تأثیر نحوه اختلاط کود دامی با خاک و تلفیق آن با کود شیمیایی بر عملکرد و اجزاء عملکرد ذرت دانه‌ای (Zea mays L.) در خرم‌آباد لرستان

سیف اله فلاح، امیر قلاوند و محمدرضا خواجه بور

چکیده

در راستای توصیع کشاورزی پایدار و کاهش مصرف کودهای شیمیایی، لازم است از کودهای آلی استفاده گردد. به یکی از روش‌های اصلی آن‌ها می‌توان کود دامی و کود شیمیایی را به عنوان عملکرد ذرت دانه‌ای (Zea mays L.) در خرم‌آباد لرستان تلفیق نمود. کردهای درمان بر اساس پژوهش‌های موردی و مستاند نشان داد که با تلفیق، اجزاء عملکرد ذرت بهبود یافت. با توجه به اینکه کود دامی و کود شیمیایی می‌تواند تأثیرات مختلفی بر عملکرد کشاورزی داشته باشد، طراحی نهایی آزمایشات مصرفی، تعیین مقدار درون‌کاری و ضریب افزایش بررسی گردید. در این مطالعه، پژوهش‌های دامی در استان لرستان انجام شد. نتایج حاصل از این پژوهش نشان داد که ترکیب‌های تلفیقی کود دامی و کود شیمیایی به بهبود عملکرد و اجزاء عملکرد ذرت بخشی کرده‌اند. نتایج حاصل از این پژوهش نشان داد که ترکیب‌های تلفیقی کود دامی و کود شیمیایی به بهبود عملکرد و اجزاء عملکرد ذرت بخشی کرده‌اند. در سال‌های اخیر، توجه به ارائه روش‌های کشاورزی پایدار و ایمن مستمر به بیشین نشان داد. به این ترتیب، اجرای مطالعاتی در این حوزه بسیار ضروری است.

واژه‌های کلیدی: روش اختلاط، کود دامی، کود شیمیایی، دانه‌ای، عملکرد

مقدمه

استفاده می‌شود که هر دو غیر تجربه شونده می‌باشند. بنابراین برای توسعه کشاورزی پایدار باید مصرف این نوع کودها

جغت نهایی کودهای شیمیایی از نظری فیزیکی و منابع معدنی

1. به ترتیب دانشجوی سابق دکتری و دانشیار زراعت و اصلاح نباتات. دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
2. دانشیار زراعت و اصلاح نباتات. دانشکده کشاورزی، دانشگاه تربیت مدرس

233
کاهش یاد (2). کودهای داری که حاوی اکثر عناصر مورد نیاز گیاهان مستند، جایگزین مناسبی برای کودهای شیمیایی می‌باشند. زیرا کود دامی علاوه بر وجود عناصر پویا و صرفه‌جویی در مقدار کمتری در زمین‌های بوده و در پایان می‌باشد.

3- کودهای قابل دسترس در خاک‌های که کود دامی در آنها صرفه‌جویی معناداری داشته باشد.

4- کودهای شیمیایی (200 کیلوگرم نیتروژن در هکتار) بود.

5- آزادی ویژه تدابیر و توزیع قابل دسترس در شرایط

استفاده از کود دامی ممکن است بیشتر با نیازهای هوموژن

باشد.

6- کودهای قابل دسترس در خاک‌های که کود دامی در آنها صرفه‌جویی معناداری داشته باشد.

نتایج مطالعه نور و بی‌نور ۹۲۱. (بیانگر آن است که کیفیت کود

مرغ با کود سه‌فقره به یک‌فقره شود که راندمان جذاب کود

گیاهی افزایش یافته و به دوبار قابل دسترس بودن فسفر

طولانی‌تر شود. بر اساس تابع زنگ و همکاران (۳۱) تحقیر

بونه‌های مضافات به نقش پایین‌تر به معنی وجود رطوبت و

رشته‌های جوان جذاب کود توسط گیاه را افزایش می‌دهد.

داس و همکاران (۱۱) گزارش کردند که پاتیسیم و کلسیم قابل

دسترس در خاک با اضافه نمودن کود دامی به خاک به طور

ثابت آفزایش یافت.

تأپس و همکاران (۳۸) نشان دادند که صرفه۳۰ تا ۱۰۰ تن

کود گاوبتا ۱۵ تا ۵۰ در هکتار کود مسمومی معلق گردیده و

علوفه‌ای را در مقایسه با شاهد ۵۰۰ درصد افزایش داد. در

مطالعه شر و همکاران (۲۳) با تیمار کود مسمومی و کود اوره

روی کشت درخت مشخص گردید که کود مصرف ۴/۳ تن کود

مرغ در هکتار عملکردی برای ۵/۲ تن دانه و هکتار حاصل

شد. در حالی که تفاوت ۱۵ کیلوگرم نیتروژن به شکل کود اوره

با این تیمار بسته تولید ۸/۸ تن دانه در هکتار گردید.

در آزمایش دیگر (۷) بالاترین عملکردی در نهایت ۱۴۴ تن در

کیلوگرم در هکتار (۷) و بالاترین میزان کود نیتروژن در

۱۵ تن کود مسمومی در هکتار به همراه ۴۰-۵۰ کیلوگرم در

هکتار NPK معنادار تبود. ابی و ابوی (۱۸) گزارش نمودند که

صدف کود دامی برای واقعیت کمی بیشتر از بهترین

۲۳۴
تأثیر نحوه اختلال کود دامی با خاک و ت搭建 آن با کود شیمیایی بر

جدول ۱. برخی خواص شیمیایی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>غیرت خاک</th>
<th>pH</th>
<th>وزن مخصوص ظاهری (gr/cm³)</th>
<th>EC (dS/m)</th>
<th>O.C (%</th>
<th>total N</th>
<th>P</th>
<th>K</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس سیلی</td>
<td>۷.۳۲</td>
<td>۰.۲۶</td>
<td>۰.۳۱</td>
<td>۰/۴۷</td>
<td>۰/۹۰</td>
<td>۰/۱۲</td>
<td>۴/۰۲</td>
<td>۲/۰۰</td>
<td>۲/۱۷</td>
<td>۳/۲۳</td>
<td>۲/۲۴</td>
</tr>
</tbody>
</table>

جدول ۲. برخی خواص شیمیایی کود مرغی مورد استفاده

<table>
<thead>
<tr>
<th>pH</th>
<th>EC (dS/m)</th>
<th>O.C (%)</th>
<th>total N</th>
<th>P</th>
<th>K</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۶۱</td>
<td>۸/۸۱</td>
<td>۱/۲۴</td>
<td>۲/۲۲</td>
<td>۱/۲۴</td>
<td>۲/۱۲</td>
<td>۷/۱۸</td>
<td>۱/۲۰</td>
<td>۷/۲۲</td>
<td>۴۴</td>
</tr>
</tbody>
</table>

مصروف کود مرغی تأثیر معنی‌داری (در سطح احتمال ۵٪) بر

افراش ارتقاع گیاه ذرت و عملکرد آن داشت. همچنین، اثر میزان

ازدیکی (۱۷) اعلام کرد که مصرف کود مرغی، نیتروژن و

گوگرد باعث افزایش معنی‌دار عملکرد دانه و وزن صد دانه بالا

گردیدند. ولی کفیت بخت فقط توسط کود مرغی به‌طور

معنی‌داری افزایش یافت. در مطالعه شیرینی و همکاران (۲۵) نیز

تأثیر کود گاواری روی وزن مخصوص ظاهری، ماده آنی و

هدایت هیدروالکی اشکال خاک و افزایش عملکرد محصول، بیان شد

در مطالعه استفاده.

با توجه به اینکه ۷۵٪ جیره مرغ از طریق دانه ذرت تأمین

می‌شود و کفیفیت ذرت مصرفی از کمک تعداد عناصر غذایی

به‌خصوص ریزگذاری، پایین است و سالانه مقدار زیادی کود

مرغی تولید می‌گردد (۲) که با غنی از عناصر غذایی است

(۶ و ۲۶)، نیاز به یک می‌رسد مصرف این کود برای تولید

ذرت گامی اساسی در راستای افزایش کفیفیت محصول و

پایداری تولید خواهد بود. به همین منظور در این تحقیق نسبت

تأثیر کود مرغی با شیمیایی و نحوه اختلال آن با خاک بر

عملکرد ذرت مورد بررسی قرار گرفت.

مواد و روش‌ها

پژوهش در مزرعه تحصیلات کشاورزی اداره هواشناسی لرستان

واقع در کیلومتری شمال شرقی خرم‌آباد (عرض جغرافیایی

۸۲۵
در هفتم کور مقاله قرار گرفتند. عمق کار دیسک ۱۵ و عمق کار فارور ۲۰ سانتی‌متر بود.

هر کرف فرم شکل ۱/۲. در نگاهی که به طول ۷ متر و به‌فاده ۱۵ سانتی‌متر بود. فاصله ۲۰ سانتی‌متر بود. در نظر گرفته شد. دو ریف کاری به‌نمایه سپریت از ابتدا و انتهای ریف‌ها به عنوان حاصله محاسبه گردید. پس از یکساعت یک نشان رکورد کرده در پتیس ۱۵میلی‌متر اقدام به دیسک و فارور (براساس تیمارهای مذکور) گردید. کشت در همهٔ اول

خرداد ماه تحت کارگر انجام گرفت. همیشه مورد استفاده

سیانک گریس ۷/۸۴ بود. در طی فصل رشد آبیاری مزرعه هر

۱۰ روز یکبار که نقشه شرایط جوی و وینی ال‌فلسفی

۲/۰-۴/۰ طی سپره توسط کارگر انجام شد. باقی‌مانده نیترورژن

در محله ۸ و ۱۲ گره به‌صورت سرد و در دو قطع مساوی

مصرف شد. در محله رسمیت‌گری‌ریزی، ارتفاع گیاه (از

سطح خاک تا په پرچ) اندازه‌گیری شد و در محله

ریسیدیکی کامل، تعداد ۱۰ پنجه به‌طور تصادفی انتخاب شدند و

صفا تعداد دان داده بود. در بالا، وزن هزار دانه، عامل‌کرک‌ریزیک و

شاخص برداشت روی آنها اندازه‌گیری شدند. پس از حذف

شانه، مستحکم بقای مانده هر کرت (۵ متر) برنامه برآورد

عکس‌برداری نهایی دانه مورد استفاده قرار گرفت. عکس‌برداری دانه

براساس رطوبت ۱۵ درصد محاسبه گردید. تجزیه و تحلیل

داده‌ها با استفاده از نرم‌افزار کامپیوتری SAS (۲۱) انجام شد و

در سطح معنی‌دار بودن اثر عامل آزمایشی، برای تفکیک

میانگین‌ها از آزمون داتکن در سطح احتمال ۵ درصد استفاده

گردید.

نتایج و بحث

ظر یکساعت یک نشان رکورد کرده در پتیس ۱۵میلی‌متر اقدام به دیسک و فارور (براساس تیمارهای مذکور) گردید. کشت در همهٔ اول

خرداد ماه تحت کارگر انجام گرفت. همیشه مورد استفاده

سیانک گریس ۷/۸۴ بود. در طی فصل رشد آبیاری مزرعه هر

۱۰ روز یکبار که نقشه شرایط جوی و وینی ال‌فلسفی

۲/۰-۴/۰ طی سپره توسط کارگر انجام شد. باقی‌مانده نیترورژن

در محله ۸ و ۱۲ گره به‌صورت سرد و در دو قطع مساوی

مصرف شد. در محله رسمیت‌گری‌ریزی، ارتفاع گیاه (از

سطح خاک تا په پرچ) اندازه‌گیری شد و در محله

ریسیدیکی کامل، تعداد ۱۰ پنجه به‌طور تصادفی انتخاب شدند و

صفا تعداد دان داده بود. در بالا، وزن هزار دانه، عامل‌کرک‌ریزیک و

شاخص برداشت روی آنها اندازه‌گیری شدند. پس از حذف

شانه، مستحکم بقای مانده هر کرت (۵ متر) برنامه برآورد

عکس‌برداری نهایی دانه مورد استفاده قرار گرفت. عکس‌برداری دانه

براساس رطوبت ۱۵ درصد محاسبه گردید. تجزیه و تحلیل

داده‌ها با استفاده از نرم‌افزار کامپیوتری SAS (۲۱) انجام شد و

در سطح معنی‌دار بودن اثر عامل آزمایشی، برای تفکیک

میانگین‌ها از آزمون داتکن در سطح احتمال ۵ درصد استفاده

گردید.
جدول ۳. مقایسه عملکرد اجرای عملکرد و دیگر عوامل مورد مطالعه روشهای اختلال و ترکیب‌های مختلف کودی

<table>
<thead>
<tr>
<th>تیمار‌های عملکرد</th>
<th>ارتقاء بوته</th>
<th>تعداد بوته در دانه (گرم)</th>
<th>وزن هزار (تن در هکتار)</th>
<th>عملکرد دانه (تن در هکتار)</th>
<th>عملکرد پیلو (سانتی متر)</th>
<th>کودی</th>
<th>روش اختلال</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>دیسک</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>فلوئور</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>شاهد (T0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>شیمیایی (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>تلفیقی (T2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>تلفیقی (T3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>تلفیقی (T4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>تلفیقی (T5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ارگانیک (T6)</td>
</tr>
</tbody>
</table>

1. میانگین‌های هر گروه در هر ستون که در یک حرف مشترک می‌باشند فاقد تفاوت معنی‌دار بر اساس آزمون دانکان در سطح احتمال ۵ درصد می‌باشند.
استثنای شاهد تقریباً معادلی به دست آمده است و ارتقای کم موجب معنی دارد. این شهرین ترکیب کودی بر یافتن مقداری از ترکیب کودی بر ارتقای گیاه معنی دارد. توافق دهانی این مشابه را گزارش کرده است. اثر متقابل نحوه این مصرف کودی با ترکیب کودی بر ارتقای گیاه معنی دارد.

دانه در بالاد
تعداد دانه در بالاد تحت تأثیر روش اختلاط کود قرار نگرفت، ولی تأثیر ترکیب‌های مختلف کود بر این هزینه را بود. بیشترین تعداد دانه در بالاد مربوط به تیمار ۵ تعداد بود. برای بیشترین تعداد دانه در بالاد (جدول ۳) این تاولای حقیقی از آن است که دانه در زمان تیمارها به استخوان T۶ و T۵ مشابه باشد. میزان این تعداد دانه در بالاد در سیستم تغذیه تلقیفی افزایش یافته است. وزن دانه در تیمار T۵ به مدت ۴ هفته‌گاه کم‌تر که تعداد کود مرغی در محیط بیشتر دردی‌دارنده و وزن دانه در تیمار T۰ به مدت ۴ هفته‌گاه کم‌تر که تعداد کود مرغی در محیط بیشتر دردی‌دارنده است.

زون هزار دانه
 نحوه اختلاط کود، از سه نوع انتخابی کودی در بالاد و ارتقای بیش از آن است که این دو صفت تحت تأثیر عوامل مشابه تغییر نماید. نتایج مشابه نسبت به

دبیس باعث افزایش ۵۰ درصدی وزن دانه می‌شود.
عملکرد دانه

نحوه اختلاط کود با خاک و نسبت‌های مختلف کود دامی - شیمیایی بر عملکرد دانه تأثیر می‌دارد. در می‌سیستم اختلاط کود با خاک توسط نیروی میزان عملکرد ۱/۲،۳ از تأمین نیروی میزان عملکرد (جدول ۳). ظاهر جامع تفاوت آن در داخل پشتی و شرایط بهتر معدنی دانه در می‌سیستم استفاده از فازهای مختلف تغییر ریشه و دسترسی بیشتر به خاک‌هایی است. به‌طوری‌که این شرایط موجب نرخ زایمان دانه تعداد دانه در بالا به‌خصوص

افرازی علی‌داه و رونداز دانه گردیده و در نتیجه میزان عملکرد دانه را افزایش داده است. در طی فصل رشد ده‌انداز میزان عملکرد قطع کل کود مقدار بیشتری به صورت نتیجه‌های قابل جاذب در دسترسی فیزیکی، همچنین ضریب فیزیکی و ضریب فیزیکی

پنجمین تأثیر کود نیز در (۲۱۰ و (۲۹۰ و (۲۰۱۰ و (۲۷۰۰ و (۲۶۰۰ و (۲۵۰۰ و (۲۴۰۰ و (۲۳۰۰ و (۲۲۰۰ و (۲۱۰۰ و (۲۰۰۰ و (۱۹۰۰ و (۱۸۰۰ و (۱۷۰۰ و (۱۶۰۰ و (۱۵۰۰ و (۱۴۰۰ و (۱۳۰۰ و (۱۲۰۰ و (۱۱۰۰ و (۱۰۰۰ و (۹۰۰ و (۸۰۰ و (۷۰۰ و (۶۰۰ و (۵۰۰ و (۴۰۰ و (۳۰۰ و (۲۰۰ و (۱۰۰ و (۰) در طی فصل رشد ده‌انداز میزان عملکرد قطع کل کود مقدار بیشتری به صورت نتیجه‌های قابل جاذب در دسترسی فیزیکی، همچنین ضریب فیزیکی و ضریب فیزیکی

با نتایج اعتلام عملکرد دانه با مصرف ۵۰-۴۰-۸۰ کیلوگرم در هکتار به همراه ۱۶ تن کود مقداری در هکتار به‌دست آمد و عملکرد این تیمار نسبت به شاهد ۵۰ درصد پیش‌تر بود. در حالی که میزان اعتلام عملکرد سیستم تغییری شیمیایی (T1) و ارگانیک (T6) نسبت به شاهد به ترتیب ۲/۱ و (۲/۴ بود (جدول ۳). در سیستم تغییری شیمیایی تمام فسفر و پنام و بخشی از نیتروژن مورد نیاز در مرحله کاشت و پایان ماه تیمار روز طی مرحله مصرف کرده به اتمال تأثیر رشد گیاه و همچنین آشنایی، غلظت نیتروژن در محیط کاشته شده و در نتیجه نیاز گیاه به‌طور کامل تأمین نشده است. ولی در می‌سیستم

عملکرد بیولوژیک

روش اختلاط کود با خاک و ترکیب کودتر بر عملکرد بیولوژیک تأثیر معنی‌داری داشت. به‌طوری‌که عملکرد بیولوژیک در محیطی که کود دامی توسط نیروی میزان کود مقدار بیشتری از دیگر بود. میزان معنی‌داری کود میزان میزان میزان میزان میزان میزان میزان میزان

۲۳۹
بعلت تجمع این کود در داخل رنگ‌ها (پیشنهادی) دسترسی ریشه‌ها به آن بهتر است. همچنین وضعیت رنگ‌های رنگ‌هایی بین این رنگ‌ها (جویه) بوده و در نتیجه معنی‌های کود دامی بیشتر خواهد بود. ولیکن دیسک باعث می‌شود که بخشی از کود با خاک میان رنگ‌ها اختلاف داده شود و به علت محصولات‌های رنگ‌های در فاصله بین رنگ‌ها. هم تجربه کود به کنید صورت می‌گیرد و همیزان توسه‌ای ریشه‌کم است. در نتیجه دسترسی گیاه به عناصر غذایی کمک خواهد بود. بازگشت احتمال کود مقری با خاک توسط کوریب باعث افزایش عملکرد دانه‌ها می‌گردد.

در سیستم تغذیه شیمیایی، عناصر غذایی به‌خصوص تریبروز از مرحله رشد بروی مصرف شده و گیاه در مراحل بعدی به تدریج با کمیتهای آنها روی می‌گردد. در سیستم تغذیه ارگانیک، مواد غذایی مورد نیاز گیاه بایستی در اثر معنی شدن کود فرآیند شود که به علت می‌رسد به علت عدم توسه‌ی ریشه‌ها و سرعت کم معنی شدن در مراحل اولیه رشد دسترسی ریشه به عناصر غذایی محصولات است و با پیشرفت رشد این محصولات کاهش می‌یابد. با این حال در سیستم تغذیه تلفیقی کود شیمیایی مصرفی نه تنها رشد اولیه را تقویت می‌کند، بلکه معنی‌های شدن را نیز تسهیل می‌نماید. از طرف دیگر کود مقری عناصر غذایی گیاه را تا مراحل نهایی رشد فرآیند نموده و در نتیجه عملکرد گیاه را به بالاترین سطح می‌رساند.

شاخص برداشت

روش اختلاف کود با خاک و ترکیب کودی ترکیب‌های مختلف کودی و اثر مقابل آنها بر شاخص برداشت تأثیر معنی‌داری نداشت و روند خاصی نز مانده نگرفت. شاخص برداشت با عملکرد دانه همبستگی مثبت و معنی دار (r=0.25) و با عملکرد بیولوژیک همبستگی منفی محسوس کود (r=-0.29) داشت. این نتایج حاکی از آن است که تخصیص مواد فتوستاتیک به اندام‌های زایشی و در نتیجه سهم عملکرد دانه در تغییر شاخص برداشت بیشتر بوده است.

نتیجه‌گیری

به طور کلی از نتایج حاصل شده چنین نتیجه‌گیری می‌شود که در سیستم‌های کود توسط کوریب با خاک مخلوط‌می‌گردد.
تاثیر نحوه اخلاق کود دامی با خاک و تلفیق آن با کود شیمیایی بر ...

متون محور استفاده

1. تقوی رضوانزاده، س. 1382. اثرب مقدار مختلف نیتروژن، فسفر و یوناسیم بر رشد و عملکرد ذرت.

2. دفتر امور پرورش و بهبود تولیدات طیور، زنبور عسل و کرم ابریشم. 1383. معاونت امور دام وزارت جهاد کشاورزی، تهران.

3. فلاح، س. 1385. بررسی اثرات تلفیقی کود مرغی-شیمیایی و نحوه به کارگیری آنها بر خاصیت‌های خاک و عملکرد ذرت دانه‌ای.

4. در منطقه لرستان: پایان نامه دکتری زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران.

5. ملکوئی، م. ج.، ز. خوکر و ز. خادمی. 1383. روشهایی نوین در تلفیقی کننده (مجموعه مقالات)، انتشارات سنا، تهران.

