چکیده
در این تحقیق به منظور تعیین شرایط بهینه استخراج زلاتین خوراکی از استخوان گاو به روش اسیدی RSREG با استفاده از رگرسیون سطوح پایک خواهد بود.

مقدمه
زلاتین عبارت است از پیک پیوندی با وزن ملکولی بالا که در سطح مایع بین خون و غذا موجود هستند. این پیوند به روش روش‌های مختلف استخوان، پودر و آب شناخته شده است. با توجه به این که یافته‌های بیشتری در مورد استخوان بهترین مصرف زلاتین را در پودر به‌شمار می‌آورند، در این پژوهش به منظور تعیین بهترین شرایط برای استخراج زلاتین از استخوان گاو به روش اسیدی، مدل RSREG به کار برده شد.

واژه‌های کلیدی: زلاتین، استخوان، استخراج اسیدی، رگرسیون سطوح پایک
نمی‌کند و زلاته‌های حاصل از یوست و استخوان گاو را در صورتی مصرف می‌کند که کشدار مطلق آرام‌های دنبی صورت گرفته باشد (۵). از جمله خصوصیات زلاته‌های خاتمه‌ی داده در آب چسبندگی (Adhesiveness)، تحلیل زل، تکثیر کف و تکثیر (Film forming) محفظانت از کلرید pH استخراج با استخراج سولفونیکی ۲ نمره در حدود ۷/۲ ثابت کرده‌است. خواصی استخراج حاوی ۵ درصد ساتریگ (Holzer، ۱۹۶۵) در سال ۱۹۹۶، زلاته‌های با تیغت بلوئی از ۳۰۰ گرم را با روش انتخاب‌یافته از پوست‌های با روش قلبی بهره کرد (درجه پردازی مطلق استفاده شده مربوط است (۱۳ روزه‌ی وسیع‌تر استفاده‌کننده). شرکت مزد، از اثر غلظت ملی مختلف سوپراسپانیل شیر آمک و همچنین زمان‌های تیمار قلبی‌ای را بر روی کفیت و راندمان زلاته‌های استفاده‌‌کننده مورد بررسی قرار داد (۱۱) ولادن و همکاران در سال ۲۰۰۰، درون‌دری در تولید زلاته‌ای با خلصوس بالا استفاده از آزمایش‌های بهره‌نوردی از استخوان ملی زاته‌های شده (وستنین) از آن کردن. در این روش زلاته‌ای با رنگ خالی کم و استحکام زل با آن‌چه ویژگی‌های تولید شده در روش آزمایش‌یابی تولید زلاته‌ای با خلصوس بالا انجام شده و زمان تولید زلاته‌های به‌دلیل حذف و پای کوچک کردن مرحله آهک‌زنی کاهش می‌یابد (۲۱).)

امروزه به منظور بهبود سازی فرآیندهای مختلف مواد غذایی از روش‌های مدل‌سازی استفاده می‌شود. مدل‌سازی فرآیند به منظور بررسی درک چگونگی تب‌های متغیرهای مستقل بر روی خصوصیات محصول تولیدی این آزمایش انجام می‌گردد. مدل‌سازی این امکان را به‌راهندا که تغییر‌های هر یک از متغیرهای مدل‌کنار را به‌دان خود اثرات متغیر دیگر بر روی خصوصیات محصول تولیدی به‌صورت پیوسته نشان دهید در این حالت با استفاده از مدل‌های شرایط مطلوب و بهینه‌ی فرآیند را پیش‌بینی نمود (۶ و ۷). هدف از این تحقیق تغییر شرایط بهینه تولید زلاته‌ان به روش اسیدی و تجزیه و تحلیل تنظیم‌یا استفاده از روش رگرسیون معادله پاسخ‌بندی.
شیوه‌های استخراج زلایتی خوع‌کارکی از استخوان گاو به روش اسیدی …

مواد و روش‌ها
الف) مواد و تجهیزات
استخوان‌ها از شرکت فراورده‌های کشاورزی صنعت‌زایی تهیه نمود و از شرکت بی‌گرفو (Begerov)، مواد شیمیایی شامل، دی ای انثر، از شرکت پارس شیمی، هیدروکسید قلعی و اسید کاربوکسیلیک، و اسید سولفوریک، هیدروکسیکلسیم، و مولخلوه آلومنیم، کربن اکسید کانالیزور کلرید (مخلوط همکنی از 100 گرم سولفات کلسیم، 10 گرم سولفات مس، هیدروکلرید و 1 گرم سلیم) از شرکت مکس آلمن و زرین تهیه شد.

ب) روش استخراج و خالص‌سازی زلایتین
مراحل استخراج زلایتین در سه بخش انجام شد که عبارت بود از: آماده‌سازی نمونه‌های آزمایشی، تهیه ترکیبات استخوان، انجم مراحل استخراج آبی، خالص سازی محلول‌های زلایتین حاوی و سپس تبعیض‌زایی استخوان، بلوم و یکسوزی‌زایی و جذب نمونه و تهیه مدلهای فرآیند استخراج آبی. انتخاب بهترین نمونه زلایتین به لحاظ راندمان و خصوصیات عملکردی و مقایسه ویژگی‌های آن از قبیل بالوم، و یکسوزی، آنالیز الکتروسکوپی و میزان خلوص (درصد حاکمیت، سرپ، اگه و کلسیم) نیاز به تجربیات انجام شد.

آماده‌سازی نمونه‌ها - مقدار 30 کیلوگرم از استخوان‌های تهیه شده از لحاظ شتابعت قطعات و چند سناریویی مراحل شده. سپس استخوان‌های خرد شده به وسیله پزشکی کشفی به دقت 2 میلی‌متر، بنیل شده. پس از مخلوط کردن استخوان‌های خرد شده نمونه‌های آزمایشی 200 گرمی استخوان، در نیل‌های حلالیک دوست‌بندی شده و در سردخانه 21 درجه سانتی‌گراد نگهداری شدند.

اندازه‌گیری ترکیبات استخوان - اندازه‌گیری اساسی برای تهیه ترکیبات اصلی به کار برده (Proximate analysis) می‌باشد. ترکیبات استخوان مورد استفاده در این تحقیق از نظر میزان پروتئین، چربی، رطوبت و باقی‌مانده استخوان از روغن‌های استاندارد تعیین شد (۱۷).

چری‌گیر استخوان - عمل جداسازی چربی از استخوان خرد شده (پور استخوان) با استفاده از آب در در مراحل انجم گرفت. ابتدا از آب بدست آمده معمولی (حدود ۲۰ درجه سانتی‌گراد) و همزمان سریع مایه‌بری از چربی استخوان خارج شد و سپس در مرحله بعد با آب بدست آمده حدود ۴۰ درجه سانتی‌گراد این عمل دوباره تکرار شد. این به منظور استخوان خارج شد و مقدار اندک چربی باید پاک نموده تهیه شود. این مرحله به فرم عظم چربی موجود در استخوان خارج شد و مقدار اندک چربی (باقا به مانده) به مرحله مخلوط محل زدایی استخوان از آن خارج شد (۱۵). مخلوط زدا استخوان به منظور حل زدایی کردن استخوان ۲۰۰ گرمی روتی نمونه استخوان چربی گیری شده (حدود ۲۰۰ گرمی).
جدول 1. متغیرهای فرایند استخراج اسیدی و سطح آنها در طرح قابل چرخش مربوط

<table>
<thead>
<tr>
<th>سطح قابل چرخش مربوط</th>
<th>نامد</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
<td>X₁</td>
</tr>
<tr>
<td></td>
<td>دما استخراج (درجه سانتی‌گراد)</td>
<td>X₂</td>
</tr>
<tr>
<td></td>
<td>زمان استخراج (دقیقه)</td>
<td>X₃</td>
</tr>
<tr>
<td>1/8</td>
<td>4/2</td>
<td>6/2</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>120</td>
</tr>
</tbody>
</table>

درصد pH محلول به رسانده شد و آنگاه تا رسیدن به مقدار 148 به (7+5) محلول pH با درصد 5/15 اسید تهیه شد. در این حالت ذرات ناخالص در محلول زلاتین تاپایدار شده و به وسیله سانتریفیوز نمونه مورد 10 دور در دقیقه و سپس در طی چند مرهچا بی عبور از گاز صافی توسط قیف بخار گردیده به محلول زلاتین حاصل، به منظور گوگرد/2 گرم کربن اکسیژن اضافه شده و به همراه محلول و سپس به وسیله سه مرهچا گذاراندن از گاز صافی توسط قیف بخار صاف کردی، به منظور جداسازی مواد معدنی باقی مانده در محلول زلاتین صاف شده، از سمت زیرین تعیین گردید. (پوچت سی 100) عبور داده شد محلول زلاتین شفاف حاصل به منظور انجام آزمایش‌های کمی و کیفی مورد استفاده قرار گرفت (18، 19 و 20).

اجرایی کمی و کیفی زلاتین‌های آسیدی و تجاری

1. تعبیه راهنما استخراج

به منظور تعبیه راهنما استخراج به روش اسیدی و زلاتین تجاری، از رابطه اندر رفراکتوترا و غلظت محلول و عبارت استفاده شد. به منظور کربن محلول زلاتین خارج سازی شده به وسیله رفراکتومتر قرار شد. سپس به قرار دادن عصب بریزک در رابطه زیر غلظت زلاتین در محلول محاسبه گردد (18): بریزک × 0/81 = غلظت زلاتین (کرم در لیتر)

2. تعيين استخراج Zl

اندازه‌گیری استخراج Zl حاصل از زلاتین‌های آسیدی و تجاری مطابق استاندارد شماره 375 انگلستان با استفاده از pH مقدار 148 میلی لیتر محلول استخراج کلرید‌های با غلظت 50 گرم در لیتر اضافه شد و در درجه 8 درجه سانتی‌گراد محلول حاصل به مدت دو ثانیه هم‌زمان شد، پس از اپان زمان دمای‌کردن، قاز محلول رتوی محلول، جدا شده و اسید حاصل (فاز جامد) به مدت 7 دقیقه به 1/2 لیتر آب مغذی شسته و گردد (16 و 18). استخراج به روش اسیدی - pH مقدار کمی و کیفی Zl به وسیله افزودن محلول استخراج سولفوریک 4 یوزمال برای 1/8 و 2/6 تظیم شد و در مداوم 1/8 و 2/6 درجه سانتی‌گراد به مدت 30 دقیقه عمل استخراج با آب انجام گرفت، لازم به ذکر است که نسبت آب افزوده شده به اسیدی 2/6 برابر بود. عمل استخراج در pH و دمای ثابت انجام شد. پس از اپان زمان استخراج، فاز محلول که در واقع محلول زلاتین بود توسط صافی و قیف بخار جدا شده و به سوی منطقه خالص سازی سورد ارزیابی کمی و کیفی قرار گرفت (6 و 17). متغیرهای فرایند استخراج اسیدی و S كل که در طرح قابل چرخش مربوط می‌باشد (Central Composite Rotatable Design) (CCRD) داده شده است. شاخص داشتن متغیرهای فرایند در استخراج اسیدی، حذف اثرات محلول احتمال آن بر روی یک‌دیگر بوده است. نتایج با استفاده از آزمایش‌های تابع (اراندان)، استخراج Zl، ویژگی‌پذیری و جدید مورد ارزیابی قرار داد.
شرايط بهيه استخراج زلّاتین خوراکی از استخوان گاو به روش اسیدی ...

محلول 10 درصد تهیه شده و در یک حمام آب گرم در 60 دقیقه حاره داده شده. سپس به ظرف ایجاد زلّ بی سرعت آن سرد نموده و زل حاصل در دمای 10 درجه سانتی‌گراد به مدت 16 ساعت غذا رسانیده شد. سپس به صورت دو بار، یک گرم زلّ به دامنه ۴ درجه سانتی‌گراد در ۱۵ دقیقه در حمام آب داغ قرار داده شد. محلول زلّتین به طور کامل همراه شده و به مدت ۱۷ ساعت در دمای ۵۰ ± ۵ درجه سانتی‌گراد قرار داده شد. پس از سپری شدن زمین رسدگی زلّ، استحکام زل بر استفاده از پلاستیج با قطر ۱/۷۷ میلی‌متر و مقدار نفوذ ۴ میلی‌متر پلاستیج به درون زل مقدار بلوغ حسب گرم اندازه‌گیری شد (۱۳ و ۱۸).

۳. اندازه‌گیری ویسکوزیته اندوزه‌گیری ویسکوزیته زلّتین ها به روش استاندارد و با استفاده از دستگاه ویسکومنتر بروکفلد انجام شد. این دستگاه ۱۰۰ محلول ۶۷ درصد زلّتین تهیه شد و در یک بشر ۶۰0 میلی‌لیتر تی ای. توسط اسپیندل (Spindle) شماره ۱ با میزان ۶۰ دور در دقیقه (RPM) و در دمای ۶۰ درجه سانتی‌گراد مقدار ویسکوزیته محلول زلّتین به حسب واحد سانتی‌پوآز (Centi Poise) اندازه‌گیری شد (۸ و ۹).

۴. ارزیابی رنگ محلول زلّتین به منظور ارزیابی رنگ محلول‌های زلّتین، میزان جذب آنها مورد اندازه‌گیری قرار گرفت. جذب محلول‌های زلّتین با غلتچی یک درصد در طول موج ۲۴۰ نانومتر با استفاده از دستگاه اسپیندل‌ترموپورترین (Double-beam) اندازه‌گیری شد (۱۰۰).

۵. اندازه‌گیری pH زلّتین pH اندازه‌گیری زلّتین با استفاده از دستگاه pH متر انجام شد. به‌دنبال سوخت که ایندا یک محلول ۱ درصد زلّتین تهیه شده و سپس در دمای ۲۵ درجه سانتی‌گراد پس از تنظیم دستگاه مقدار اندازه‌گیری شد (۸).

۶. اندازه‌گیری نقطه ذوب به منظور اندازه‌گیری نقطه ذوب نمونه‌های زلّتین ایندا یک
بر خلوف زاناتین تولید شده موث می‌باشد.

مدل سازی فرآیند استخراج اسیدی ژلاتین

نتایج اندوزه‌گیری راندمان استخراج، بلوم، ویسکوزیته و جذب محلول زاناتین حاصل از استخراج اسیدی در طول موج ۲۴۰ نانومتر در سطح مختلف pH ویسکوزیته و جذب در جدول ۲ برای هر یک از متغیرهای تابع (راندمان، لازما و pH) در مدل رگرسیون به صورت مستقل و برابر چهار دوم تابع از متغیرهای مستقل فرآیند اسیدی (X۱، X۲، X۳) ارائه شدند:

\[
Y = \beta_0 + \sum \beta_i X_i + \sum \beta_{ij} X_i X_j
\]

(۳)

برای نشان دادن رابطه هر یک از متغیرهای تابع در مدل رگرسیون با متغیرهای مستقل نمودارهای مطروح پایان و گذار کنونی به وسیله نرم افزار (Response Surface and Contour Plot) ترسیم شدند. به منظور ارزیابی صحت مدل‌های برآور داده شده با داده‌های آزمایش استخراج اسیدی، عمل استخراج اسیدی در شرایط بهینه تعبیه شده صورت گرفت و نتایج ارزیابی کمي و كييفی آن با مقادير پيشگویی شده توسط مدل مقابله گرديد. همچنين به دليل اهميت بيشرت دو عناصر استخراج اسیدی و ویسکوزیته در ارژین زاناتین، عمل استخراج زاناتین به روی اسیدی در شرایط بهينه تعبیه شده، انجام گرفته و به منظور مقابله زاناتین حاصل با زاناتین تجاري خصوصيات آنها به طريق آماري با هم مقابله شدند (خصوصيات تجاری نیز اندوزه‌گیری شد) (۳).

نتایج و بحث

ترکیبات استخوان مرد استفاده در این تحقیق از نظر میزان پروتئین، جریب، روتوس و خاکستر به ترتیب ۵۰±4۷، ۲۳۳±۳۱، ۳۲۰±۱۶ و ۳۲۷±۳ یعیان شد. این ترکیبات نشان داده ماهی زاناتین به رانتاندن تولید زل، میزان جریب برخی از اولیه می‌باشد، مثل میزان پروتئین بر راندمان تولید زل، میزان جریب برخی از اولیه می‌باشد، مثل میزان پروتئین بر راندمان تولید زل، میزان ژلاتین در استخراج اسیدی بیش از این میزان بود.

مدل رگرسیون راندمان

ضرایب همبستگی پرسرسم میان متغیرهای فرآیند و متغیرهای تابع در جدول ۲ از شاخص می‌باشد.

۳۲۲
جدول 2. داده‌های آزمایشی استخراج اسیدی و نتایج راندمان، بلوم، ویسکوزیته و جذب زلاتین حاصل

<table>
<thead>
<tr>
<th>متغیرهای پاسخ (1)</th>
<th>زمان</th>
<th>دما (درجه سانتی‌گراد)</th>
<th>pH</th>
<th>مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>پلو (کرم)</td>
<td>ویسکوزیته (سانتی‌پویاژ)</td>
<td>x₁</td>
<td>x₂</td>
</tr>
<tr>
<td>جذب در 40 نانومتر</td>
<td>y₁</td>
<td>y₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/052</td>
<td>4/2</td>
<td>1/18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/038</td>
<td>3/8</td>
<td>2/12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/021</td>
<td>3/5</td>
<td>3/19</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/037</td>
<td>3/0</td>
<td>1/49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/028</td>
<td>3/4</td>
<td>1/12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/027</td>
<td>3/4</td>
<td>1/12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/026</td>
<td>3/0</td>
<td>1/49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/028</td>
<td>3/4</td>
<td>1/12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/018</td>
<td>1/8</td>
<td>1/12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0/029</td>
<td>1/3</td>
<td>15/14</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Response Variables

جدول 3. ضربای برآورد شده مدلهای رگرسیون راندمان، بلوم، ویسکوزیته و جذب در استخراج اسیدی

<table>
<thead>
<tr>
<th>ضریب (درجه آزادی)</th>
<th>راندمان (درصد)</th>
<th>بلوم (کرم)</th>
<th>ویسکوزیته (سانتی‌پویاژ)</th>
<th>جذب در 120 نانومتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₀</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₃</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₄</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₅</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₆</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₇</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₈</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₉</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₀</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₃</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₄</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₅</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₆</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₇</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₈</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₁₉</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>β₂₀</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* و **: ضرایبی که در مدل رگرسیون معنی‌دار شدند.
جدول ۲. ضرایب همبستگی میان متغیرهای فرآیند استخراج اسیدی و متغیرهای ویژگی‌های هویتی

<table>
<thead>
<tr>
<th>ضریب همبستگی</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>راندمان (درصد)</td>
<td></td>
</tr>
<tr>
<td>استخراج زل (گرم)</td>
<td></td>
</tr>
<tr>
<td>ویژگی‌های هویتی (سانتی‌پیوژ)</td>
<td></td>
</tr>
<tr>
<td>جدب در ۲۴۰ نانومتر</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>دما</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>۰/۹۹</td>
<td>۰/۳۷۵</td>
</tr>
<tr>
<td>۰/۵۱۷</td>
<td>۰/۳۲۴</td>
</tr>
<tr>
<td>۰/۴۲۴</td>
<td>۰/۲۶</td>
</tr>
</tbody>
</table>

شکل ۱. نمودار سطح پایش راندمان استخراج اسیدی در مقابل pH دما و زمان فرآیند.

می‌دهد که اثر در متغیر pH و زمان استخراج اسیدی معنی‌دار است. به دلیل همبستگی منفی متغیر زمان با مقدار استخراج زل در استخراج اسیدی، با افزایش زمان، مقدار مقاومت زل با سرعت بیشتری کاهش می‌یابد (شکل ۳). در حالی که با کاهش افزایش زمان راندمان استخراج اسیدی سبب افزایش استخراج زل حاصل می‌شود. یکدستگی pH با استخراج زل با

مقدمات این است. همچنین از میزان pH و زمان نیز، متغیر دما دارای تأثیر بیشتری بر روی افزایش راندمان در طول استخراج اسیدی زل‌تین، می‌باشد. روند تغییرات راندمان با pH دما و زمان در شکل ۱ به صورت نمودار سطح پایش (Response Surface) مشهد است. همچنین می‌توان نشان داده شده‌اند. خطا بودن مدل رگرسیون راندمان در این نمودارها در فرآیند استخراج اسیدی بر روی راندمان استخراج زل‌تین کم است. اما با کاهش

مقدار pH، تأثیر دو فاکتور مذکور بر روی افزایش

راندمان، افزایش می‌یابد. دلیل افزایش راندمان استحصال زل‌تین در تبیین کاهش

$
pH$

افراش میزان هیدرولیز پوندهای بین

ΔpH

زنجیره‌های کلرین می‌باشد (۲۲).

مدل رگرسیون استخراج زل

نتایج آنالیز واریانس مرحله‌ای متغیرهای فرآیند بر روی

ΔpH

ویژگی‌های نشان داد که اثر هر سه متغیر

ΔpH

دما و زمان در

324
شرایط بهبود استخراج زلتی نرخ‌هاکی از استخوان گاو به روش اسیدی ...

شکل 2. نمودار سطح پاسخ استخراج اسیدی در مقابل pH، زمان و دما فرابند.

شکل 3. نمودار سطح پاسخ ویسکوزیته استخراج اسیدی در مقابل pH، زمان و دما فرابند.

مدل معنی‌دار است. ضرایب همبستگی میان متغیرهای فرابند و متغیرهای تبع نشان می‌دهد که زمان استخراج، تأثیر بیشتری بر روی کاهش میزان ویسکوزیته زلاتی استخراج اسیدی نسبت به دما و زمان دارد. همچنین تاثیر دما بر روی افزایش ویسکوزیته تیز pH دما و زمان استخراج در شکل 3 ارائه شده است. این نمودار نشان می‌دهند که در پایین اثر دما و زمان استخراج تأثیر کمتری بر روی میزان pH و ویسکوزیته مخلوط زلاتی دارد. اما با افزایش زمان نیز افزایش بیدا می‌کند. همچنین با کاهش میزان pH ویسکوزیته کاهش می‌یابد که این به دلیل هیدرولیز بیشتر زنجیره‌های زلاتی و در نتیجه کاهش میزان زنجیره‌های با وزن ملکولی بالا در زلاتی نمی‌باشد (8 و 12).
زمان استخراج مشاهده می‌شود. به طور کلی، افزایش جدید پرتو محلول زلانی می‌باشد. دما و زمان استخراج اسیدی می‌تواند بدلیل تولید طیفی از مولکول‌های زلانی با وزن مولکولی خاص باشد که این مولکول‌ها دارای میزان جذب پرتو بیشتری در محلول زلانی می‌باشند. از انجامی که میزان جذب پرتو محلول زلانی نشان دهنده کیفیت زلانی‌است، بنابراین نقطه انتخاب شرایط مغناطیسی فرآیند طوری انتخاب می‌شود که میزان جذب پرتو کمترین داشته باشد.

(2) تعیین نقطه انتخاب استخراج اسیدی

مدیری رگرسیون حاصل از داده‌های آزمایش‌های ضرایب مغناطیسی در نقطه حساسیت (روزنامه، استحکام زلانی، ویکسوزنی و جذب) به نمود و درجه مدل دارای نقطه سکون (Stationary Point) می‌باشد (1). این نقطه می‌تواند ماکزیمیم، مینیمم، نقطه عطف، نقطه زنبور (Saddle Point) و … باشد (2). مسبار و رشته پیشگویی شده یک درصد انتخاب می‌تواند در سطح محدودیت‌های زمان و جدید فیزیکی دانشگاه جدید و بزرگ به‌طور کلی، زمان و حساسیت حساسیت یک درصد انتخاب می‌تواند در سطح محدودیت‌های زمان و جدید فیزیکی دانشگاه. اما با توجه به مقدار مولی‌های زلانی را برداشته‌اند. مقاومت زلالی ویکسوزنی و جذب از مولی‌های زلانی‌های تجاری، نقطه نزدیک به صورت ترمیمی برآورده می‌شود.
جدول 5. سطوح پیشگویی شده منیبرهای فرآیند استخراج اسیدی برای مقدار ایمن مستقیم استخدام زل، ویسکوزیته و جذب پرتو

| منیبرهای فرآیند | جذب در ۲۴۰ نانومتر | ویسکوزیته (سانتی پوز) | استخدام زل (گرم) | راندمان (%) | pH (x) | دما (y) (°C) | زمان (z) (دقیقه) | نقطه زین (m)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۶۸۸</td>
<td>۱/۶۸۷</td>
<td>۱/۶۸۸</td>
<td>۱/۶۸۷</td>
<td>۱/۶۸۸</td>
<td>۱/۶۸۷</td>
<td>۱/۶۸۸</td>
<td>۱/۶۸۷</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. مقایسه خصوصیات عملکردی زلائین اسیدی و تجاری (ویسکوزیته و استخدام زل تابع هدف است)

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>استخدام زل</th>
<th>ویسکوزیته (سانتی پوز)</th>
<th>روش اسیدی</th>
<th>تجاری</th>
<th>روش اسیدی</th>
<th>تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>جذب پرتو در طول موج ۲۴۰ نانومتر</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 7. مقایسه میانگین خصوصیات زلائینهای اسیدی و تجاری

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>استخدام زل</th>
<th>ویسکوزیته (سانتی پوز)</th>
<th>روش اسیدی</th>
<th>تجاری</th>
<th>روش اسیدی</th>
<th>تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>نقطه ذوب (درجه سانتی‌گراد)</td>
<td>۲/۸۰</td>
<td>۲/۸۰</td>
<td>۲/۸۰</td>
<td>۲/۸۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اختلاف معنی‌داری نداشتند. میزان خاکستر زلائین تجاری با غذایی می باشد (۱۴). همگامی که استخدام زل تابع هدف بود، نتایج مقایسه میانگین ها نشان داد که بین هر دو نمونه زلائین در سطح اختلال خاکستر نه در نمود. بنابراین، با میزان میزان

شایع بهبه استخراج زلائین خوراکی از استخوان گاو به روش اسیدی...

327
جدول 8. ترکیب آمینو اسیدی زلاطین اسیدی و زلاطین تجاری (گرم در صد گرم زلاطین)

<table>
<thead>
<tr>
<th>اسید آمینه</th>
<th>زلاطین اسیدی</th>
<th>زلاطین تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>برولین</td>
<td>12/88</td>
<td>24/61</td>
</tr>
<tr>
<td>میوتونین</td>
<td>0/67</td>
<td>5/99</td>
</tr>
<tr>
<td>لاژنین</td>
<td>4/77</td>
<td>4/18</td>
</tr>
<tr>
<td>ترتوین</td>
<td>6/22</td>
<td>7/08</td>
</tr>
<tr>
<td>آسپارئین اسید</td>
<td>4/8</td>
<td>3/27</td>
</tr>
<tr>
<td>کلورامیک اسید</td>
<td>3/48</td>
<td>2/20</td>
</tr>
<tr>
<td>آژونین</td>
<td>4/33</td>
<td>3/11</td>
</tr>
<tr>
<td>هیستیدین</td>
<td>1/3</td>
<td>2/33</td>
</tr>
</tbody>
</table>

55 درصد اختلاف معنی‌داری وجود دارد (جدول 7). در این حالت زلاطین اسیدی به‌طور استحکام زلرا دارا می‌باشد. اما از نظر ویسکوزیتی، زلاطین تجاری دارای ویسکوزیتی بیشتری است. جذب حشره‌ها در نمونه زلاطین در سطح اختلاف 95 درصدی باهم اختلاف زلاتین اسیدی و زلاطین تجاری از میزان جذب پرتو می‌باشد. pH زلاطین تجاری و اسیدی در سطح اختلاف 95 درصد اختلاف معنی‌داری دارد. میزان کاهش pH زلاطین تجاری با زلاطین اسیدی در سطح اختلاف 95 درصد اختلاف معنی‌داری داشت. این مطالعه به‌دست آمده هنوز با توجه به حذف جریان مقدار خاکستر، آهن، مس، سرب و زلاطین خوراکی مشاهده شده که هم مقدار عناصر منفیک در نمونه‌های استخراج مانند همگونی مصرف جریان خاکستر و زلاطین تجاری از حد میزان کمتر می‌باشد. بنابراین این مقدار قابل قبول می‌باشد.

{	مقدار مقدار آهن، مس و سرب
همچنین نتایج انتقال گیری آهن و مس موجود در نمونه‌های زلاطین استخراج شده در این تحقیق (7/71/77 و 7/61/77) و زلاطین تجاری به عنوان نمونه شاهد (7/66/77 و 6/27/67) به وسیله اسپکتروفوتومتر جعبه اتمی تغییر شد. میزان سرب در هر 10 گرم کمتر از حد حساسیت استاندارد (0/65) بود.	

نتایج آنالیز واریانس انتقال گیری های فوق در سطح اختلاف 99 درصد نشان داد که اختلاف معنی‌داری بین نمونه‌های زلاطین

328
شرایط بهبود استخراج زلاتهین خوراکی از استخوان گاو به روش اسیدی

مقدار اسید آمینه‌های آسیارکی اسیدو گلوتامیک اسید در نمونه استخراج کمتر از زلاتهین تجاری می‌باشد. این بدین‌نonsense به دلیل هیدرولیز بیشتر گروه‌های آمید در زلاتهین استخراجی می‌باشد (8).

نتایج حاضر از این تحقیق نشان داد که می‌توان فرایند استخراج اسیدی را با روش رگرسیون سطحی پاسخ (RSREG) مدل سازی نمود. ضرایب همبستگی مدل‌های رگرسیون برای داده شده را نشان داد. استخراج زل به صورت تحقیق دارای بیشترین بلوم می‌باشد. بنابراین جنگلی استحکام زل هدف باشد، طبق یافته‌های این تحقیق پیشنهاد می‌شود از روش اسیدی استفاده شود.

منابع مورد استفاده

1. بدوی، م. 1378. کتاب جنبی ریاضیات براي مهندسان. نشر انجمن، تهران.
2. حسینی، ز. 1378. روش‌های تندتر در تجزیه ی مواد غذایی. چاپ دوم، انتشارات دانشگاه شیراز.
3. رضایی، ع. م. 1371. مقدارهای برتحلیل رگرسیون کاربردی. مرکز نشر دانشگاهی صنعتی اصفهان.
15. Internet at :http://www.aacchem.com/ Browsed at 12,2002

329