استفاده از همداهای جذب سطحی در تعیین شاخص‌های ظرفیت فاقدی و نیاز استاندارد
فسفر برخی خاک‌های آهکي استان اصفهان

مهران شیرویی و حسین شریعتمداری

چکیده
فرآیند جذب سطحی فسفر در خاک یکی از شاخص‌های مهم قدرت فاقدی و در تیغه قابلیت استفاده این عنصر برای گیاه به شمار می‌رود و به‌ویژه در صورتی که هزینه تولید گیاه و ساقه بزرگ قرص‌های واکنش‌آمیز نیش آهن و کربنات کلسیم و کربنات کلسیم عامل مؤثر بر قدرت فاقدی گیاه خاک به‌رونگ اضافه می‌شود. درصد کربنات کلسیم ماده (CCE) و ظرفیت تبدیل کاتالیزی در درجه اکثریت قرار دارد. درصد کربنات کلسیم ماده (CCE) به اشتراک معادلات و روش‌های جذب سطحی (Pm) از میان جذب سنتی (Pm) در زمانی که در این پژوهش ارزیابی شد و 300 نمونه از نمونه‌های وردک و اینترست سپید را به روش وسعت جاز ارزیابی کرد.

در این پژوهش به‌منظور ارزیابی ظرفیت فاقدی و نیاز سنتی خاک‌ها به فسفر برخی از خاک‌های آهکی استان اصفهان انتخاب شد. نتایج نشان داد که خاک‌های آهکی استان اصفهان در نظر کردن نیاز سنتی فسفر به بهره‌وری از موادی جذب فسفر نیاز دارند. در این پژوهش به روش نیاز معین خاک به فسفر به شدت تحت تأثیر میزان فسفر به‌ویژه در مراحل مختلف آزمون خاک برای فسفر باید مد نظر گردد.

واژه‌های کلیدی: همداهای جذب سطحی فسفر، ظرفیت فاقدی فسفر، نیاز استاندارد فسفر

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
مقدهم

غلظت سفر در محلول خاک، و در ترتیب پایانی تا بیش از یکبرنیکی با فرانسه‌ی جذب سطحی سفر به وسیله اجرای حرکت از جمله کالی‌هایی ریسی، اکسیدها و هیدروکسیدهای آهون و آلومینه، کربنات کلسیم و مواد آلی دارد. این انتخابات دینامیک را می‌توان به سبب سطحی سفر به وسیله اجرای حرکت از جمله کالی‌هایی ریسی، اکسیدها و هیدروکسیدهای آهون و آلومینه، کربنات کلسیم و مواد آلی دارد. این انتخابات دینامیک را می‌توان به سبب

معادله لاگلومور برای اولین بار به وسیله اوژن و واتیانی (16) به منظور توصیف جذب سفر در خاک به کار گرفته شد، و تا کنون در پژوهش‌های فراوانی مورد استفاده قرار گرفته است. مزیت اصلی معادله لاگلومور این است که می‌توان از جذب‌های سطحی سفر را به سبب چنین دیدنی و همکاران (17) از جذب حرکتی به دست آمده از این معادله به منظور پیش‌بینی میزان سفر مورد نیاز اساس استفاده نموده و نشان دادند که در خاک حرکت جذب‌های سطحی سفر را به کود فسفری بی‌شناختی دارند. و در همکاران (18) در محلول با 1P دست آمده از این معادله به منظور پیش‌بینی میزان سفر مورد نیاز اساس استفاده نموده و نشان دادند که در خاک حرکت جذب‌های سطحی سفر را به کود فسفری بی‌شناختی دارند. و در همکاران (18) در محلول با 1P

معادله لاگلومور برای اولین بار به وسیله اوژن و واتیانی (16) به منظور توصیف جذب سفر در خاک به کار گرفته شد، و تا کنون در پژوهش‌های فراوانی مورد استفاده قرار گرفته است. مزیت اصلی معادله لاگلومور این است که می‌توان از جذب‌های سطحی سفر را به سبب چنین دیدنی و همکاران (17) از جذب حرکتی به دست آمده از این معادله به منظور پیش‌بینی میزان سفر مورد نیاز اساس استفاده نموده و نشان دادند که در خاک حرکت جذب‌های سطحی سفر را به کود فسفری بی‌شناختی دارند. و در همکاران (18) در محلول با 1P

معادله لاگلومور برای اولین بار به وسیله اوژن و واتیانی (16) به منظور توصیف جذب سفر در خاک به کار گرفته شد، و تا کنون در پژوهش‌های فراوانی مورد استفاده قرار گرفته است. مزیت اصلی معادله لاگلومور این است که می‌توان از جذب‌های سطحی سفر را به سبب چنین دیدنی و همکاران (17) از جذب حرکتی به دست آمده از این معادله به منظور پیش‌بینی میزان سفر مورد نیاز اساس استفاده نموده و نشان دادند که در خاک حرکت جذب‌های سطحی سفر را به کود فسفری بی‌شناختی دارند. و در همکاران (18) در محلول با 1P

معادله لاگلومور برای اولین بار به وسیله اوژن و واتیانی (16) به منظور توصیف جذب سفر در خاک به کار گرفته شد، و تا کنون در پژوهش‌های فراوانی مورد استفاده قرار گرفته است. مزیت اصلی معادله لاگلومور این است که می‌توان از جذب‌های سطحی سفر را به سبب چنین دیدنی و همکاران (17) از جذب حرکتی به دست آمده از این معادله به منظور پیش‌بینی میزان سفر مورد نیاز اساس استفاده نموده و نشان دادند که در خاک حرکت جذب‌های سطحی سفر را به کود فسفری بی‌شناختی دارند. و در همکاران (18) در محلول با 1P

معادله لاگلومور برای اولین بار به وسیله اوژن و واتیانی (16) به منظور توصیف جذب سفر در خاک به کار گرفته شد، و تا کنون در پژوهش‌های فراوانی مورد استفاده قرار گرفته است. مزیت اصلی معادله لاگلومور این است که می‌توان از جذب‌های سطحی سفر را به سبب چنین دیدنی و همکاران (17) از جذب حرکتی به دست آمده از این معادله به منظور پیش‌بینی میزان سفر مورد نیاز اساس استفاده نموده و نشان دادند که در خاک حرکت جذب‌های سطحی سفر را به کود فسفری بی‌شناختی دارند. و در همکاران (18) در محلول با 1P
استفاده از هیدروماتهای جذب سطحی در تعیین شاخص‌های طرفیت بافتی فسفر خاک‌ها کمتر توجه شده است.

هدف این پژوهش می‌باشد:
الف) بررسی جذب سطحی فسفر در برخی شاخص‌های اکمی استان اصفهان با استفاده از هیدروماتهای جذب و تعیین روابط موجود میان پرامترهای معادلات جذب سطحی و ویژگی‌های خاک
ب) تعیین برخی شاخص‌های طرفیت بافتی و نیاز استفاده

فسفر با استفاده از معادلات جذب سطحی

مواد و روش‌ها

ویژگی‌های خاک‌های مورد بررسی

نمونه‌هایی از علم صفا تا 20 سانتی‌متری خاک از هشت نقطه مختلف استان اصفهان به‌طور گردی، و پس از انتقال به آزمایشگاه‌ها به‌طور عادی شرایط محیطی و به‌کارگیری فرآیندهای استاندارد، و روش‌های اجرای جمع‌آوری نمونه‌ها و تهیه نمونه‌ها انجام می‌شود. برای این مطالعه فشرد و سپس به روش بیت (10۱۹۳۳)، درصد آبی که به روش واکلی و بیلک (20۰۰۰)، تعیین می‌گردد.

ارایه شده در آنها:

C که در آنها:

Mقدار جذب فسفر بر حسب میکروگرم بر گرم خاک و C غلظت تعادلی فسفر در محلول بر حسب میکروگرم بر میلی‌لیتر می‌باشد.

هم‌ریختگی جذب فروناتلیج، تغییر و ویژگی‌های نیز به ترتیب در معادله‌های ۴ و ۳ نشان داده شد است. نتایج ۴ ب در این پژوهش آزمایشگاه‌ها استفاده بر این فرم خنثی آن (معادله ۴) و

m و n عناصری به معادله و نیز تابع‌های k۱ و k۲ معادله تمکین و n معادله مربوط به خاک مورد بررسی قرار گرفت.

X=aCb

\ln X = \ln a + b \ln C

X = k_1 \ln (k_2 C)

X = m + nV\sqrt{C}

که در همه آنها C و X همانند اجرا معادله لانگومور تعریف می‌شوند. سرایانگام ارتباط پرامترهای این معادلات با ویژگی‌های خاک مورد بررسی قرار گرفت.

با بررسی داده‌های جذب فسفر به سیله معادله لانگومور

هم‌ریختگی جذب فسفر

برای بررسی هم‌ریختگی جذب فسفر، محلول کالیکلیک ۰/۱ مولار حاوی مقداری صفر (۸/۵٪ PO4 ۳- به نمونه‌های سه نمونه خاک در سه ترانسپوزیت که در ۲۴ ساعت در دمای ۲۵٪ به سیله دستگاه تکانده دکتری‌کی (Shaker) در ۱۵۰۰ rpm بیان پنج دقیقه، و گذار کننده از کاغذ صاف و اکثر شماره ۴۲ از نمونه‌ها جدا گردید. غلظت فسفر در این محلول‌ها پس از ترکیم pH آن با مصرف پارانیتروفلو

۲۴۳
در سطح 0/100 معنی‌دار بود، در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود. ارتباط مقدار فسفر جذب شده با فسفر محلول در خاک‌های مورد بررسی و سطحی معنی‌دار نبود. در خاک‌های کریمی و نیز در خاک‌های شاهین کریمی در سطح 0/100 معنی‌دار بود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود.

شیاه‌تی، خاک‌ها در سطح 0/100 معنی‌دار نبود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود.

نتایج و بحث

خاک‌های مورد بررسی دارای دانه‌ای به ویژه‌ای که در جدول 1 شماری از آنها ارائه گردیده است. به طور کلی، هر چه میزان مدل جذب به خوری ارتباط فسفر محلول و فسفر جذب سطحی شده را توصیف می‌کند، ضرایب همبستگی و پارامترهای مربوط به این معادله در جدول 2 ارائه گردیده است. ضرایب همبستگی برای مدل راکمونهر به غیر از خاک 1 در سطح احتمال 0/01 معنی‌دار است. در خاک‌های دیگر در سطح 0/100 معنی‌دار نبود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود.

شیاه‌تی، خاک‌ها در سطح 0/100 معنی‌دار نبود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود. در دیگر خاک‌ها در سطح 0/100 معنی‌دار نبود.
جدول ۱. برخی ویژگی‌های فیزیوکیمیایی خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>شماره</th>
<th>محل</th>
<th>نمونه‌برداری</th>
<th>رس سیلت</th>
<th>کراتنت کلسیم</th>
<th>CEC</th>
<th>فرمائین آلی</th>
<th>pH (1/10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>عسکران</td>
<td>۲۹/۹</td>
<td>۱۸/۷</td>
<td>۹/۲</td>
<td>۰/۲۴</td>
<td>V/7</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>تندران</td>
<td>۲۲</td>
<td>۴۷/۶</td>
<td>۱۱/۲</td>
<td>۰/۲۴</td>
<td>V/۹</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>تندران</td>
<td>۲۴/۶</td>
<td>۱۱/۲</td>
<td>۱۱/۹</td>
<td>۰/۲۴</td>
<td>V/۱</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>پل شهرستان</td>
<td>۲۷/۸</td>
<td>۳۲</td>
<td>۱۴/۹</td>
<td>۰/۸۵</td>
<td>V/۸</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>عسکران</td>
<td>۲۸/۴</td>
<td>۳۰/۷</td>
<td>۱۷/۸</td>
<td>۰/۸۹</td>
<td>V/۸</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>عسکران</td>
<td>۲۹/۷</td>
<td>۳۰/۸</td>
<td>۱۷/۶</td>
<td>۰/۸۹</td>
<td>V/۸</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>کروج</td>
<td>۲۸</td>
<td>۴۷/۴</td>
<td>۱۷/۴</td>
<td>۰/۸۸</td>
<td>V/۹</td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>جوژیل</td>
<td>۴۷</td>
<td>۴۹/۶</td>
<td>۱۹/۲</td>
<td>۰/۸۸</td>
<td>V/۸</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. پارامترهای و ضرایب همبستگی مربوط به چهار مدل پراش‌شناسی جذب فسفری

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>k1</td>
<td>k2</td>
<td>k3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** به ترتیب معنی‌دار در سطوح ۰/۰۵ و ۰/۰۱
جدول 3. ضرایب همبستگی خاک‌های کمیت جذب (A) و برخی ویژگی‌های خاک

<table>
<thead>
<tr>
<th>فرمول‌لی</th>
<th>لانگ‌میر</th>
<th>ویژگی‌های خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>0.866</td>
<td>0.842</td>
<td>0.887</td>
</tr>
<tr>
<td>0.864</td>
<td>0.872</td>
<td>0.866</td>
</tr>
<tr>
<td>0.839</td>
<td>0.867</td>
<td>0.870</td>
</tr>
<tr>
<td>0.868</td>
<td>0.871</td>
<td>0.871</td>
</tr>
</tbody>
</table>

* و **: به ترتیب قدرت دنی و معنی دار در سطح 0.01 و 0.001

جدول 4. برخی خاک‌های بافری و نیاز استاندارد فسفر (SPR) خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>شاخص X</th>
<th>شاخص Y</th>
<th>شاخص Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR (mg P kg⁻¹)</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>MBC (ml g⁻¹)</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>SBC (ml g⁻¹)</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>EBC (ml g⁻¹)</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

بعارت دانش‌های ویا درصد CCE همبستگی معنی‌داری نداشت. نتایج جدول 4، اینکه با کلیه شاخص‌های بافری محاسبه شده از معادله لانگ‌میر نیز دارای همبستگی معنی‌دار بود (جدول 3).

ضریب P1 (شیب) معادله تعیین نیز به عنوان ضریب بافری به کار رفته است (10 و 11). این شاخص ارتباط ضعیف ویا معنی‌دار با درصد رس و CEC خاک (جدول 2) نشان داد و به ويژگی‌های خاک برآورد کرد. بدن منظم، رابطه‌ای دوم ویژگی‌های خاک فسفر و ویژگی‌های خاک به سیل نرم‌فاز آماری برای گردید. استفاده از روش رگرسیون K , EBC , SBC و MBC را به کمک نشان داد که شاخص‌های CCE و MBC را با دقت زیاد به سیل رس خاک و ارزش‌های معنی‌داری از CEC و MBC تخمین زد (جدول 7). واریان کردن ویژگی‌های دیگر خاک در این رگرسیون افزایش معنی‌داری در ضرایب تبیین اینجات نکرد. بنابراین این ویژگی‌ها وارده مدل‌های مربوط نشده‌اند. برای این ویژگی‌ها K و معادله تعیین نیز طنین از رگرسیون Gام به گام ارتقاء داشته و با درصد CCE همبستگی معنی‌داری نداشت. نتایج جدول 4، اینکه با کلیه شاخص‌های بافری محاسبه شده از معادله لانگ‌میر نیز دارای همبستگی معنی‌دار بود (جدول 3).
جدول 5 ضرایب میپسگی شاخص‌های ظرفیت بالقوه و برخی ویژگی‌های خاک‌ها

<table>
<thead>
<tr>
<th>شاخص ظرفیت بالقوه</th>
<th>k₁</th>
<th>EBC</th>
<th>SBC</th>
<th>MBC</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد رس</td>
<td>20.5</td>
<td>0.71*</td>
<td>0.74**</td>
<td>0.72</td>
<td>0.73**</td>
</tr>
<tr>
<td>درصد کریستال کلسیم ماده</td>
<td>84.2</td>
<td>0.74</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73**</td>
</tr>
<tr>
<td>ظرفیت بالقوه کاتیونی</td>
<td>83.6</td>
<td>0.76</td>
<td>0.74</td>
<td>0.73</td>
<td>0.74**</td>
</tr>
<tr>
<td>درصد کریستال آلی</td>
<td>67.5</td>
<td>0.78</td>
<td>0.77</td>
<td>0.72</td>
<td>0.73**</td>
</tr>
</tbody>
</table>

جدول 6 ضرایب میپسگی میان شاخص‌های ظرفیت بالقوه

<table>
<thead>
<tr>
<th>k₁</th>
<th>n</th>
<th>EBC</th>
<th>SBC</th>
<th>MBC</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.74</td>
<td>0.78</td>
<td>0.74</td>
<td>0.73</td>
<td>0.74**</td>
<td>-</td>
</tr>
<tr>
<td>0.78</td>
<td>0.76</td>
<td>0.73</td>
<td>0.74**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.77</td>
<td>0.74</td>
<td>0.73</td>
<td>0.74**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>0.71</td>
<td>0.74**</td>
<td>0.73</td>
<td>0.74**</td>
<td>-</td>
</tr>
</tbody>
</table>

صورت گرفت (جدول ۴). نیاز استاندارد فسفر در واقع نشان دهنده مقدار فسفری است که باید به وسیله یک خاک جذب شود تا غلظت P مورد نیاز برای رشد گیاه در محصولخاک برای گونه‌های مختلف گیاهی متفاوت است. غلظت P به ppm به وسیله برخی پژوهشگران به عنوان میزان فسفر لازم برای حداکثر گیاه پیشنهاد گردیده است (8 و 9). در حالی که مهندس و همکاران (12) مقدار ۱۵، ۱۷ و ۱۹ را به عنوان غلظت مناسب فسفر به منظور رس خاک‌های مختلف نیاز دارند. در اینجا نیاز غلظت نیز غلظت P ۳۰ µg P/ml مقدار βHA(۱) و ۳۸۳ µg P/ml مقدار SPR گزارش شده است. برای استاندارد فسفر (جدول ۵) به روش‌بندی SBC و SFC شاخص SP حاصل شده است.
جدول 7 معاواکن رگرسیون گام به گام به منظور پرآورد شاخص‌های بانفی از روی ویژگی‌های خاک

<table>
<thead>
<tr>
<th>شاخص‌بافری</th>
<th>معاواکن رگرسیون</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>۲/۶۷/۸ (درصد رس) ۷۷/۹۹/۹</td>
<td>۰/۹۴**</td>
</tr>
<tr>
<td>SBC</td>
<td>۱۴۶/۷ (درصد رس) ۱۰/۹۸/۸</td>
<td>۰/۹۲**</td>
</tr>
<tr>
<td>EBC</td>
<td>۱۴۰/۲۴ (درصد رس) ۷۷/۹۴/۴</td>
<td>۰/۸۷**</td>
</tr>
<tr>
<td>K</td>
<td>۲/۳۹ (درصد رس) ۷۷/۸۱/۱</td>
<td>۰/۸۲**</td>
</tr>
<tr>
<td>n</td>
<td>۲/۱۴ (درصد رس) ۷۷/۸۵/۵</td>
<td>۰/۸۴**</td>
</tr>
<tr>
<td>k₁</td>
<td>۷/۳۲ (CCE%) ۸۷/۴۳۲/۲</td>
<td>۰/۷۱**</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی‌دار در سطح ۵۰ و ۱ درصد

جدول 8 ضرایب همبستگی میان SPR و برخی شاخص‌های کیست، ظرفیت بانفی و ویژگی‌های خاک

<table>
<thead>
<tr>
<th>شاخص</th>
<th>SPR</th>
<th>SPR</th>
<th>SPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBC</td>
<td>۷۷/۹۴/۴</td>
<td>۷۷/۹۴/۴</td>
<td>۷۷/۹۴/۴</td>
</tr>
<tr>
<td>K</td>
<td>۷۷/۸۱/۱</td>
<td>۷۷/۸۱/۱</td>
<td>۷۷/۸۱/۱</td>
</tr>
<tr>
<td>MBC</td>
<td>۷۷/۹۹/۹</td>
<td>۷۷/۹۹/۹</td>
<td>۷۷/۹۹/۹</td>
</tr>
<tr>
<td>a</td>
<td>۷۷/۸۵/۵</td>
<td>۷۷/۸۵/۵</td>
<td>۷۷/۸۵/۵</td>
</tr>
<tr>
<td>A</td>
<td>۷۷/۸۴/۴</td>
<td>۷۷/۸۴/۴</td>
<td>۷۷/۸۴/۴</td>
</tr>
<tr>
<td>ns</td>
<td>۷۷/۸۴/۴</td>
<td>۷۷/۸۴/۴</td>
<td>۷۷/۸۴/۴</td>
</tr>
</tbody>
</table>

شناخت نهایی ظرفیت حاصل از آن را نیز باید مورد بررسی قرار داد. این گرگان چنین شاخص‌هایی در مراحل عملی آزمون خاک و بررسی همبستگی آنها با پاسخ‌های گیاهی به شکل تفکراتی در بهینه‌نامه‌های تغذیه گیاهان و رسانیدن به تولید مناسب خواهند نمود.

یژه‌های این دیگر نیز به اثبات رسیده است (۴ و ۲۲).

با توجه به تناوب این یژه، چنین برداشت می‌شود که همدماهای جذب سابق در اطلاعات مفیدی در مورد توانایی خاک‌ها در جذب فسفر و عوامل مؤثر بر آن و شاخص‌های ظرفیت بانفی به ماهیدن اب명ه‌هایی که هدف ارزیابی قابلیت جذب فسفر برای گیاه باشد، مطالعات هم‌خانواده و ماناب مورد استفاده

1. آکوتوس، م. و. تاکستان. ۱۳۷۳. مطالعه جذب سطحی فسفر در سه صنعت شهروی با استفاده از همدماهای جذب. خلاصهی مطالعه‌های چهارمین گنگر علوم خاک ایران، دانشگاه صنعتی اصفهان.

2. خادمی، ب. و.، هدی‌شناس و. و. افتخاری. ۱۳۷۰. تحقیقاتی از مطالعه فسفر مورد نیاز خاک‌های خوزستان با استفاده از ایزوترومبی جذب و رها شدن، تسکین نیرو، اندازه‌گیری شکل و آب شناخت.

3. فلوئره، کویشاگی. م.، م. کلی. و. و. هری. ۱۳۷۳. مقایسه معادلات لانگمارش یک سطحی و دو سطحی، فرودنیچ و مدل‌های جذب سطحی فسفر در بعضی خاک‌های منطقه اصفهان. خلاصهی مطالعه‌های چهارمین کنگره علوم خاک ایران، دانشگاه صنعتی اصفهان.

