توجه اقتصادی در کشور سبب شده است که حیوانات موجود در هر منطقه گذشته زمان با شرایط موجود سازگار شده و تجدید نسل نمایند و به عنوان دخیل زنیکی منطقه محروم وحشی. به...

۱. عضو هیأت علمی آموزشکده فنی و حرفه‌ای سما، آزادشهر، استان گلستان
۲. استادیار علوم دامی، دانشکده کشاورزی، دانشگاه مازندران، ساری
۳. اعضای هیأت علمی مؤسسه تحقیقات علوم دامی کشور، کرج
از نیازمندی، از شناسنگار RAPD در مطالعات مختلفی برای آنتی‌بیوتیک ساختار آنزاینی درونی روندها استفاده شده است. در این مطالعات نشان داده شده است که این کولنی DNA می‌تواند به عنوان یک ابزار مورد استفاده درونی مناسب نشانگرهای مولکولی جهت مطالعه افرادی در جمع‌یایی متفاوت بهره‌وری کمی. بنابراین این نشانگرهای نسبت‌زا دقت اندازه‌گیرنده ویژه بوده و به هدف تحقیق استفاده شدند. همچنین روش DNA سه‌اراکه ویژه از نشانگرهای DNA به عنوان روش، بررسی نشانگرهای DNA در پروانه‌های مختلف، DNA بالینی کلسترول، افراد، DNA سه‌اراکه ویژه از نشانگرهای DNA به عنوان روش، بررسی نشانگرهای DNA در پروانه‌های مختلف، DNA بالینی کلسترول، افراد...
جدول ۱. توالی آغاز و اتمای مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>توالی آغازگر</th>
<th>توالی اتمای</th>
<th>توالی آغازگر</th>
<th>توالی اتمای</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-1</td>
<td>TCACGATGCA</td>
<td>PR-11</td>
<td>AACCGCTCGG</td>
</tr>
<tr>
<td>PR-2</td>
<td>TCTCGATGAA</td>
<td>PR-12</td>
<td>TTGCAGCCAG</td>
</tr>
<tr>
<td>PR-3</td>
<td>CGGCGCCTGT</td>
<td>PR-13</td>
<td>GAAAGGACTC</td>
</tr>
<tr>
<td>PR-4</td>
<td>TGGTACTGCT</td>
<td>PR-14</td>
<td>GTGAGGCGTC</td>
</tr>
<tr>
<td>PR-5</td>
<td>GGACTGGAGT</td>
<td>PR-15</td>
<td>GTTGCAGGCC</td>
</tr>
<tr>
<td>PR-6</td>
<td>TGACCGGGTG</td>
<td>PR-16</td>
<td>AAAGCTGCGG</td>
</tr>
<tr>
<td>PR-7</td>
<td>GGACCCAACC</td>
<td>PR-17</td>
<td>TGAGTGGGTT</td>
</tr>
<tr>
<td>PR-8</td>
<td>GGCTAGGGT</td>
<td>PR-18</td>
<td>TTCCCAGGAT</td>
</tr>
<tr>
<td>PR-9</td>
<td>GAAACGGTTG</td>
<td>PR-19</td>
<td>AAGCTCCTGC</td>
</tr>
<tr>
<td>PR-10</td>
<td>GACCGTGT</td>
<td>PR-20</td>
<td>CGCGCCATA</td>
</tr>
</tbody>
</table>

درجه سانتی‌گراد به مدت ۱ دقیقه، ۷۲ درجه سانتی‌گراد به مدت ۱ دقیقه و با ۵۰ سیکل حرارتی اندازه گیری شد. بعد از آن‌الزم و واکنش PCR بروی بررسی محسولات واکنش PCR، انتخاب واکنش PCR از مجموعه متغیر ۲۰ آغاز/۱۷۳ اتمای شد. بعد از انتخاب واکنش PCR، توالی مورد استفاده مبتنی بر معادله (۱) و معادله (۲) مورد بررسی گردید.

\[
BSF = 2N_{ab}/(N_a+N_b) \]

این آنالیز آماری به دست آمده نسبت بین سایز مارکر مقایسه و وزن مولکولی با اندازه‌گیری گردید. بعد از بررسی و انتخاب دهی‌بندای و تشکیل مارتریت صفر و یک (به ترتیب عضوم (BSF) حضور و حضور باند در (ژل آ_sale: اشتراک باندی با اندازه‌گیری طبق (Band sharing frequency) یکشسانی باندی با صورت زیر محاسبه گردید.

\[
BSF = \frac{2N_{ab}}{N_a+N_b} \]

اکتش زنجیره‌ای (PCR)

برای تکثیر DNA و اکتش زنجیره‌ای (PCR) در حجم ۲۵ میکرولیتر با استفاده از مواد ذیل شامل Buffer PCR ۱X, MgCl₂ ۲.۵ mM, Primer ۰.۵μM, dNTPs ۲۰۰μM, Taq DNA polymerase ۱ unit, DNA ۱۵ng, و با سیکل حرارتی ۹۵ درجه سانتی‌گراد به مدت ۵ دقیقه برای و ارسش سایز اولیه از دسته سانتی‌گراد به مدت ۱ دقیقه. ۳۸

DNA تحلیل

برای شناسایی نوژباگ‌های جدید، به‌منظور استفاده از روش DNA به‌منظور انتخابی توسط بافته‌های بانه‌کننده Sucre . Tris HCl ۱۰mM pH=۷.۵, Trition ۱۰۰X ۱% (SDS ۱۰%, NaCl و لیزر کننده (۴۰۰mM,Tris HCl ۱۰mM ماین روش داده شد. بعد از شستشو در انوان ۷۰ درصد از سطح (Tris HCl ۱۰mM, EDTA ۱mM) TE آزمایش‌های کمی (با استفاده از اسیتوکورنر در دو طول موج ۲۶۰ و ۲۸۰ نانومتر) و کمی (ارز آزار ۸۵٪) برای واکنش PCR مورد استفاده قرار گرفت (۴).

برای تحلیل توالی ۲۰ اکتش ۱۰ نواکولوتیدی که دارای ۷۵ درصد بازه بانه G و C بودند استفاده گردید که توالی آغازگرهای مورد استفاده در جدول ۱ نشان داده شد.

dna آغازگرها

در این تحقیق ۲۰ آغازگر ۱۰ نواکولوتیدی که دارای ۷۵ درصد بازه بانه G و C بودند استفاده گردید که توالی آغازگرهای مورد استفاده در جدول ۱ نشان داده شد.

dna اکتش

برای تکثیر DNA و اکتش زنجیره‌ای (PCR) در حجم ۲۵ میکرولیتر با استفاده از مواد ذیل شامل Buffer PCR ۱X, MgCl₂ ۲.۵ mM, Primer ۰.۵μM, dNTPs ۲۰۰μM, Taq DNA polymerase ۱ unit, DNA ۱۵ng, و با سیکل حرارتی ۹۵ درجه سانتی‌گراد به مدت ۵ دقیقه برای و ارسش سایز اولیه از دسته سانتی‌گراد به مدت ۱ دقیقه. ۳۸

\[
WGS = \sum_{i=1}^{n} BSFi \]

Calculations

\[BSF = \frac{2N_{ab}}{N_a+N_b} \]

\[WGS = \sum_{i=1}^{n} BSFi \]

References

[1] Calculation of Band Sharing Frequency

[2] Calculation of Weighted Genetic Similarity

[3] Calculation of DNA Fragment Size
شکل 1. باندهای مربوط به آغازگرهای 14 و افراد 55 تا 72

tعادت آغازگرهای مورد استفاده

$\sigma_0^2 = 1$-WGS

$U = \sum_{i=1}^{N} \frac{V_i}{n}$

نیاز و بحث

از 20 آغازگر مورد استفاده در این تحقیق 14 آغازگر توانسته باندهای مناسب و قابل فولولی از زوئومی در این جمعیت و چکش توانست. با استفاده از این تعداد آغازگر 140 باند شناسایی که متوسط باندهای این جمعیت به ازای هر آغازگر 10 باند

از این تعداد باند 63 (25٪) باند چند شکل و 77 (33٪) باند چند شکل زوئومی. این تعداد باند بهترین امکان را برای ترپیم برای بالاترین سطح λ^2 و χ^2 داشته باشند. این محاسبات نشان داد که این مجموعه از افراد به عنوان یک گروه می‌باشد. همچنین آنها میزان فراوانی اشکال باندی در جمعیت گروه‌های نمونه را به (Random bred & commercial turkey (RBC-2) و TC) ترپیم برای 77 و 33٪ گزارش نموذج (12).
استفاده از اندازه‌گیری‌های RAPD برای شناسایی تغییرات زننگی در مرغان

جدول ۲: توالی تعداد کل کلمات شناسایی شده، تعداد کلمات هم‌شکل و تک شکل به ازای هر آغازگر

<table>
<thead>
<tr>
<th>آغازگر</th>
<th>تعداد کلمات شناسایی شده</th>
<th>تعداد کلمات هم‌شکل</th>
<th>تعداد کلمات تک شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-3</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>PR-4</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PR-5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PR-6</td>
<td>11</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PR-7</td>
<td>15</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>PR-8</td>
<td>13</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>PR-9</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>PR-10</td>
<td>16</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>PR-11</td>
<td>12</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>PR-12</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PR-13</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>PR-14</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>PR-15</td>
<td>15</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>PR-16</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>PR-17</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>PR-18</td>
<td>11</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

در تحقیق حاضر تغییرات زننگی درون جمعیتی به عنوان متوسط فراوانی شناسایی شد. رابرت با ۸۹٪ و واریانس زننگی درون جمعیتی برای ۱۰% برونده است.

میزان تغییرات زننگی به دست آمده در این تحقیق (۶/۸) در مقایسه با گزارش اصلی و همکاران در تحقیق مرغ اروکا (۲/۶)، شارما و همکاران در جمعیت بلدرچین (۱/۵) که آنها نیز تعدادی از این آغازگرها را استفاده کرده بودند، به این دلیل است که کلمات آغازگرهای تک‌شکل، حتی آنهالیک که کمترین درصد کلمات شناسایی شده در این تحقیق به دست آمده، نشان‌گری می‌باشد که در این جمعیت به برونده هدف به دست آوردن نشان‌گری می‌باشد که در این جمعیت به برونده است تا در صورتی که در نمونه‌های اصلی استفاده شود. در صورتی که محقق نتواند از میزان تعداد زیادی آغازگر، آهناهی که بیشترین کلمات شناسایی شده می‌باشد، از این آغازگر استفاده کرده (۱۱ و ۱۲).

ماریا و همکاران میزان تغییرات زننگی درون و بین شش جمعیت بلدرچین را با استفاده از داده‌های شش آغازگر RAPD که
جدول 3: میزان شاخص یکنواختی (U) و متوسط اشتراک باندی محاسبه شده برای آغازگرهاي مورد استفاده

<table>
<thead>
<tr>
<th>BSF</th>
<th>میزان</th>
<th>U</th>
<th>ضریب</th>
<th>BSF</th>
<th>میزان</th>
<th>U</th>
<th>ضریب</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PR-12</td>
<td>0/22</td>
<td></td>
<td></td>
<td>PR-3</td>
<td>0/24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR-14</td>
<td>0/42</td>
<td></td>
<td></td>
<td>PR-5</td>
<td>0/43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR-15</td>
<td>0/46</td>
<td></td>
<td></td>
<td>PR-6</td>
<td>0/49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR-16</td>
<td>0/49</td>
<td></td>
<td></td>
<td>PR-8</td>
<td>0/49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR-17</td>
<td>0/52</td>
<td></td>
<td></td>
<td>PR-9</td>
<td>0/51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR-20</td>
<td>0/59</td>
<td></td>
<td></td>
<td>PR-10</td>
<td>0/59</td>
<td></td>
</tr>
</tbody>
</table>

از آنجایی که لازم طرح‌های اصلاحی و به‌نژادی نوع
متغیرت باشد، لذا به کمک تکنیک RAPD می‌توان اساس‌های
شکل‌دهنده عوامل شاخصی در تشخیص گونه‌ها مطالعه‌ی تکنیک
جاییت و برنامه‌های اصلاح نژاد استرالیای قرار داد. این
ویژگی‌های هم‌چنین می‌توانند پایه‌ای برای تهیه نشانه‌های
بیشتری برای بیشتری اصلاح نژاد استرالیای قرار دارند. این
نیاز به تیمار برای تغییر ژنتیکی استفاده شود نا امکان
شناسایی

مانیع مورد استفاده