بررسی تنوع زنیکی و فنوتیپی و تجزیه عامل‌های برای صفات مورفولوژیک در زنوتیپ‌های لوبیا

فرهاد عزیزی، علی‌محمدی، رضا ایسایی و سید علی مهرمحمدی میبدی

چکیده

به منظور مطالعه تنوع زنیکی و زیگ‌های مورفولوژیک در 121 زنوتیپ لوبیا سفید، قرمز و چربی، بررسی روابط میان صفات برای استفاده در برنامه‌های گیاه‌یابی و شناخت عواملی یافته در مرحله اول بر روی تنوع زنیکی و تجزیه عواملی به منظور تحلیل آنها هنگام تولید گیاهان نشان داده شد. در نتیجه این مطالعه از فنوتیپی و صفات مورفولوژیک برای بررسی استفاده گردید. و این نتایج نشان میدهد که بهتر است در مرحله اول توجه به تنوع زنیکی و صفات مورفولوژیک بیشتری داشته باشیم. به همین دلیل عوامل نتیجه‌گیری‌های انجام شده به‌روزرسانی می‌گردد.

تکلمات نهایی:

واژه‌های کلیدی: اجزای مشکله واریانس، رشد محدود و داشتن، رگرسیون مرحله‌ای، لوبیا چربی، لوبیا سفید، لوبیا قرمز

1. به ترتیب دانشجوی سایه کارشناسی ارشد، استاد و استادیار اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مقامه موارد زنگی‌گونی گیاهی، ذخایر بالقوه‌های مستند که به عنوان پشتون‌یابی ارزش‌بردارانه متقاضیان اصلاح نباتات محصول می‌شوند. گرچه پشتر خونی عاملی برای کاهش نتیجه‌های زنگی کاهش در سیستم‌های از گیاه‌های گیاهی بوده است، ولی کاهش می‌تواند به‌طور بی‌اجلاسی در اصلاح نباتات تلاقی رودآوری و دانه‌داری در سیستم‌های از گیاه‌های گیاهی نموداده و این می‌تواند در پیامدهای اصلاح نباتات بالقوه‌های معدنی انواع تکثیر پذیری و فناوری‌های مطلوب که به تعریف خاص گونه مدل چنین استوار نیست. در صورتی که تجهیز عاملی به یافتن یک مدل پیشنهادی ویژه‌ترین دنیست تایم (۱۲) در بررسی‌های صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صرف‌نظر و اجرای عملکرد در جنگ‌های زنگی گیاهی ثابت است که این گونه مایه‌های تجهیز عاملی به قبلاً گفته شد. نتایج نشان داده است که در عملکرد در این روند به‌طور در قطع غربال عرضات عمده، طول و طول میانگین گروهی پایین‌ترین عاملی می‌باشد. یکی از عوامل اصلی این مدل عاملی به صفر
نظر فیزیولوژی، عامل اصلی، مبدأ و در نظر گرفت آلگوهای و هم‌مردان (7) در روش انتخاب دوره‌های فتوتیپی در
لوبیا، از تجزیه عامل‌ها برای استنتاج عامل‌های پیش‌بینی صفات
اندازه‌گیری شده و آراش تفسیری بیولوژیک برای آنها، و
همچنین شناسایی صفات خاص مرتبط با ساختار ظاهری گیاه
و اندازه‌گیری آن‌ها. در ترتیب این تجزیه، بین عامل اوی
وزن (درصد) تعیین و توجیه کردن. عامل اوی بک عامل طولی بود
و با صفات مرتبط با ارتفاع، مانند طول میان گره و طول ساقه
اصولی هسته‌گری داشت. عامل دوم بک عامل ساختمانی نام
گرفت، و با صفات مرتبط با ساختار ظاهری گیاه و ایستگاهی
داشت. این عامل به دو بخش تفکیک شد: عامل بیش شامل قطر
و طول محور زیر آن و عامل پرتوپلاسمی آن رنگ، شمار زایی
و شمار ساقه فرعی. عامل سوم بک عامل ویژه به صفات
زاویه بود، که بیش از حد کاریزیایی، شمار صفات
مکان غلاف و گره ارتباط داشت. این بیار عامل‌های جهان و
پنجم تفسیر خاصی ارائه نمودند.

در پژوهش دیمی و آدامز (13)، تجزیه عامل‌ها برای
زوتوپی‌های رشد محدود، ناحیه عامل‌های پای توجه 86
درصد از توزیع کل نهایی ساخت. سه عامل اول به ترتیب به
عنوان عامل‌های وزن، یا اندازه، تعداد و معنی تعریف شدند.
ویل برای عامل چهارم تعریف مناسبی ارائه نشد. تجزیه
عامل‌ها برای زوتوپی‌های رشد نامحدود، پنج عامل را با توجه
87 درصد از توزیع معنی دارد. عامل اول به دوم به
برتر تعریفی شد و عوامل دوم و سوم به درویس اول رشد
محدود داشتند. عامل سوم در این زوتوپی‌ها همانند عامل سوم
در انتخاب رشد محدود عامل بیشماری نام گرفت، و عامل‌های
جهان و ویژه مشترکاً از تجزیه کل عامل‌ها از عامل چهارم در
زوتوپی‌های رشد محدود مشابه بودند. آنها پیشنهاد کردند که
تولید ارگان پرمحصول لوبیا باید بر پایه گروه گیاهان نسبتاً
یگزه با شمار گره و برگ زیاد انتحام گردند، و آراشی ظاهری
ساختاری زایی بک گونه‌هایی باشد که مانند رسیدن نری یکسان

1. Hypocotyl length and hypocotyl diameter
2. Profile factor
3. Canopy
مواد و روش‌ها

این آزمایش در سال ۱۳۷۶ به منظور بررسی تنومندی گوناگونی زنینی بر روی ۲۰۱ ذ动态ی لوبیا، با بهره‌گیری از روش‌های تجربی و تحلیل‌های منجری‌ته‌راکی گردیده، که مهم‌ترین اهداف آن در موارد ذیل خلاصه می‌گردد:

۱. برآورد گوناگونی زنینی برای صفات کمی و کیفی، تعیین سهم هر صفت از گوناگونی کل و شناخت عوامل مؤثر در گوناگونی.

۲. برآورد اجزای عملکردی، تعیین ارتباط میان اجزای عملکردی و ساختارهای مورفولوژیک میانی، و شناسایی صفاتی که برای اصلاح عملکرد به‌عنوان متغیرهای مؤثر مطرح می‌شود، شامل ساختار فلزی و شکل غشایی و ابعاد اندازه‌گیری شده در ۲۰۱ ذ动态ی لوبیا.

۳. شناسایی عوامل پنهانی برای تشخیص روابط داخلی میان صفات مورفولوژیک.

مواد و روش‌ها

این آزمایش در سال ۱۳۷۶ به منظور بررسی تنومندی گوناگونی زنینی بر روی ۲۰۱ ذ动态ی لوبیا، با بهره‌گیری از روش‌های تجربی و تحلیل‌های منجری‌ته‌راکی گردیده، که مهم‌ترین اهداف آن در موارد ذیل خلاصه می‌گردد:

۱. برآورد گوناگونی زنینی برای صفات کمی و کیفی، تعیین سهم هر صفت از گوناگونی کل و شناخت عوامل مؤثر در گوناگونی.

۲. برآورد اجزای عملکردی، تعیین ارتباط میان اجزای عملکردی و ساختارهای مورفولوژیک میانی، و شناسایی صفاتی که برای اصلاح عملکرد به‌عنوان متغیرهای مؤثر مطرح می‌شود، شامل ساختار فلزی و شکل غشایی و ابعاد اندازه‌گیری شده در ۲۰۱ ذ动态ی لوبیا.

۳. شناسایی عوامل پنهانی برای تشخیص روابط داخلی میان صفات مورفولوژیک.
بررسی توزیعی و فنوتیپی و تجزیه عاملی برای صفات غلاف در ساقه اصلی و ساقه‌های فرعی، شمار دان در غلاف در ساقه اصلی و ساقه‌های فرعی بر اساس نسبت شمار دانه در هر ساقه بر شمار غلاف آن، وزن صد دانه خشک و عملکرد دانه و بوته با رطوبت ۱۴ درصد.

میزان تعداد گرم‌های مورد تجزیه واریانس نرگان‌های بخصوص میزان نسبی سطح سادات نسبت به طرح بلکه‌های کامل خاصیت‌های ساقه‌های فرعی گردد، اما چنین این سودمندی برای برخی صفات می‌باشد، اما تجزیه واریانس برای عامل طرح بلکه‌های کامل تصادفی با دو تکرار انجام گیرد. ایجاد مشکل واریانس و ضرایب توزیع و فنوتیپی و توزیع گردد. ضرایب همبستگی زنتیکی و فنوتیپی میان صفات محاسبه شد. از رگرسیون مجموعه‌ای برای تغییر صفاتی که بیشتر میزان از توزیع عملکرد داشته و توجهی می‌کنند استفاده به عمل آمد. برای شناسایی عامل پنهان مؤثر بر عملکرد و همچنین گروه‌بندی صفات، از تجزیه عامل‌ها به روش مؤلفه‌ای اصلی روی مجموعه‌ای مختلف از ۲۷ جنسیتی نوشته، مدل‌های استفاده گردید و عوامل به دست آمده با روش ویکسک درمان داده شد (۱۸). تعداد عامل‌ها با توجه به توجه منطقی و شمار رشته‌های مشخصه بزرگتر از یک استخراج و تفسیر گردید.

نتایج و بحث
تجزیه و تحلیل‌های یک متغیره
میزان تغییر در پایین‌ترین سطح به طرح بلکه‌های کامل تصادفی یکی کلیه صفات تغییر گیری شد که بود، بنابراین، بر آوردن واریانس‌ها و امیدهای ریاضی از راه تجزیه واریانس و امیدهای ریاضی در بلکه‌های کامل تصادفی صورت گرفت. تجزیه فنوتیپی و تجزیه ساقه‌های فرعی تجزیه واریانس ۲۴/۷ درصد، ایجاد واریانس و ضرایب توزیع زنتیکی و فنوتیپی برای هر گروه مشخصه بزرگتر از یک استخراج و تفسیر گردید.

1. Variance components

131
<table>
<thead>
<tr>
<th>سال</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1972</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1973</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1974</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1975</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1976</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1977</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1978</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1979</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>1980</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
تجزیه عامل ها

نتایج تجزیه عامل ها برای کلیه زنوتیپ‌ها لوبیا شامل بارهای
عامل دوران پایان، نسبت واریانس توجه شده توسط درصد
عامل، و نسبت تجمیع آن و ریشه معنی‌دار شدکته در جدول 2.

3-4-5-6-7 نشان داده شده است. چهار عامل اول مجموعاً
79 درصد از واریانس کل را توجیه نمودند. در عامل اول
ونیگری‌های زرود و رنگ‌بندی، این سطح عاملی، در مجموعه
فرعی، شماره گره در سطح فرعی اصلی و فرعی دریای بارهای
بازگر و مثبت بودند. بنابراین، عامل این در تنا نمایش
رویش تنا نهاد. در عامل دوم، سطح شمار غلاف در سطح
اصلی و فرعی و عامل دارد بارهای عاملی پژر و مثبت
بودند. در تنا نمایش می‌توان آن را عامل درجه اول
عامل را نهاد. عامل سوم نیز دریای بارهای عاملی پژر و
مثبت برای شمار دانه در غلاف سطح عامل به نمایش
وضعیت عامل سطح فرعی و فرعی و بار
عامل پژر و مثبت برای وزن دانه بوده و به توجه مجدد
روابط معنی‌دار شمار دانه در غلاف سطح عامل اصلی و سطح عامل
فرعی را با وزن دانه می‌نمایاند. این عامل را می‌توان
برده دوم عامل تلقی کرد. در عامل چهارم، نتایج به عامل
بازگر و مثبت متعلق به شمار سطح فرعی بوده، به بهین دلیل
عامل دوم نمایش عاملی نامیده شد. بهطور کلی، می‌توان
اول و چهارم را در ارتباط با رشد روش و عوامل دوم و سوم را
مرتبه عامل کرد.

در تجزیه عامل‌ها برای همه مجموعه‌ها سفت‌ایت‌ها

زنوتیپ‌ها عامل اول در همه مجموعه‌ها شامل صفات روز تا
رسیدگی، طول ساقه‌های اصلی و فرعی و شمار گره در
ساقه‌های اصلی و فرعی بود. بنابراین، در تنا مجموعه
زنوتیپ‌ها مورد بررسی عامل رشد رویشی نامیده شد. عامل
陥 در بررسی تمام زنوتیپ‌ها، زنوتیپ‌های لوبیا سفید، قرمز
چنی و زنوتیپ‌های لوبیا نامحدود، شامل شمار غلاف در

جدول 2: بردار بار عامل‌های دوران یافته، سنت و واریانس توجیه شده توسط هر عامل، سنت تجسمی و واریانس توجیه شده و ریشه‌های مشخصه ۱۲۱ ژن‌توده لوبیا

<table>
<thead>
<tr>
<th>صفات</th>
<th>بار عامل</th>
<th>دوم</th>
<th>اول</th>
<th>سوم</th>
<th>چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت واریانس توجیه شده</td>
<td>0.0809</td>
<td>0.114</td>
<td>0.199</td>
<td>0.0597</td>
<td>0.1859</td>
</tr>
<tr>
<td>جمع کل واریانس توجیه شده</td>
<td>0.715</td>
<td>0.597</td>
<td>0.799</td>
<td>0.640</td>
<td>0.775</td>
</tr>
<tr>
<td>ریشه مشخصه</td>
<td>0.8209</td>
<td>0.6207</td>
<td>0.775</td>
<td>0.640</td>
<td>0.775</td>
</tr>
</tbody>
</table>

جدول 3: بردار بار عامل‌های دوران یافته، سنت و واریانس توجیه شده توسط هر عامل، سنت تجسمی و واریانس توجیه شده و ریشه‌های مشخصه ژن‌توده لوبیا سفید

<table>
<thead>
<tr>
<th>صفات</th>
<th>بار عامل</th>
<th>دوم</th>
<th>اول</th>
<th>سوم</th>
<th>چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت واریانس توجیه شده</td>
<td>0.0809</td>
<td>0.114</td>
<td>0.199</td>
<td>0.0597</td>
<td>0.1859</td>
</tr>
<tr>
<td>جمع کل واریانس توجیه شده</td>
<td>0.715</td>
<td>0.597</td>
<td>0.799</td>
<td>0.640</td>
<td>0.775</td>
</tr>
<tr>
<td>ریشه مشخصه</td>
<td>0.8209</td>
<td>0.6207</td>
<td>0.775</td>
<td>0.640</td>
<td>0.775</td>
</tr>
</tbody>
</table>
جدول ۴: بردار بر اکثریت داده‌های دوران‌های مختلف، نسبت واریانس توجه شده توسط هر عامل، نسبت تجربه واریانس توجه شده و ریشه مشخصه ژنوتیپ‌های لوییا قرمز

<table>
<thead>
<tr>
<th>صفات</th>
<th>بار عامل</th>
<th>چهارم</th>
<th>سوم</th>
<th>دوم</th>
<th>اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا رسیدگی</td>
<td>۰/۱۳۰۰</td>
<td>۰/۸۸۸۰</td>
<td>۰/۶۹۵۸</td>
<td>۰/۷۸۶۷</td>
<td></td>
</tr>
<tr>
<td>طول ساقه اصلی</td>
<td>۰/۲۴۳۳</td>
<td>۰/۳۲۵۵</td>
<td>۰/۳۲</td>
<td>۰/۹۹۸۱</td>
<td></td>
</tr>
<tr>
<td>طول ساقه‌های فرعی</td>
<td>۰/۱۸۵۲</td>
<td>۰/۱۰۶۰</td>
<td>۰/۳۲۹۴</td>
<td>۰/۹۱۲۸</td>
<td></td>
</tr>
<tr>
<td>شمار ساقه‌های فرعی</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۲۴</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>شمارگره در ساقه اصلی</td>
<td>۰/۱۷۸۵</td>
<td>۰/۲۴۱۸</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۲۴</td>
<td></td>
</tr>
<tr>
<td>شمارگره در ساقه‌های فرعی</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۲۴</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>شمار غلاف در ساقه اصلی</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>شمار دانه در غلاف در ساقه‌های فرعی</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>وزن صد دانه (گرم)</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>عملکرد بیون (گرم)</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>نسبت واریانس توجه شده</td>
<td>۰/۱۰۶۲</td>
<td>۰/۲۶۹۰</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>جمع کل واریانس توجه شده</td>
<td>۰/۱۰۶۲</td>
<td>۰/۲۶۹۰</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>ریشه مشخصه ژنوتیپ‌های لوییا قرمز</td>
<td>۰/۱۰۶۲</td>
<td>۰/۲۶۹۰</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵: بردار بر اکثریت داده‌های دوران‌های مختلف، نسبت واریانس توجه شده توسط هر عامل، نسبت تجربه واریانس توجه شده و ریشه مشخصه ژنوتیپ‌های لوییا چیتی

<table>
<thead>
<tr>
<th>صفات</th>
<th>بار عامل</th>
<th>چهارم</th>
<th>سوم</th>
<th>دوم</th>
<th>اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا رسیدگی</td>
<td>۰/۱۳۰۰</td>
<td>۰/۸۸۸۰</td>
<td>۰/۶۹۵۸</td>
<td>۰/۷۸۶۷</td>
<td></td>
</tr>
<tr>
<td>طول ساقه اصلی</td>
<td>۰/۲۴۳۳</td>
<td>۰/۳۲۵۵</td>
<td>۰/۳۲</td>
<td>۰/۹۹۸۱</td>
<td></td>
</tr>
<tr>
<td>طول ساقه‌های فرعی</td>
<td>۰/۱۸۵۲</td>
<td>۰/۱۰۶۰</td>
<td>۰/۳۲۹۴</td>
<td>۰/۹۱۲۸</td>
<td></td>
</tr>
<tr>
<td>شمار ساقه‌های فرعی</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۲۴</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>شمارگره در ساقه اصلی</td>
<td>۰/۱۷۸۵</td>
<td>۰/۲۴۱۸</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۲۴</td>
<td></td>
</tr>
<tr>
<td>شمارگره در ساقه‌های فرعی</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۲۴</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>شمار غلاف در ساقه اصلی</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>شمار دانه در غلاف در ساقه‌های فرعی</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>وزن صد دانه (گرم)</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>عملکرد بیون (گرم)</td>
<td>۰/۲۴۱۸</td>
<td>۰/۸۰۳۲</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>نسبت واریانس توجه شده</td>
<td>۰/۱۰۶۲</td>
<td>۰/۲۶۹۰</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>جمع کل واریانس توجه شده</td>
<td>۰/۱۰۶۲</td>
<td>۰/۲۶۹۰</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
<tr>
<td>ریشه مشخصه ژنوتیپ‌های لوییا چیتی</td>
<td>۰/۱۰۶۲</td>
<td>۰/۲۶۹۰</td>
<td>۰/۹۸۰۸</td>
<td>۰/۱۳۰۵</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۶. بردار بر اعمال های دوران یافته، نسبت واریانس توجه شده توسط هر عامل، نسبت تجمیعی واریانس توجهی شده، و ریشه مشخصه زوانتیپهای رشد محدود

<table>
<thead>
<tr>
<th>صفات</th>
<th>پارامتر</th>
<th>اول</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت واریانس توجهی شده</td>
<td>0.376</td>
<td>0.476</td>
<td>0.617</td>
<td>0.682</td>
<td></td>
</tr>
<tr>
<td>جمع کل واریانس توجهی شده</td>
<td>0.376</td>
<td>0.476</td>
<td>0.617</td>
<td>0.682</td>
<td></td>
</tr>
<tr>
<td>ریشه مشخصه</td>
<td>0.376</td>
<td>0.476</td>
<td>0.617</td>
<td>0.682</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷. بردار بر اعمال های دوران یافته، نسبت واریانس توجهی شده توسط هر عامل، نسبت تجمیعی واریانس توجهی شده، و ریشه مشخصه زوانتیپهای رشد محدود

<table>
<thead>
<tr>
<th>صفات</th>
<th>پارامتر</th>
<th>اول</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت واریانس توجهی شده</td>
<td>0.376</td>
<td>0.476</td>
<td>0.617</td>
<td>0.682</td>
<td></td>
</tr>
<tr>
<td>جمع کل واریانس توجهی شده</td>
<td>0.376</td>
<td>0.476</td>
<td>0.617</td>
<td>0.682</td>
<td></td>
</tr>
<tr>
<td>ریشه مشخصه</td>
<td>0.376</td>
<td>0.476</td>
<td>0.617</td>
<td>0.682</td>
<td></td>
</tr>
</tbody>
</table>
رشد روشی خیلی کم می‌توانند مواد فتوسنتزی کافی تولید کنند و گیاهان با رشد روشی سیب یکی نیز این مواد را به مصرف بافت‌های ساختمانی می‌رسانند. بنابراین، می‌توان انتظار کرد که حد معادلی از رشد روشی می‌تواند عملکرد بیشتری را نسبت به در حال کیفیت کند. این دیدگاه با نتایج حساسی از گروه‌بندی و تجزیه‌بندی مستقل خاصی‌های مقرون به صرفه‌است. داده‌های تحقیق علی‌رغم این تحقیق، در مراحل بعدی، عملکرد شماری در طول سال‌های اصلی و شمار دانه‌های زنوبیسیالی مورد بررسی وردند. ضمناً، می‌توان دریافت که این نوع می‌تواند به یکی از مهم‌ترین عوامل اصلی در زیست‌شناسی و سنگین‌سازی در ساراها و دیگر محصولات در زمینه زندگی که بیشتر در زنوبیسیالی مورد بررسی وردن، عملکرد که در زنوبیسیالی مورد بررسی وردن، کاری از اهمیت ویژگی‌ها در زیر می‌باشد. در سال‌های اصلی در درجه دوم اهمیت قرار دارد. در سال‌های اصلی، صنعت بود به این نظر اهمیت در مرحله اولیت قرار داشت. این ویژگی‌ها توسط شماره دانه در غلاف و وزن دانه از معیان می‌باشد. از نظر اهمیت ویژگی‌ها در محصولات زندگی که بیشتر در زنوبیسیالی مورد بررسی وردن، کاری از اهمیت ویژگی‌ها در زیر می‌باشد.
بررسی توزیع زننیکی و فنوتیپی و تجزیه عامل‌ها برای جفت‌زنی

لیبیا (۳۹ و ۴) در نزدیکی غراف در بوته معمولی ویگی متمایز می‌باشد، اما در بوته و غراف غراف و وزن صدها در موردی بیشتر بداند

تجزیه رگرسیون مرحله‌ای و تجزیه عامل‌ها به عنوان روش‌های مکمل یکدیگر استفاده می‌گردد (۱۰ و ۳۴). مثلاً در تجزیه عامل‌ها، نشان داده شده که شمار غراف در گیاه بیشترین همیستگی را با عامل میرزی دارد. افزایش گیاهانی که شامل آن بیش از هر صفت گیاهی موجب افزایش عامل میرزی می‌شود و با منفی عامل میرزی در یک عامل می‌گردد. پنچه، وزن صدها و شمار دانه در غراف، که مرتبط با درشتی دانه می‌باشد، در دوره اصلی بودن، و عوامل در عامل درجه دوم عامل میرزی گروه‌بندی شده. نتایج این می‌توان در مورد قبلی در تجزیه عامل‌ها اطلاعات کسبی بر‌جزیه رگرسیون مرحله‌ای ارائه می‌دهد، که با کاربرد این در روش‌ها یکدیگر اطلاعات مفیدی را به فراهم خواهد آورد.

منابع مورد استفاده

1. اسفندیاری، ع. و. و. و. و. ۱۳۸۳. بررسی توزیع زننیکی کلکسیون لوپیای باکلین میلی ایران در رابطه با مناطق جغرافیایی و اقلیمی. تالی و ژنرال ۱۰ (۱و۲): ۱۱۱-۱۱۰.
2. خیام نوری، م. ۱۳۷۳. بررسی توزیع زننیکی و جغرافیایی در ارقام لوبیا چشم بیلی. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران.
3. زاگری، ع. ۱۳۷۳. برنامه پهناوری از کلکسیون از بازگشتی گیاهان. مقاله کلیدی سومین کنفرانس علوم زراعت و اصلاح نیاته بیا ایران، دانشگاه کشاورزی، دانشگاه تهران.
4. عیوب‌شناسی، س. و. و. و. و. ۱۳۸۵. بررسی توزیع زننیکی و جغرافیایی در کلکسیون لوپیای ایران. علوم کشاورزی ایران ۲۱ (۳و۴): ۱۸۴-۱۸۵.
5. گوچی‌نیک، ع. و. و. و. و. ۱۳۷۴. زراعت حیوانات. اشتهارات جهاد دانشگاهی مشهد.
6. مقدم، م. و. و. و. و. ۱۳۸۴. آشناهی با روش‌های آماری چند متغیره (رشم‌رسانی). اشتهارات پیش‌دانش، تبریز.

۱۱۹


