عنوان پارامترهای فیزیولوژیکی و پیشگیری به تخت اعتمادی در طی بروز شوری دست می‌یابد (17). این ترکیبات در غلظت‌های بالا سبب در فعالیت‌های اکسیداسیون در ناشته، سبب حفظ فشار انسداد و افزایش مکمل‌گذاری در هنگام کاهش

207
مفتی و معنی‌داری بین میزان تیترژون ساقط و غلظت کربوهیدرات در هر در مرحله گل‌دهی و نمره فندانه به دست آمد (کاهش 0.8 دست ریگ) R² = 0.82 و شیفت نمره فندانه به\n
نتیجه یافته‌های بررسی در سال آزمایش‌های نوزده (جدول 9) نتایج نشان می‌دهد که بر\n
میزان کاهشی فنگیل برگ پرچم و افزایش آن داشت. این نتایج می‌تواند به دلالت داشته باشد که بر\n
به دامنه یافته در حال رشد گریده. این امر نتیجه‌گیری تأثیر مثبت و\n
معنی‌دار تیترژون بر عملکرد دانه در طی بروز تنش‌شوری\n
است.\n
نتایج نشان می‌دهد که بر\n
در مورد کربوهیدرات در نتایج مختلف در هر در سال\n
آزمایش‌ها به دست آمد. در هر در سال در مرحله گل‌دهی با\n
افزایش سطح تیترژون بر میزان تجمیع کربوهیدرات در برگ\n
پرچم افزوده شد. اما در مرحله شیری شدن دانه افزایش\n
تجمیع همراه با افزایش سطح کود کاسته شد. در هر در سال\n
آزمایش‌ها در مرحله گل‌دهی کمترین مقدار کربوهیدرات در\n
سطح کودی 50 کیلوگرم تیترژون در هکتار و بیشترین آن در\n
سطح کودی 150 کیلوگرم تیترژون در دست آمد. اما در مرحله\n
شیری شدن دانه‌ها کمترین میزان کربوهیدرات در سطح\n
کودی 150 کیلوگرم تیترژون در هکتار ماکینه‌های 187.9\n
و بیشترین آن در سطح کودی 50 کیلوگرم در هکتار با\n
ماکینه‌های 47.5 و 27 کیلوگرم با هزینه زیری و در سال\n
به دست آمد. میزان کاهش نتیجه گرفته \n
شده است (جدول 10).\n
به ترکیب در سال اول و دوم است (جدول 10).\n
مشاهده نتایج این آزمایش، افزایش سطح تیترژون در\n
مرحله گل‌دهی و کاهش آن در مرحله پر گل‌دهی در غلاف\n
و به‌طور کل برگ پرچم گیاه بیشتر توسط کمک‌کننده\n
گزارش‌هاش است (19). این نتایج که در افزایش سطح تیترژون در طی بروز\n
شیری شده در حال رشد متفاوت می‌شود. در این آزمایش‌ها معمولاً\n
209
容忍ی گیری

بررسی نتایج دو ساله این آزمایش مشخص شد که شوری سبب بالا رفتن میزان سدیم در بخش هموایی و دانه و کاهش جذب میزان گردید که این امر منجر به کم شدن تابعت به سدیم گردید. در نهایت نیترژن در فرآمی کردن شریک لازم برای جذب بهتر پتاسیم تا حدی بر میزان این نسبت افزود. هر چند در طی بالا رفتن میزان نمک بر غلظت عناصر غذایی در دو بخش ساده و دانه افزوده شد اما بالا رفتن پیش از حد میتواند سبب کاهش ارزیابی عناصر در کندم گردید. تیمار کود نیترژن در سطوح بالای کودی با معنی‌داری از جذب پیشی سدیم را برای جذب پیشی دیگر عناصر از جمله نیترژن، نیکل و نیکلسین در گیاه همور کرد. از
سوی دیگر شوری بیافزایی غلتک در ترکیب دیوامی (لیپوئیدات و پروپیون) برگ میرسی که نیترژن در تمامی تیمارهای شوری بیافزایی شرایط بیافزایی غلتک این دو ترکیب شد. با توجه به نتایج بدست‌آمده در این آزمایش نشان داد که در اراضی نیاز به دو سال کمتر نیترژن ناکافی در کنار کودی در اندازه‌ی رشد می‌باشد. نمک در ناحیه‌ی رشد و در ترکیب کاهش عامل‌کندن داشت. این نکته موجب بروز اثرات محیطی گردید که در بهبود ادامه جذب آب و عناصر غذایی از خاک برا یگیاه فراهم می‌کند اما پس از انتقال گیاه به منابع آب و عناصر غذایی این ترکیبات ایلی بیشتر باید به‌منظور کاهش عامل‌کندن این ترکیبات، کاهش عامل‌کندن دانه خواهد بود. در این آزمایش یک مشخصه‌گر که رقم‌های به‌سیب حساسیت به سطح بالای شوری (پالمر از 5 دسی زیمنس بر متر به بالا) بر غلظت و ترکیب دیوامی (لیپوئیدات و پروپیون) در هر دو مرحله‌ی کلیدی و شوری شدند دانه‌ها فشوده شد و که همگی‌گی مشورت و متفاوت بین انواع
این دو ترکیب با عمل‌کرک دانه آن به دست آمد.

منابع مورد استفاده

ستنت و تجمع این ترکیب می‌شود.
اما در سال اول آزمایش کمترین مقدار کربه‌هیدرات برگ پرچم در سطح کودی 50 برابر نیترژن در هکان و شوری شاهد با میانگین 5 و در سال دوم در سطح کودی 100 و شوری شاهد با میانگین 12 میکروگرم کلیک در هر گرم وزنتر بده دش آمد. بالاترین میزان آن در هر دو سال در سطح کودی 150 و شوری 20 دسی زیمنس بر متر با میانگین‌ها 24 و 29 میکروگرم کلیک در هر گرم وزنتر بته تیپ بیش از دو بار ول‌اوم. در مرحله‌ی شوری دانه‌ها و در هر دو سال کمترین این ترکیب در سطح کودی 150 و شوری شاهد با میانگین‌ها 19/7 و 16/8 و بیشترین آن در سطح کودی 50 و شوری 20 دسی زیمنس بر متر با میانگین‌ها 48 و 49 میکروگرم کلیک در هر گرم وزنتر بده تیپ بیش از سال‌های اول و دوم به دست آمد.

نتیجه‌گیری

براساس نتایج دو ساله این آزمایش مشخص شد که شوری سبب بالا رفتن میزان سدیم در بخش هموایی و دانه و کاهش جذب میزان یافته رضایت که این امر منجر به کم شدن تابعت به سدیم گردید. در نهایت نیترژن در فرآمی کردن شریک لازم برای جذب بهتر پتاسیم تا حدی بر میزان این نسبت افزود. هر چند در طی بالا رفتن میزان نمک بر غلظت عناصر غذایی