برآورد پارامترهای زنیکی و ترکیب‌پذیری عمومی توده‌های بومی اسپرس
از نظر عملکرد عفونه

محمود تورقی، سعید اهوری‌زاد، محمد مقدم، فاطمه اعتدالی و سید حامد طباطبایی وکیلی

چکیده

با توجه به اهمیت ارزیابی ترکیب‌پذیری عمومی قبل از نهی واریته‌های ساختگی در گیاهان عفونه‌ای تعداد ۴۶ توده بومی اسپرس از چهار مختلف ایران جمع‌آوری و در سال ۱۳۸۹ در یک خزانه پلک کراس در قابل طرح پلک‌های کامل تصادفی با ۲۴ تکرار کاشته شد. ۳۶ توده پلک کراس حاضر جهت انتخاب و دادن مناسب برای تولید واریته ساختگی در سال ۱۳۸۹ در قابل طرح ناپی ۳ گانه ارزیابی گردیدند. به‌دلیل معنی‌دار نبودن اثر پلک‌های ناقص درون هر تکرار، داده‌ها به صورت پلک‌های کامل تصادفی مورد تجزیه و تحلیل قرار گرفت. صفات عملکرد ترکیب کرده به‌طور واحد طول دریف، وزن تری به‌طور ازای هر تکن بونه و وزن خشک/کیلوگرم از کل کرده در مجموع ۳ چین و هم به طور جداگانه در چهار چین (برداشت) مورد بررسی قرار گرفتند. هم‌چنین شاخص عملکرد پیشنهادی در این مقاله برای مجموع دو چین ۱ و ۲ و خوش‌خوراکی فقط برای چهار چین بدو محاسبه و مورد تجزیه و تحلیل آماری قرار گرفتند. وزن خشک/کیلوگرم از گل کرده و وزن تری به‌طور ازای هر تکن بونه به ترتیب کمترین و بیشترین مقدار ضریب تغییرات و به‌طور اختصاصی داده‌ها بروردها در راستای کاهش تعداد وردهای برازشی در بهترین خشک‌سازی باعث شد که در این قابلیت ترکیب‌پذیری عمومی ۶ توده برای صفت عملکرد ترکیب‌پذیری عمومی و ۶ توده برای وزن خشک، ۹ توده برای خشک‌سازی دارای پایین‌ترین ارزش بونهان. به‌بیانگر توده‌های برون در مورد هر متغیر را می‌توان به عنوان والدین در تولید واریته‌های ساختگی اسپرس به کار برده.

واژه‌های کلیدی: اسپرس، خوش‌خوراکی، شاخص عملکرد، ترکیب‌پذیری عمومی

مقدمه

ایجاد ارقام ساختگی، متداول‌ترین روش اصلاحی در بقوله‌های این سبک به‌طور که اکثر ارقام تجاری بقوله‌ای مانند بونهان و اسپرس از این طریق حاصل شده‌اند. استفاده از

1. به ترتیب دانشیار، استادیار، استاد، دانشجوی دکتری، کارشناس زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه تبریز

۲۱۳
جدول ۱. توده‌های بومی اسپرس جمع‌آوری شده از مناطق مختلف ایران

<table>
<thead>
<tr>
<th>منطقه</th>
<th>تعداد</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>زنوتین (کیروکراس)</td>
<td>10</td>
<td>بینام</td>
</tr>
<tr>
<td>گردو مخلوط</td>
<td>8</td>
<td>اطراف تهران</td>
</tr>
<tr>
<td>گنجنامه</td>
<td>2</td>
<td>جنگل‌داری ماکاک</td>
</tr>
<tr>
<td>مهره</td>
<td>1</td>
<td>نازک نکد</td>
</tr>
<tr>
<td>تارا</td>
<td>1</td>
<td>سهیمه زاویه سفیل</td>
</tr>
<tr>
<td>سپاهان</td>
<td>1</td>
<td>جوامع که کیروکراس قدرت ترکیب‌بندی عمومی انگلیسی</td>
</tr>
<tr>
<td>ریاست</td>
<td>1</td>
<td>خوردو شهر</td>
</tr>
<tr>
<td>عراقی</td>
<td>1</td>
<td>خوردو ۱</td>
</tr>
</tbody>
</table>

است که اطلاعات حاصل از تابع پی.کراس لاین‌ها مورد استفاده قرار گرفت. در مقاله فوق نشان داد، آزمون نتایج بین پی کراس بسیار مناسب در صلاح باقی می‌باشد. آسان‌وهمکاران (۶) از روش پی کراس برای ایجاد اثرات ساختگی استفاده کردند. منشا و بررسی (۴) از روش پی کراس برای ایجاد اثرات ساختگی استفاده کردند. این نتایج را خانی پی کراس را تشکیل دادند و بررسی عملاط و تأثیر در گلدهی، چهار لایی را برای ایجاد واریته ساختگی انگلیسی نمودند.

مناسب‌ترین تحقیقات به‌نیروی چندانی روی اسپرس انجام نشده است و پویاپیزه‌های زنیتی کشور عالی‌اکنون به تأمین محصول روش‌های ناهنجاری‌شده (۲) ان. این روشهای به مقبره ارزیابی ترکیب‌بندی عمومی توده‌های بومی اسپرس نواحی مختلف ایران و تماس مقدامات اصلاح آنها از طریق تولید واریته‌های ساختگی با استفاده از روش پی کراس طریقی رشد ویژه نوی.

مواد و روش‌ها

مواد گیاهی مورد استفاده شامل ۲۲ توده بومی اسپرس از مناطق مختلف ایران (جدول ۱) بود. خزان پی.کراس در سال ۱۳۷۹ در استراحت‌های دانشکده کارشویی دانشگاه تبریز. واقع در خلخال بوستان دو کیلومتری شرق تبریز واقع در تصادفی با ۲۲ تکرر به‌بیشتر. هر تکرار شامل یک دیده

منبع: زنوتین (کیروکراس) قدرت ترکیب‌بندی عمومی انگلیسی
کاشت یک متری بنا وصلات بین رنگی ۷۵ سانتی‌متر بود. به منظور تسهیل گره افتتاحی، چندین کندوی زینور عمل در خوانه‌گذرگاه شد. در آخرین جزئیات با فشار افکار سازماندهی تک‌كراس حاصل از هر توده با مخاطرات مساوی از بذر به تک‌كراس مختلف که خانواده‌های رویا را تشکیل می‌دادند. جمع آوری گردید. در سال ۱۳۸۰ نزدیک به ۱۵۰۰ توده پل کراس به سالی طرح لاته ۳ گاهنگی کسب شدند. در هر تک‌کر که ۶ پلاک ناقص و در داخل هر پلاک ۶ تیمار (پل کراس) منظور شد. باید ۸ تیمار در نظر گرفته شد. با این حال، فقط ۴ تیمار مزین از هر انجام گرفت. کرت‌های هفته‌ای که از آبی‌ایزار شدند. با منظور آگاهی تراکم مناسب و سیستم‌شنده یک‌نواخت گیاهان به پدیده تا راکم بالا بر روی رشته‌ای به فاصله ۴ سانتی‌متر توسط طول ۴ متر کشت شدند. در سال اول کشت واکسن صورت گرفت و باید کشت برداری صفات از سال دوم شروع شد.

با توجه به عدم وجود اختلاف معنی‌دار بین بلوک‌های ناقص در هر تک‌کرت منبع تغییر جایگزین آزمایش ادامه گرفت و آزمایش به صورت کرت‌های خرد شده در زمان اجای طرح بلوک‌های کامل تصادفی با ۳ تک‌کرت مرده و تحلیل گزار شد. در طول که از هر ناکترو استحکام و چیز (برداری) به عنوان یک‌نواخت فرعی منظور شد. قبل از تجزیه اوریا، نرم‌البیون داده‌های چین ۱ و ۲ از نظر کلیه صفات ازاده‌گیری شده آزمون گردید و به علمت عدم تنقل بودن داده‌های صورت کمک‌کرد از تبلیغاتی برای نرم‌البیون کراره اکثر حاصل گردید. این استفاده شد. بر روی داده‌های نرم‌البیون صفت شاخص معمولی در چین‌های مختلف آزمون نوکی انجام گرفت و آثار غیر ارزشی فقط برای یک مجموع چین‌های اول و دوم غیر معنی‌دار بود. به منظور کمک به بررسی‌های آماده و تبعیض کرک‌پذیر عوموی برای این صفت به یک مجموع چین‌های اول و دوم مهاجران گردید. برای صفاتی زون خشک یک کرت و خوش‌کرک و دو کرت، خوش‌وراکی، تجهیزهای آماری و تبعیض قابلیت کرک‌پذیر عوموی در چین‌های ۱ و ۲ بود.

برآورد بارامترهای زنجیری و ترکیب‌پذیری عوموی توده‌های بیوم‌سیری از...

جداگانه انجام گرفت و چین ۳ به دلیل گسترش بیماری سفیدک و کاهش عملکرد از تجزیه و تحلیل حذف شد. صفات مورد مطالعه عبارت بودند از:

الف) وزن ترمیم‌اخلاقي به ازای نک‌کرته در هر ده تعداد ۱۵۰ ناکترو به طور تصادفی از رشته‌های مرکزی هر کرت، از سطح زمین به دسته‌بندی شده و با ترک‌پذیر حساس وزن گردید. نسبت وزن ترمیم‌اخلاقي به تعداد آنها به عنوان وزن ترمیم‌اخلاقي از دو مرکزی کرت‌های ۱/۵ کیلوگرم بود.

چ) وزن کرت که در وصلات طول رشته‌ای پس از حذف در رشته‌های کناری، مجموع طول ۴ رشته‌ای باقی‌مانده برداشت و عملکرد در کرت در وصلات طول رشته‌ای بر حسب متوسط معنی‌دار گردید.

۲) شاخص عملکرد علف

به منظور برسی میزان عملکرد علف‌های توده‌ها شاخص زیر پیشنهاد گردید:

\[
\text{شاخص عملکرد علف} = \frac{\text{وزن خشک ۱۵۰ کیلوگرم}}{\text{وزن کرت}} \times \frac{\text{تعداد کرت}}{\text{تعداد کرت}}
\]

وزن خشک ۱۵۰ کیلوگرم کرت گردید.

و) خوش‌وراکی

در چین ۱ و دوم برداشت ۱/۵ کیلوگرم علف‌های توده از کرت خود در کرت برگ‌های آنها از سطح جنگی شده و وزن خشک آنها به طور جدایگانه اندازه‌گیری شد. نسبت وزن خشک برگ به سطح بان از عنوان خشک خوراکی معنی‌دار گردید. خوش‌وراکی در چین ۳ به دلیل گسترش بیماری سفیدک و کاهش عملکرد
تک بوته انتحالی در مجموعه چی‌ناها و در تجزیه جدایانه چین‌ها تفاوت معنی‌داری از خود نشان ندادند و لیکز لازم در مجموعه قرار گرفته در مجموعه دو چین اول و دوم (جدول 2) در سطح احتمال 0.1 درصد بودند دارای از نظر آماری داشتند. وجود تفاوت معنی‌دار در سطح احتمال 0.1 را برای صفت خوش‌خواهی در چین دوم نشان داد که بین خانواده‌ها از نظر این صفت تفاوت چشمگیری وجود دارد (جدول آورده نشده است).

مقابل‌های مناسب گرفته شده علوفه شکل در سه چین‌نا ها داد که چین سوم پیشین و چین اول کمترین وزن خشک علوفه را دارا بود (جدول 2). از آنجایی که در نتایج علوفه‌های نظیر اسپرس و پایه‌ها، چین اول را به صفت قسمت‌های هموار و مرحله استقرار کیفیه بهره‌اندازی با یا بودن علوفه چین اول بیان در کشت بهره‌مند توجیه است، در حالتی که علوفه چین اول کشت پایه‌ها با سال دوم پیشین از چین‌های دیگر گزارش شده است (4 و 8). رونده تغییر علوفه شکل از چین اول تا این سوم (جدول 2) را می‌توان به تبصربازی در آن به سه شش‌سالی این گونه نسبت داد. ضمن این که خشک‌سازی نشدن هوا در اواخر ناسازگاری به رشد مجدد در چین بعدی گشته و از عوامل مؤثر در بالا بودن عملکرد این چین محصول می‌شود. طبق نظر همکاران (16) تسریع در برداشت یک چین منجر به کاهش این ذخایر برای یک چین بعد و علوفه عملکرد در چین‌های بعدی می‌گردد. نسبت عمدتاً مشابه افزایش استحکام گیاه در برابر گرانی دام نیز می‌شود (4) دوبل و همکاران (9) اظهار داشتند که برای بهبود برداری انتخاب از اسپرس با یک علوفه عملکرد شکل آن حدود 35% افزایش یافته و به 115/5 در هکتار بررس. میانگین عملکرد تغییر علوفه به ازای حدود 0.1 درصد دوبل به ترتیب از چین اول به بعد با داشتن روند کاهشی به تایید کوت و اسپرس (8) مطالبیده داشتند. در اثر تغییر وزن ترو علوفه به ازای ذخیره این چین دوم روند افزایشی داشتند اما در چین سوم کاهش معنی‌داری به بدا کرد (جدول 2).

احزای مشکل‌های واریانس با استفاده از امید ریاضی میانگین مربوط در جدول تجزیه واریانس برآورده گردید. ضریب تنشین زننگی (CVP) از نسبت جذر واریانس زننگی خانواده‌های نیمی خواهی بر میانگین آنها محاسبه شد (17 و 20).

$$\text{CVP} = \frac{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}}{\bar{y}}$$

قابل‌های تواریح (h) از فرمول‌های ذیل به دست آمد (1) و (4):

$$h_i' = \frac{\sigma^2_{gca}}{\sigma^2_{gca} + \sigma^2_{e}} = \frac{\rho_{i} \sigma_{gca}}{1 + \rho_{i} \sigma_{gca}}$$

در این فرمول‌ها:

- h_i': قابل‌های تواریح در یک خانواده‌های نانی
- σ^2_{gca}: واریانس قابلیت درک عضوی و σ^2_{e}: برآورد واریانس خطا آزمایشی است.

اثرات قابلیت درک عضوی (GCA) از اختلاف بین میانگین هر توده با میانگین کل توده‌ها بپرآورده گردید. برای آزمون اختلاف معنی‌دار دار آزمایش GCA با صفر از آزمون دو دامنه‌ای به صورت زیر استفاده شد (11 و 14).

$$t = \frac{GCA}{SE_{GCA}}$$

$$SE_{GCA} = \sqrt{\frac{Mse}{r}}$$

نتایج و بحث

نتایج حاصل از تجزیه واریانس داده‌ها نشان داد که نت‌های نیمی خواهی بر میانگین از نظر صفات وزن ورود کرده به ازای واحد طول رافیک، وزن خشک 15/5 کیلوگرم از کل کرت، وزن تر به ازای

216
جدول 2. میانگین، دامنه تغییرات و ضریب توان صفات مطالعه در توده‌های بومی استرس از ...

<table>
<thead>
<tr>
<th>صفت</th>
<th>میانگین</th>
<th>دامنه تغییرات (CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>4+1</td>
<td>3.92 + -0.452</td>
</tr>
<tr>
<td>خوش خوراکی</td>
<td>0.2</td>
<td>1.2 + -0.611</td>
</tr>
<tr>
<td>وزن خشک 150گرم از کل کرت (گرم)</td>
<td>1</td>
<td>0.5 + 0.275</td>
</tr>
<tr>
<td>وزن تر از ایزون بوته انتخابی (گرم)</td>
<td>3</td>
<td>0.5 + 0.494</td>
</tr>
</tbody>
</table>

چین دوم به دلیل استقرار بهتر و توسعه ریشه‌ها نسبت به چین اول، عملکرد تر نک بوته بروز از خود نشان داد. اما به دلیل گسترش بیماری و حذف برخی بوته‌ها و به دلیل رقابت با سایر بوته‌ها، عملکرد آن در کل کرت تا حدودی کمتر از چین اول بود. چین نومدلین میزان عملکرد تر را به خود اختصاص داد که از علل آن می‌توان به کاهش ذخایر رشد، مصداق برنجه که در چین اول بیشتر به یافته‌ای صرف استقرار در میل بوده و می‌تواند به‌عنوان یک اثر بروز ادامه پذیران چین اول در ایزون پروری در دامنه عملکرد بکر و کمترین درصد، سایه می‌پاشد. در چین یک بودی به علت استقرار بیشتر گیاه، افزایش ذخایر زیرزمینی، افزایش نرخ رشد و افزایش تعداد ساقه در متریک، درصد بکر و نسبت بکر به ساقه کاهش می‌یابد و عملکرد علوفه افزایش پیدا می‌کند. پذیران یک درصد برگی بودن با عملکرد و ارتقاء هیستوکن مکوس دارد و انتخاب برای عملکرد باید با استفاده از افزایش ارتقاء باعث کاهش درصد برگ و کمیت علوفه می‌شود (4). در واقع میزان عملکرد و کمیت علوفه به‌وسیله اثر متقابل پیچیده زیرینک و محیط تعینی می‌شود. شرایط اقلیمی محل تولید، عملیات زراعی، نوع واریته، فصل رویش، مرحله ...
جدول 3. میانگین صفات خوش خوراکی (چین دوم) و شاخص عملکرد (در چین ها اول و دوم) و حداکثر اختلاف معنادار در توده های بومی استرس

<table>
<thead>
<tr>
<th>شماره خانواده نانویی</th>
<th>شاخص عملکرد برای مجموع دو چین</th>
<th>خوش خوراکی در چین دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین ± SD</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3/05 ± 1/6</td>
<td>1/23</td>
</tr>
<tr>
<td>2</td>
<td>3/13 ± 1/4</td>
<td>1/73</td>
</tr>
<tr>
<td>3</td>
<td>3/61 ± 1/8</td>
<td>1/28</td>
</tr>
<tr>
<td>4</td>
<td>3/09 ± 1/7</td>
<td>1/47</td>
</tr>
<tr>
<td>5</td>
<td>3/07 ± 1/3</td>
<td>1/37</td>
</tr>
<tr>
<td>6</td>
<td>2/58 ± 1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>7</td>
<td>2/83 ± 1/4</td>
<td>1/86</td>
</tr>
<tr>
<td>8</td>
<td>3/24 ± 1/4</td>
<td>1/24</td>
</tr>
<tr>
<td>9</td>
<td>2/44 ± 1/3</td>
<td>1/23</td>
</tr>
<tr>
<td>10</td>
<td>3/16 ± 1/3</td>
<td>1/33</td>
</tr>
<tr>
<td>11</td>
<td>3/69 ± 1/4</td>
<td>1/65</td>
</tr>
<tr>
<td>12</td>
<td>3/53 ± 1/3</td>
<td>1/38</td>
</tr>
<tr>
<td>13</td>
<td>3/51 ± 1/4</td>
<td>1/29</td>
</tr>
<tr>
<td>14</td>
<td>3/88 ± 1/4</td>
<td>1/14</td>
</tr>
<tr>
<td>15</td>
<td>3/96 ± 1/3</td>
<td>1/14</td>
</tr>
<tr>
<td>16</td>
<td>3/41 ± 1/3</td>
<td>1/69</td>
</tr>
<tr>
<td>17</td>
<td>3/83 ± 1/3</td>
<td>1/82</td>
</tr>
<tr>
<td>18</td>
<td>3/01 ± 1/4</td>
<td>1/87</td>
</tr>
<tr>
<td>19</td>
<td>3/1 ± 1/3</td>
<td>1/5</td>
</tr>
<tr>
<td>20</td>
<td>2/79 ± 1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>21</td>
<td>3/81 ± 1/3</td>
<td>1/35</td>
</tr>
<tr>
<td>22</td>
<td>3/34 ± 1/3</td>
<td>1/02</td>
</tr>
<tr>
<td>23</td>
<td>3/78 ± 1/4</td>
<td>1/53</td>
</tr>
<tr>
<td>24</td>
<td>3/39 ± 1/3</td>
<td>1/32</td>
</tr>
<tr>
<td>25</td>
<td>3/5 ± 1/3</td>
<td>1/82</td>
</tr>
<tr>
<td>26</td>
<td>3/44 ± 1/3</td>
<td>1/25</td>
</tr>
<tr>
<td>27</td>
<td>3/14 ± 1/3</td>
<td>1/43</td>
</tr>
<tr>
<td>28</td>
<td>3/07 ± 1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>29</td>
<td>4/93 ± 1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>30</td>
<td>3/56 ± 1/3</td>
<td>1/44</td>
</tr>
<tr>
<td>31</td>
<td>3/11 ± 1/3</td>
<td>1/36</td>
</tr>
<tr>
<td>32</td>
<td>3/85 ± 1/3</td>
<td>1/77</td>
</tr>
<tr>
<td>33</td>
<td>3/17 ± 1/3</td>
<td>1/43</td>
</tr>
<tr>
<td>34</td>
<td>2/79 ± 1/3</td>
<td>1/82</td>
</tr>
<tr>
<td>35</td>
<td>3/5 ± 1/3</td>
<td>1/1</td>
</tr>
<tr>
<td>36</td>
<td>LSD (5%)</td>
<td>0/63</td>
</tr>
</tbody>
</table>

LSD (5%) 0/63 0/29
برآورد پارامترهای زنگیکی و ترکیب‌پذیری عمومی نوده‌های بومی استرس از...

رشد مرحله بردارش، روش مصرف علومه (تار، خشک‌سازی، نیز و پرین) و میزان خسارت آفات، بیماری‌ها و عوامل مکانیکی از جمله عواملی هستند که بر کیفیت علومه تأثیر می‌گذاردند (1).

بیشترین (نه تک تک بیشتر) از ترکیب علومه در گیاهان که تحت شرایط محیطی و مرحله رشد مشابه قرار دارند استفاده محدود است. در شاخص علائم بیشترهای این مقاله نیز تک تک و بیشترین خشکی هر دو بایان پانسیل علائم تولید علوفه محدود شده است. مقایسه میانگین نوده‌های پای کرکاس از لحاظ شاخص علایم بیشترهای ناسان داد که نوده‌های 16 و 18 و 22 دارای بیشترهای نوده‌های 4, 16 و 7 دارای کمترین میانگین شاخص علایم بیشترهای بودن (جدول 3).

آمارهای توصیفی صفات مورد مطالعه در جدول 2 درج شده است. وزن در به ازای تک بیشترهای اختصاصی دارای بیشترین ضریب تغییرات و وزن خشک 1/5 کیلوگرم از کل کرت، خانواده ناتی شماره 3 در علت اول و دوم قابلیت ترکیب عمومی مثبت و معنادار از خود نشان داد. با توجه به مقایسه قابلیت ترکیب عمومی در مجموع دو جنین می‌توان خانواده‌های شماره 1, 12, 11, 31, 27 و 17 را از نظر وزن خشک گریبان کرد. آمار GCA برای شاخص علائم و خشکی خسارت نیز در جدول 5 درج شده است. با توجه به امتیاژ صفات شاخص علائم می‌توان خانواده ناتی شماره 16 و به دنبال آن خانواده‌ها 15, 1, 18, 22, 12, 7, 11, 33, 31, 13, 16 و 26 را نیز به عنوان خانواده‌های با شاخص علائم بالا گزینی شود. برای صفات خشک خسارت نوده‌های بیانی به‌طور کلی صفات مورد بررسی بزرگتر از ضریب تغییرات زنگیکی بودن و لیگ در موارد اختلافات ایست کننده (جدول 4). این استنباط می‌شود که افزایش محیط در برآورد پارامترهای زنگیکی برای صفات شاخص علائم ناجی باشد. استایلی و همکاران (10) نیز نتایج بیان می‌نمایند ضریب تنوع فنوتیپی و زنگیکی را در میانه بیشترهای زنگیکی گرافش مورد نظر است. مقایسه میانگین وزن به‌طور کلی در جدول 6.

219
جدول ۲. برآورد مولفه‌های واریانس، وزن‌پذیری و ضریب تتنوع فئوئی، زئیکی و میزان پاسخ به گروه خانواده‌های ناتین برای صفات مورد مطالعه

<table>
<thead>
<tr>
<th>CV_G</th>
<th>CV_p</th>
<th>h_{Hs}^*</th>
<th>h^*</th>
<th>σ_p^*</th>
<th>σ_c^*</th>
<th>σ_A^*</th>
<th>چرین</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲۳</td>
<td>۱/۰۹</td>
<td>۰/۲۵</td>
<td>۰/۵۷</td>
<td>۰/۴۶</td>
<td>۰/۰۰۴۸</td>
<td>۰/۰۶۰۵</td>
<td>۱۶۲</td>
<td>شاخص عملکرد</td>
</tr>
<tr>
<td>۱۹/۵۴</td>
<td>۲/۳۷</td>
<td>۰/۲۲</td>
<td>۰/۴۲</td>
<td>۰/۱۲</td>
<td>۰/۱۳۸۵</td>
<td>۰/۰۸۸۱</td>
<td>۲</td>
<td>خوش خوراکی</td>
</tr>
<tr>
<td>۱۶/۲۶</td>
<td>۱/۰۵</td>
<td>۰/۱۳</td>
<td>۰/۸۸</td>
<td>۱۰۷۰۲/۴۵</td>
<td>۱۹۴۳۲/۵۱</td>
<td>۱۰۵۰۴/۶</td>
<td>۱</td>
<td>عملکرد تر کل به ازای واحد طول رکف (کرم بر متر)</td>
</tr>
<tr>
<td>۵/۰۹</td>
<td>۱/۲۸</td>
<td>۰/۲۴</td>
<td>۰/۵۶</td>
<td>۸۱۹/۷</td>
<td>۱۰۸۹/۶</td>
<td>۱۰۵/۵۱</td>
<td>۲</td>
<td>وزن تر به ازای تک بوته انتخابی (کرم)</td>
</tr>
</tbody>
</table>

برای ترتیب واریانس‌های فئوئی افزایشی و وزن‌پذیری کل جمعیت، وزن‌پذیری بین خانواده‌های ناتین، ضریب تتنوع فئوئی و CV_G و CV_p, h_{Hs}^*, h^*, σ_A^*, σ_p^*, σ_c^*، ضریب تتنوع زئیکی می‌باشد.
جدول ۵. برآوردهای قابلیت ترکیب عضویی ۲۷ نوع عمومی اسپرس براساس صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>شاخص</th>
<th>خاکنده‌سازی</th>
<th>وزن خشک از کل کربن</th>
<th>وزن از کل کل</th>
<th>طول ریزف</th>
<th>نرخ شاخه‌ها</th>
<th>هزینه کالری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین توده

LSD

- کلیه میانگین‌های نشانه‌گذاری ۸ دهم پر درصد شده است.

