برآورد پارامترهای زننگی و ترکیب پذیری عمومی تودهای بومی اسپرس

از نظر عملکرد علوفه

محمود تورچی، سعید اهری‌زاد، محمد مقدم، فاطمه اعتمادی و سید حامد طباطبایی وکیلی

چکیده

با توجه به اهمیت ارزیابی ترکیب پذیری عمومی قلب از نظر واریته‌های ساختگی در گیاهان علوفه‌ای تعداد 36 توده بومی اسپرس از نفاط مختلف ایران جمع‌آوری و در سال 1379 در یک خانه پیوندی در قابل طرح پرورشی کامل تصمیم گرفت. فرآیند کشت کاره تعداد 36 تا در قابلیت طرح گزارش گردندن. به‌دنبال آن، میان یک تا از نمونه‌های انسجام درون هر تکار. به‌طور گسترده‌ای ترکاری که شامل داده‌های تولید و اندازه‌گیری تقریبی و تحلیل قرار گرفت. صفات عملکرد ترک کشت به‌طور از هم یک از ک ноч در طول دریدن، وروز ترک باز کردن تکه نت. وزن خشک/1 کیلوگرم از کل کرت در مجموع 3 چیف و هم بطور جدیدانه در هر چیز (برداشت) مورد بررسی قرار گرفته. در چنین حالت خشکی عملکرد پیش‌بینی‌های این مقاله برای تعداد دو چین 1 و 2 و خوش خوراکی فقط برای چین دوم محسوب و مورد تجزیه و تحلیل آماری قرار گرفته. وزن خشک/1 کیلوگرم از کل کرت و روز ترک باز کردن میان کاره می‌باشد و بیشترین نتیجه‌گیری‌ها به خود اختصاص داده. بر اساس این عملکرد، برای میان چین۵ یازدی در آماری قرار گرفته تا نهایی خشک کردن. خشکی عملکرد و وزن ترک باز کردن تکه باین‌های قابلیت ترکیب پذیری عمومی. 6 توده باین صفت عملکرد ۶ توده باین وزن خشک ۹ توده باین خشکی و ۱۰ توده باین خشکی دارای بالاترین ارزش پودن. شرایط در تودهای پردر مورد همیشهی می‌توان به عنوان والدین در تولید واریته‌های ساختگی اسپرس به کار برده.

واژه‌های کلیدی: اسپرس، خشک خوراکی، شاخص عملکرد، ترکیب پذیری عمومی

مقدمه

تلاش‌های پیوندی به دلیل سهولت اجرای تولید بذر فراوان، تعداد والد و بیشتر و استفاده از آن‌ها در تولید بذر فراوان، اطلاعات ارائه‌ای، متداول‌نامه‌های چهارمی‌زی، روش‌های ارائه‌ای، ساختگی متداول است (۱۵) در مورد تولید عمومی، یک تا سه نسل آمیزش تصادفی تعداد محدودی

1. به ترتیب دانشیار، استاد باشگاهی، دکتر، کارشناس اسلامی‌نامه، دانشکده کشاورزی، دانشگاه تبریز

213
جدول 1. توده‌های بویی اسپرس جمع‌آوری شده از مناطق مختلف ایران

<table>
<thead>
<tr>
<th>منطقه‌ی اصلی</th>
<th>تعداد</th>
<th>نسبت آنتی‌‌اکسیدان</th>
<th>نسبت سایر توده‌های بویی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. اصفهان</td>
<td>15</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>2. خوزه‌های</td>
<td>11</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>3. سراب</td>
<td>12</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>4. گنج‌لداز</td>
<td>13</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5. کهمی هو</td>
<td>23</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>6. اسکندریه</td>
<td>22</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>7. کرمان</td>
<td>33</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>8. همدان</td>
<td>34</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>9. مازندران</td>
<td>35</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>10. می‌بان</td>
<td>36</td>
<td>27</td>
<td>26</td>
</tr>
</tbody>
</table>

است که اطلاعات حاصل از نتایج پلی‌کریس‌اسبی‌ها مورد استفاده قرار گرفت. محققین فوق نشان دادند که آزمون نیازهای پلی‌کریس به شیوه‌های مناسب زنده‌بیانی‌کننده بوده و همکاران (6) ژن‌هایی را که با ارگان ساخته‌کننده استفاده می‌کنند. آنها با 225 خانه پلی‌کریس را تشکیل دادند و بررسی عملکرد و تأثیر خاص در گلدهی، چهار لایه نشان دادند. یکی از این مطالعات از گیاه‌های بهداشت و بهبود کردن روزمره استفاده می‌نمود.

منسٹه‌های در این تحقیقات به‌عنوان یکی از منافع که ممکن است به‌عنوان یکی از مزایای استفاده از پلی‌کریس روش‌بندی مناسبی در اصلاح این بلاغ است. این مطالعات و همکاران (12) به‌عنوان موفقیت در تولید ویتامین‌های آبیک است. در این مطالعات استفاده را در این تحقیقات آزمون نیازهای شیوه ارگان، دو و این شیوه مورد استفاده قرار گرفته است (15). این ارقام معرفی شده پلی‌کریس در سال‌های مختلف ساخته بوده و دارای پیش‌ترکیب‌های خاصی گسترش می‌بندند به‌طوری که یکی از مزایای یکی از ناهنجاری‌ها در این مطالعات استفاده از پلی‌کریس روش‌بندی مناسبی در اعمال ساخته‌کننده و ایجاد ناهنجاری‌ها در این مطالعات از گیاه‌های بهداشت و بهبود کردن روزمره استفاده می‌نمود.

مواد و روش‌ها

مواد گیاهی مورد استفاده شامل توپ توده‌های بویی اسپرس از مناطق مختلف ایران (جدول 1) بود. خزانه پلی‌کریس را در سال 1379 از بهبود تحقیقات دانشکده دانشگاه تبریز، واقع در خیابان بوستان، 5 کیلومتری شرق تبریز، در قالب طرح بلوبه‌های تصادفی با 24 تکرار به نهایت گردید. هر تکرار شامل 5 پن دیده.

زمین‌پس که براساس قدرت ترکیب‌بندی عمومی انرژی شده‌اند، نتایج مثبت که روش بندی پلی‌کریس توسط فرنس (16) با مطالعه روی اصل همگانی نکته‌های مهم‌ترین مطالعات تیساد و همکاران (24) بسن دانشگاه شرکت‌های کریس بیشترین مورد استفاده را در بین مورد همکاران (24) بسن دانشگاه شرکت‌های کریس بیشترین مورد استفاده را در بین مورد همکاران (24) بسن دانشگاه شرکت‌های کریس بیشترین مورد استفاده را در بین مورد همکاران (24) بسن دانشگاه شرکت‌های کریس بیشترین مورد استفاده را در بین مورد همکاران (24) بسن دانشگاه شرکت‌های کریس بیشترین مورد استفاده را در بین مورد همکاران (24) بسن دانشگاه شرکت‌های کریس بیشترین مورد استفاده را در بین مورد همکاران (24) بسن دانشگاه شرکت‌های کریس B.
برآورد پارامترهای زمانی و ترکب‌پذیری عمومی توده‌های بومی اسپرس از

کاشت یک متری با فواصل بین ردیف ۷۵ سانتی‌متر بود. به منظور تسهیل گرده‌انفجاری، چندین کندوی زیتون عمل در خزانه‌گاهشته شد. در آخر سال زراعی، بدنه‌های بای‌کرکس حاصل از هر توده به مخلوط مقدار مستقیم از بذور تکرارهای مختلفی که خانواده‌های تانی را تشکیل می‌دادند. جمع آوری گردد. در سال ۱۳۸۰ بذل‌دهی‌ها ۳۰ توده بلی‌کرکس در قالب طرح لاتین ۵ گروه گردیدند. در هر تکرار ۶ بلک ناقص و در داخل هر بلک ۶ نماز (توده بلی‌کرکس) منظور شد. برای هر تیمار ۸ رفیق در نظر گرفته شد. یادداشت برداری فقط از ۴ رفیق مرکزی هر تیمار گرفته. کرکس‌های هفته‌ای یکبار آپاریز شدند. به منظور ایجاد تراکم ملایم و سیر شدن یکنواخت گیاهان، بذل به تراکم بالا بر روی رفیق‌های بی‌حیات ۴ سانتی‌متر و طول ۴ متر کاشته شدند. در سال اول شکت واکاری صورت گرفت و یادداشت برداری صفات از سال دوم شروع شد.

با توجه به عدم وجود اختلاف معنی‌دار بین بلک‌های ناقص درون هر تکرار منبع تغییر فوک با خطای آزمایش ادامه گرفت و آزمایش به صورت کرت‌های خرد شده در زمان در یکی طرح بلوک‌های کامل منظوری با ۳ تکرار مورد تجزیه و تحلیل قرار گرفت. به طوری که رمز به عنوان فاکتور اصلی و چین (برداری) به عنوان فاکتور فرعی منظور شد. قبل از تجزیه ارزیابی، نرمال بودن داده‌های چین ۱ و ۲ از نظر کلیه صفات اندازه‌گیری شده آزمون گردید و به‌عنوان عدم نرمال بودن داده‌های شاخص عملکرد از تبدیل لگاریتمی برای نرمال کردن آن استفاده شد. بر روی داده‌های نرمال صفات شاخص عملکرد در چهار یکنواخت مختلف، آزمون نوکیان انجام گرفت و آثار غیر افزایشی فقط برای مجموع چین‌های اول و دوم غیر معنی‌دار داشت. آزمایش کلیه بررسی‌های آماری و تعبین ترکب‌پذیری عمومی برای این صفت براساس مجموع چین‌های اول و دوم محاسبه گردید. برای صفات وزن خشک و تک کرت و خوش خوراکی، تجربه‌های آماری و تعبین قابلیت ترکب‌پذیری عمومی در چین‌های ۱ و ۲ به طور

جداگانه انجام گرفت و چین ۳ به دلیل کشت بیماری سفیدک و کاهش عاملی

سفیدک و کاهش عاملکردها از تجزیه و تحلیل حذف شد. صفات مورد مطالعه عبارت بودند از

الف) وزن تهیه‌های انتخابی به ازای تک پونه در هر چهار تعداد ۱۵۰ توده به طور تصادفی از ردیف‌هاي مرکزی هر کرت، از سطح زمین برده شده و با ترازوی حساس وزن گردید. نسبت وزن تهیه‌های انتخابی به تعداد آنها به عنوان وزن تر به ازای تک پونه ثبت گردید.

ب) وزن خشک ۱/۵کگ

برای این کار از کل علوفه براشته شده از هر کرت به میزان ۱/۵۷۹ کگ شده و توزین گردید.

ج) وزن تک کرت در واحد طول ردیف پس از حذف و ریتی‌کاری کناری، مجموع طول ردیف ۴ رفیق باقی مانده براشته و عملکردها تک کرت در واحد طول ردیف بر حسب متوسط محاسبه گردید.

(۵) شاخص عملکرد علوفه

به منظور بررسی میزان عملکرد علوفه تهیه‌ها شاخص زیر پیشنهاد گردید:

شاخص عملکرد علوفه = وزن خشک ۱۰۰گرم از کل کرت (گرم)

وزن تک کرت (گرم) × طول پالایش (سانتی‌متر)

وزن سهلی/۱۰۰گرم = وزن خشک (گرم)

(۶) خوش خوراکی

در چین ۲، پس از براشته ۱/۵ کیلوگرم علوفه تر از کل کرت به‌حال ایستا از سطح جدای شده و وزن خشک آنها به‌طور جداگانه این درگیری شد. نسبت وزن خشک برق به ساقه به عنوان خوش خوراکی محاسبه گردید. خوش خوراکی در چین ۳ به دلیل کشت بیماری سفیدک و کاهش عاملکردها ۲۱۵
محاسبه نگردید.

تک بوته انتخابی در مجموعه چین‌ها و در تجربه جدایانه چین‌ها تفاوت معنی‌داری از خود نشان ندادند و تا از لحاظ شاخص عامل‌کرد در مجموعه دو چین اول و دوم (2014) در سطح احتمال 0.10 دو روند تفاوت معنی‌داری از نظر آماری داشتند. وجود تفاوت معنی‌دار در سطح احتمال 0.10 دو روند برای صفت خوش‌خواهی در چین دوم نشان داد که چون خواه‌ها از نظر این صفت تفاوت چشمگیری وجود دارد (جدول آرده نشده است).

مقایسه میانگین عامل‌کرد علوفه خشک در سه چین نشان داد که چین سوم پیش‌ترین و چین اول کمترین وزن خشک علوفه را دارا بود (جدول 2). از آنجایی که در نباهت علوفه‌ای نظر اسبرس و پیوسته، چین اول یا بان با قسمت‌هایی هواپیم و مرحله استقرار گیاه‌های است. پایین‌ترین عامل‌کردهای چین اول بی‌توجهی است. در حالی که عامل‌کردهای چین اول در کشت پایه‌پای در سال پیش‌تر از چین‌های دیگر گزارش شده است (4 و 8). لازم افزایش عامل‌کرد خشک از چین اول تا سوم (جدول 2) را می‌توان بتوانست سیستم ریش‌های این گونه نسبت داد. ضمن اینکه علت خشک شدن هوا در اواخر نابی‌تر منجر به رشد مجدد در چین بعدی گشته و از عوامل مؤثر در بودن عامل‌کردهای این محصول می‌شود. طبق نظر هوارود و همکاران (16) تسریع در برداشت یک چین منجر به کاهش بهتری برای چین اول به علاوه عامل‌کرد در چین‌های بعدی می‌درد. همین‌چنین عوامل باعث افزایش استحکام گیاه در بهتری جهان دام شده‌اند (4).

یافته و بهت

نتایج و بحث

نابج مه‌ناک تجربه و جریان داده‌ها نشان داد که نباهت‌های پی‌کریس از نظر صفاتون ورود کرده به ازای واحدها واحدها واحد طولی راه‌رفته و زون خشک 15/5 کیلوگرم از کل کرت، ورود به ازای
جدول 2. میانگین‌ها، دامنه تغییرات و ضریب توان صفات مطلوب در توده‌های بومی اسپرس از…

<table>
<thead>
<tr>
<th>ضریب تغییرات (CV)</th>
<th>میانگین</th>
<th>دامنه تغییرات</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفت جوئنر عمیکر</td>
<td>18.71</td>
<td>25/2 - 3/2</td>
<td>0/14 ± 1/46</td>
</tr>
<tr>
<td>خوش خورایی</td>
<td>2</td>
<td>20/16 - 15/12</td>
<td>9/28 ± 1/24</td>
</tr>
<tr>
<td>وزن خشک (گرم)</td>
<td>0.53</td>
<td>30/12 - 25/06</td>
<td>19/14 ± 2/75</td>
</tr>
<tr>
<td>وزن تر از بیاکه بوته‌خانگ (گرم)</td>
<td>0/99</td>
<td>3/29 - 2/06</td>
<td>2/39 ± 1/28</td>
</tr>
<tr>
<td>وزن تر از بیاکه بوته‌خانگ (گرم)</td>
<td>0/99</td>
<td>3/29 - 2/06</td>
<td>2/39 ± 1/28</td>
</tr>
<tr>
<td>وزن تر از بیاکه بوته‌خانگ (گرم)</td>
<td>0/99</td>
<td>3/29 - 2/06</td>
<td>2/39 ± 1/28</td>
</tr>
</tbody>
</table>

چین دوم به دلیل استقرار بیشتر و توسعه ریشه‌ها نسبت به چین اول، عمیکر در تن بیونه‌ها از چون نشان داد، اما به دلیل گسترش بیماری و حذف بی‌بوته‌ها و به دلیل رقابت با سایر بوته‌ها، عمیکر در تن در کل کرت تا حدودی کمتر از چین اول بود. چین سوم میزان عمیکر تن را به خود اختصاص داد که از علی آن می‌توان کاهش ذخایر ریشه، مصداق شدن کیا اسپرس با شرایط نامطلوب آخر فصل و گسترش بیماری‌هایی اشکار کرد.

از مهم‌ترین شاخص‌های متغیر کیفیت علف، نسبت برگ به سافه خشک می‌باشد که در چین دوم مورد بررسی قرار گرفت. تجربه‌های آماری برای پیش‌بینی نسبت فقط روی چین‌های 1 و 2 انجام گرفت. نتایج از احتیاط نسبت برگ به سافه با یک‌پراکنی نفاوت ملی داشتند سطحی که توده‌های 1 و 19 بیشترین و توده 23 کمترین نسبت برگ به سافه در بخش اختصاص داده‌اند (جدول 3). کوتاه و همکاران (18) گزارش نمودند که سافه اسپرس علی‌ رغم ظاهری خشن و دارای الیاف کمه، قابلیت هضم بیشتر و افزایش غذایی بالایی نسبت به بیونه می‌باشد. ضمن آنکه چین دوم را پر بیشترین چین معروف کردند. محمد آبادی و کوچکی (5) نشان دادند.
جدول 3. میانگین صفات خوش خوراکی (چنین دوم) و شاخص عملکرد (در چین‌های اول و دوم)

<table>
<thead>
<tr>
<th>شماره خانواده ناتین</th>
<th>شماره خانواده ناتین</th>
<th>شاخص عملکرد برای مجموع دو چین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/05</td>
<td>1/11</td>
</tr>
<tr>
<td>2</td>
<td>3/66</td>
<td>1/23</td>
</tr>
<tr>
<td>3</td>
<td>3/73</td>
<td>1/73</td>
</tr>
<tr>
<td>4</td>
<td>3/62</td>
<td>1/28</td>
</tr>
<tr>
<td>5</td>
<td>3/99</td>
<td>1/7</td>
</tr>
<tr>
<td>6</td>
<td>3/07</td>
<td>1/37</td>
</tr>
<tr>
<td>7</td>
<td>3/58</td>
<td>1/3</td>
</tr>
<tr>
<td>8</td>
<td>3/83</td>
<td>1/76</td>
</tr>
<tr>
<td>9</td>
<td>3/24</td>
<td>1/24</td>
</tr>
<tr>
<td>10</td>
<td>3/22</td>
<td>1/23</td>
</tr>
<tr>
<td>11</td>
<td>3/16</td>
<td>1/32</td>
</tr>
<tr>
<td>12</td>
<td>3/09</td>
<td>1/46</td>
</tr>
<tr>
<td>13</td>
<td>3/53</td>
<td>1/38</td>
</tr>
<tr>
<td>14</td>
<td>3/51</td>
<td>1/29</td>
</tr>
<tr>
<td>15</td>
<td>3/88</td>
<td>1/14</td>
</tr>
<tr>
<td>16</td>
<td>3/96</td>
<td>1/12</td>
</tr>
<tr>
<td>17</td>
<td>3/41</td>
<td>1/89</td>
</tr>
<tr>
<td>18</td>
<td>3/83</td>
<td>1/72</td>
</tr>
<tr>
<td>19</td>
<td>3/01</td>
<td>1/87</td>
</tr>
<tr>
<td>20</td>
<td>3/1</td>
<td>1/5</td>
</tr>
<tr>
<td>21</td>
<td>2/19</td>
<td>1/7</td>
</tr>
<tr>
<td>22</td>
<td>3/81</td>
<td>1/35</td>
</tr>
<tr>
<td>23</td>
<td>3/44</td>
<td>1/02</td>
</tr>
<tr>
<td>24</td>
<td>2/38</td>
<td>1/53</td>
</tr>
<tr>
<td>25</td>
<td>3/39</td>
<td>1/22</td>
</tr>
<tr>
<td>26</td>
<td>3/56</td>
<td>1/82</td>
</tr>
<tr>
<td>27</td>
<td>3/42</td>
<td>1/25</td>
</tr>
<tr>
<td>28</td>
<td>3/14</td>
<td>1/43</td>
</tr>
<tr>
<td>29</td>
<td>3/07</td>
<td>1/3</td>
</tr>
<tr>
<td>30</td>
<td>3/93</td>
<td>1/3</td>
</tr>
<tr>
<td>31</td>
<td>3/66</td>
<td>1/44</td>
</tr>
<tr>
<td>32</td>
<td>3/11</td>
<td>1/36</td>
</tr>
<tr>
<td>33</td>
<td>3/86</td>
<td>1/77</td>
</tr>
<tr>
<td>34</td>
<td>3/17</td>
<td>1/43</td>
</tr>
<tr>
<td>35</td>
<td>2/79</td>
<td>1/82</td>
</tr>
<tr>
<td>36</td>
<td>3/5</td>
<td>1/11</td>
</tr>
</tbody>
</table>

LSD (5%) 0/063 0/29
جدول ۲. برآورد مولفه‌های واریانس، ورالت‌ذیبی و ضرایب تنوع فنوتیپی زنیکی و میزان پاسخ به گریزش خانوادهای ناتی برای صفات مورد مطالعه

<table>
<thead>
<tr>
<th>صفت</th>
<th>CV<sub>G</sub></th>
<th>CV<sub>P</sub></th>
<th>h<sub>Hs</sub><sup>'</sup></th>
<th>h<sup>'</sup></th>
<th>σ<sub>p</sub><sup>'</sup></th>
<th>σ<sub>c</sub><sup>'</sup></th>
<th>σ<sub>A</sub><sup>'</sup></th>
<th>چین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخ صلیبی</td>
<td>۱/۰۷</td>
<td>۰/۲۵</td>
<td>۰/۰۷</td>
<td>۰/۰۴۶</td>
<td>۰/۳۷</td>
<td>۰/۰۶</td>
<td>۰/۰۲</td>
<td>۱</td>
</tr>
<tr>
<td>خوش خوراکی</td>
<td>۱۹/۶۴</td>
<td>۲/۲۲</td>
<td>۰/۳۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۰۸</td>
<td>۲</td>
</tr>
<tr>
<td>عملکرد تر کل به ازای واحد طول رشد (کرم بر متر)</td>
<td>۱۰</td>
<td>۱۶/۲۶</td>
<td>۰/۱۳</td>
<td>۰/۳۸</td>
<td>۰/۷۱</td>
<td>۰/۷۱</td>
<td>۱۹/۴۳</td>
<td>۱</td>
</tr>
<tr>
<td>وزن تر به ازای تک بوته انگاژ (کرم)</td>
<td>۲/۰۹</td>
<td>۲/۲۸</td>
<td>۰/۰۵</td>
<td>۰/۱۱</td>
<td>۰/۵۵</td>
<td>۰/۱۱</td>
<td>۱۰/۸۸</td>
<td>۲</td>
</tr>
</tbody>
</table>

به ترتیب واریانس‌های فنوتیپی افزایشی، ورالت‌ذیبی کل جمعیت، ورالت‌ذیبی بین خانواده‌های ناتی، ضرایب تنوع فنوتیپی و CV_G, CV_P, h_{Hs}['], h['], σ_p['], σ_c['], σ_A['] و CV_P, h_{Hs}, σ_p, σ_c, σ_A ضریب تنوع زنیکی می‌باشند.
جدول ۵. برآوردهای قابلیت ترکیب عمومی ۳۲ توده بومی اسپرس براساس صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>خاک‌پذیری انلی</th>
<th>وزن خشک کل به ازار (گرم)</th>
<th>وزن ترش به ازار (گرم)</th>
<th>خشکی شاخه‌ای</th>
<th>شاخه‌های خوردنی</th>
<th>خوردنی‌های ۱ هـ</th>
<th>خوردنی‌های ۲ هـ</th>
<th>خوردنی‌های ۱۰ هـ</th>
<th>خوردنی‌های ۲۰ هـ</th>
<th>خوردنی‌های ۴۰ هـ</th>
<th>خوردنی‌های ۸۰ هـ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۴۵.۳</td>
<td>۸۲.۳</td>
<td>۷۲.۲</td>
<td>۲۷.۱</td>
<td>۲۷.۱</td>
<td>۲۷.۱</td>
<td>۲۷.۱</td>
<td>۲۷.۱</td>
<td>۲۷.۱</td>
<td>۲۷.۱</td>
</tr>
<tr>
<td>۲</td>
<td>۱۲۹.۶</td>
<td>۷۵.۳</td>
<td>۷۱.۲</td>
<td>۲۱.۶</td>
<td>۲۱.۶</td>
<td>۲۱.۶</td>
<td>۲۱.۶</td>
<td>۲۱.۶</td>
<td>۲۱.۶</td>
<td>۲۱.۶</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱۷.۱</td>
<td>۶۹.۳</td>
<td>۶۳.۱</td>
<td>۳۵.۰</td>
<td>۳۵.۰</td>
<td>۳۵.۰</td>
<td>۳۵.۰</td>
<td>۳۵.۰</td>
<td>۳۵.۰</td>
<td>۳۵.۰</td>
</tr>
<tr>
<td>۴</td>
<td>۱۰۹.۴</td>
<td>۶۳.۳</td>
<td>۵۶.۱</td>
<td>۴۲.۲</td>
<td>۴۲.۲</td>
<td>۴۲.۲</td>
<td>۴۲.۲</td>
<td>۴۲.۲</td>
<td>۴۲.۲</td>
<td>۴۲.۲</td>
</tr>
<tr>
<td>۵</td>
<td>۱۰۲.۲</td>
<td>۵۷.۳</td>
<td>۴۹.۱</td>
<td>۴۸.۰</td>
<td>۴۸.۰</td>
<td>۴۸.۰</td>
<td>۴۸.۰</td>
<td>۴۸.۰</td>
<td>۴۸.۰</td>
<td>۴۸.۰</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

میانگین توده

| میانگین توده (LSD) | ۱۴۵.۳ | ۱۱۷.۱ | ۱۰۹.۴ | ۱۰۲.۲ | ۱۰۴.۲ | ۱۰۶.۴ | ۱۰۸.۴ | ۱۱۰.۴ | ۱۱۲.۴ | ۱۱۴.۴ |

- کلیه میانگین‌های شاخص عمومکرد در **۱۰۰ ضرب شده است.**
MANUSCRIPT

