کاربرد داده‌های ماهواره‌ای (TM) در برآورد تولید مرتع

(مطالعه موردی زیر حوضه سفیدآب، سد‌لار)

کریم سلیمانی، رضا نمرتاش، فاطمه علیوی و صدیقه لطفی

چکیده

داده‌های ماهواره‌ای به منظور گسترش و مدیریت منابع مرتعی همواره قادی است در تأیید اطلاعات لازم در جنبه‌های مختلف جوامع گیاهی منجمله بیوماس نقش مهمی را ایفا نماید. منطقه مورد مطالعه در زیر حوضه سفیدآب، از حوضه آبخز سد لار قرار دارد. این مطالعه شامل بررسی و تحلیل داده‌های ماهواره‌ای (TM) که در برآورد تولید مرتع استفاده می‌شود است. این بررسی شامل تحلیل عوامل کیفی و کمی می‌باشد. در این مطالعه از مدل‌سازی نرم‌افزار ArcGIS استفاده شد.

در این مقاله به منظور بررسی و تحلیل داده‌های ماهواره‌ای (TM) که در برآورد تولید مرتع استفاده می‌شود، از مدل‌سازی نرم‌افزار ArcGIS استفاده گردید. این نرم‌افزار به وسیله طبقه‌بندی و رنگ‌گذاری داده‌های ماهواره‌ای نمودارهای جغرافیایی به‌وجود می‌آورد که کمک به تصمیم‌گیری در برنامه‌ریزی و مدیریت منابع مرتعی بود.

واژه‌های کلیدی: نیروگاه، شاخص‌های گیاهی، تولید، سفیدآب (سدلا)

مقدمه

آگاهی از تولید در تیم‌های منابع یکی از ضروری‌ترین اطلاعات مرتعی را از دست نمی‌دهد. این آگاهی به‌وسیله منابع مرتعی را از دست نمی‌دهد.

قبل از انجام این مطالعه، قابل بررسی در مطالعات پوشش است از این اکثریت از این اکثریت. البته این اکثریت از این اکثریت تولید که کیفیت از منابع مرتعی را از دست نمی‌دهد.

1. به‌طور اولیه استفاده می‌شود که کیفیت از منابع مرتعی را از دست نمی‌دهد.

2. استفاده جغرافیایی، دانشگاه علوم انسانی، دانشگاه مازندران، باقلی
تولید استفاده از داده‌ها جهت تخمین میزان روش مرجع باشد \(\text{همچنین، روش باز یاد قدرت به نشان دادن تغییرات در طول زمان و} \) قابل استفاده در شرایط مختلف مرجع باشد \(\text{(ب)} \). به‌کار گرفته شدن بازیابی سنجش از داده‌ها و مدل‌بندی مداخله در سی‌سال اخیر در سرتاسر دنیا رواج پیدا کرده است و اطلاعات ماهوراهی به مقدار و ماهوراهی قاردست در تأمین اطلاعاتی لازم در جنبه‌های مختلف جامعه گیاهی نقش مهمی را ایفا نمی‌نماید \(\text{تفاوت، به عنوان ابزار مناسبی در خدمت} \) مدل‌بندی مرجع باشد.

مواد و روش‌ها

مکان جغرافیایی مورد مطالعه زیر حوضه سفیدآب از حوضه آبخیز سد لار و در قسمت مرکزی رشته کوه‌های البرز در شمال کشور واقع شده که بسیاری از محصولات گیاهی تولید کشور تولید در این منطقه می‌شود.

شکل 1 و 2، چکیده ارتفاع آن بر اساس نقشه تون‌گرایی این دو نقطه از سطح اأسا در دو نقطه با توجه به یکتاگویی تون‌گرایی و

جاواورت آن با دریای خزر و تاپیرپیژری از تون‌گرایی هواوی و

نواحی غربی شمال شرقی دارای بزرگی قابل توجهی در فضای مختلف مساحت است. \(\text{متوسط بارندگی حوضه حدود 517 میلیمتر در سال و میانگین در روزهای سالیانه 10/7} \) درجه سانتی‌گراد می‌باشد و اقیم منطقه با روش آموزش نیمه مربوط به استاد.

روش پژوهش در این مطالعه شامل چهار مرحله به شرح زیر می‌باشد:

142
اکنون تصاویر دریافت شده از مرکز سنجش از دور سیار بزرگ‌تر از منطقه مورد مطالعه بود. پس از رفتن کردن مرز حوضه مورد مطالعه و وارد کردن آن به صورت فاصله استری در مسیر اولیه، این فاصل در هر یک از پانteroی سنجش تا ضرب گردد. تا صورت مطالعه در حوضه سد لار TM-b742 در حوضه سد لار (الب) با کار گیری داده‌های ماهواره‌ای داده‌های رقمی سنجش در ام لندست 5 با استفاده از طول و عرض جغرافیایی منطقه مربوط به 18 زون (29 خرداد 1998) از سازمان سنجش از دور ایران خریداری و مورد استفاده قرار گرفت.\\n\\nبرای تصحیح هندسی از نقاط کنترل زمینی استفاده شد که از 14 نقطه انتخاب شده بر روی نقشه و تصویر ماهواره‌ای 4 نقطه که در مرحله هدایت بودند. حذف شدند و از 16 نقطه برای بازنویسی تصویر استفاده شد که بعد از آن داده‌ها با استفاده از نقاطهای هندسی تری‌گرایی 50:50 در کنار تعیین همسایگی و با خطای RMS 0/57 تصحیح هندسی گردیدند (شکل 3). به علت

شکل ۱: منطقه مورد مطالعه روی تصویر لندست TM-b742 در حوضه سد لار

شکل ۲: نمایی از پایین دست حوضه سفید آب (۸۵/۲/۲۱)

آن که تصاویر دریافت شده از مرکز سنجش از دور سیار بزرگ‌تر از منطقه مورد مطالعه بود، پس از رفتن کردن مرز حوضه مورد مطالعه و وارد کردن آن به صورت فاصله استری در مسیر اولیه، این فاصل در هر یک از پانteroی سنجش تا ضرب گردد. تا صورت مطالعه در حوضه سد لار TM-b742 در حوضه سد لار (الب) با کار گیری داده‌های ماهواره‌ای داده‌های رقمی سنجش در ام لندست 5 با استفاده از طول و عرض جغرافیایی منطقه مربوط به 18 زون (29 خرداد 1998) از سازمان سنجش از دور ایران خریداری و مورد استفاده قرار گرفت.\\n\\nبرای تصحیح هندسی از نقاط کنترل زمینی استفاده شد که از 14 نقطه انتخاب شده بر روی نقشه و تصویر ماهواره‌ای 4 نقطه که در مرحله هدایت بودند. حذف شدند و از 16 نقطه برای بازنویسی تصویر استفاده شد که بعد از آن داده‌ها با استفاده از نقاطهای هندسی تری‌گرایی 50:50 در کنار تعیین همسایگی و با خطای RMS 0/57 تصحیح هندسی گردیدند (شکل 3). به علت

شکل ۱: منطقه مورد مطالعه روی تصویر لندست TM-b742 در حوضه سد لار

شکل ۲: نمایی از پایین دست حوضه سفید آب (۸۵/۲/۲۱)
شکل 3. تصویر ماهواره‌ای تصمیم‌گیری 17 تا 29 بندون پوشش گیاهی، 32 پوشش مرتعی، 40-47، 48-46، آب)
جدول 1. فرمول شاخص‌های مورد استفاده (137,9)

<table>
<thead>
<tr>
<th>فرمول شاخص</th>
<th>متن شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR1 (Infrared index)</td>
<td>(TM4 - TM5) / (TM4 + TM5)</td>
</tr>
<tr>
<td>IR2 (Infrared index)</td>
<td>(TM4 - TM7) / (TM4 + TM7)</td>
</tr>
<tr>
<td>MINI</td>
<td>(TM7 - TM4) / (TM7 + TM4)</td>
</tr>
<tr>
<td>MIR (Mir-IR index)</td>
<td>TM5 / TM7</td>
</tr>
<tr>
<td>MIRv1</td>
<td>(TM7 - TM3) / (TM7 + TM3)</td>
</tr>
<tr>
<td>MIRv2</td>
<td>(TM5 - TM3) / (TM5 + TM3)</td>
</tr>
<tr>
<td>MND (Modified normalized difference)</td>
<td>(TM4 - (1.2 TM3)) / (TM4 + TM3)</td>
</tr>
<tr>
<td>MSI (Moisture stress index)</td>
<td>TM5 / TM4</td>
</tr>
<tr>
<td>NDVI (Normalised difference veg. ind.)</td>
<td>(TM4 - TM3) / (TM4 + TM3)</td>
</tr>
<tr>
<td>NIR (Near-Infrared/Red ratio)</td>
<td>TM4 / TM3</td>
</tr>
<tr>
<td>PD311</td>
<td>TM3 - TM1</td>
</tr>
<tr>
<td>PD312</td>
<td>(TM3 - TM1) / (TM3 + TM1)</td>
</tr>
<tr>
<td>PD321</td>
<td>TM3 - TM2</td>
</tr>
<tr>
<td>PD322</td>
<td>(TM3 - TM2) / (TM3 + TM2)</td>
</tr>
<tr>
<td>RA (Reflectance absorption index)</td>
<td>TM4 / TM5</td>
</tr>
<tr>
<td>TVI (Transform veg. index)</td>
<td>√((TM4 - TM3) / (TM4 + TM3)) + 0.5</td>
</tr>
<tr>
<td>VNIR1 (Near infrared)</td>
<td>(TM4 - TM1) / (TM4 + TM1)</td>
</tr>
<tr>
<td>VNIR2 (Near infrared)</td>
<td>(TM4 - TM2) / (TM4 + TM2)</td>
</tr>
</tbody>
</table>

ترکیبی برای GPS به دست آید. (7) پس از ان به شرع جدیداً 25 تا 30 متر بر روی محیط دایره فضایی به وسیله اسکل (9) به استقرار 18 پلاس بن مربوط به شرایط خاص اقدام کردی که تعداد پلاس استقرار پایه در منطقه با توجه به تعداد یک هم نمونه برداری برای 250 پلاس می‌باشد. (7)

بر اساس نمونه‌برداری در قالب روش نمونه‌برداری مضاعف انجام شد

به این صورت که در 12 واحد نمونه‌برداری که به صورت نظارتی انتخاب شد تولید برش قطعات در داخل پلاس‌های انتخاب کردن شد سپس میانگین تولید در سطح 9 ایکسل (کرداره در تمام واحد‌های نمونه‌برداری) استخراج شد. پس از آن به وسیله مدادهای رگرسیون مقدار برآورد تولید در تمام‌های نمونه‌برداری تصحیح شد.

(ج) انتخاب شاخص‌های گیاهی

انتخاب شاخص مناسب برای هر منطقه از جستاری مراحل کار در هر منطقه است و بدین منظور در برآورد میزان تولید با استفاده از انواع حاصل از تصاویر ماهواره‌ای، از 18 شاخص استفاده گردید که توسط اعدادی از محققین استفاده شد (جدول 1). این شاخص‌ها که از ترکیب باند‌های مختلف تی ام به دست آمده‌اند. معادلاتی برای باید این اطلاعات از منطقه می‌باشد.

برای محاسبه شاخص‌های گیاهی میانگین رضوی 9 ایکسل مربوط به واحد‌های نمونه‌برداری از 6 باند تی ام (به استثنای باند۴)
جدول 2: مقادیر بیوماس برآورد شده (Y) و قطع و توزیع شده (X) در واحدهای نمونه‌برداری بر حسب کیلوگرم

<table>
<thead>
<tr>
<th>X (kg / 0.81 ha)</th>
<th>Y (kg / 0.81 ha)</th>
<th>واحد نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>417</td>
<td>417</td>
<td>1</td>
</tr>
<tr>
<td>628</td>
<td>628</td>
<td>2</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>3</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>4</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>5</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>6</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>7</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>8</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>9</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>10</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>11</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>12</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>13</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>14</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>15</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>16</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>17</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>18</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>19</td>
</tr>
<tr>
<td>417</td>
<td>417</td>
<td>20</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تمام مراحلی که در مواد و روش‌ها عنوان شد بر اساس تجزیه و تحلیل‌های آماری به شرح زیر ارائه می‌گردد:

داده‌های زمینی

انجی از عملیات میانگین به دست آمده بود (جدول 2) به عنوان داده‌های خام جهت بررسی‌های آماری به پایگاه داده وارد گردید. داده‌های خام میانگین با استفاده از نرم‌افزار SPSS تجزیه و تحلیل آماری گردید و سپس به وسیله EXCEL معادله رگرسیون تولید. برآورد شده در پلات‌های واحدهای نمونه‌برداری تصحیح شد. ضریب همبستگی در اندازه‌گیری‌های زمینی که در قالب روش نمونه‌برداری مضاعف انجام شد پرتابل 90% و معادله رگرسیون ساده خطی به دست آمده عبارت بود از:

\[Y = 0.099X + 4.46/17 \]
شکل 2. شاخص NIR از زیر حوضه سفید آب نارنجی (TM) به منظور انتخاب شاخص گیاهی مناسب در منطقه، جدول ارائه نتایج (جدول 3) که شامل شاخص‌های گیاهی و هم‌چنین ضریب همبستگی اشباع می‌باشد، و معادله برآورد بیوماس گیاهی به وسیله آن شاخص است تکمیل گردید. با توجه به جدول ارائه نتایج شاخص‌های مناسب در منطقه بر اساس میزان بالای ضریب همبستگی و اشباع میزان کوچک تر انتخاب شدند. شاخص‌های PD321, VNIR2, MND, TVI, NDVI, NIR در سطح 1 و PD322, PD312, MIRV2 نیز در سطح 5% معنی‌دار شدند. به منظور بررسی دقت شاخص‌های انتخاب شده و مقایسه مقادیر حاصل از معادلات و داده‌های عادی در جدول 4 تشکیل شد و سپس بین آنها آزمون T-Student برای آزمایش تساوی میانگین‌ها صورت گرفته و فرض مساوی بین میانگین‌ها در سطح معنی‌دار 99% و هم‌چنین 95% تایید شد. از آنجایی که تکنیک دورسنجی بر پایه داده‌های میدانی برای آشکارسازی بهتر پیدا‌کردن این استاده است، لذا در هر دو روش سنتی و دورسنجی نیاز به بازدید صحرایی بوده است.

روش تنمیون برداری در این تحقیق با روش افرادی همچون خواهه الی (2)، خوانی زاده (3) و منفی (4) مشابه وی با روش افرادی همچون ارزانی و همکاران (1) و آندرسون (9) متفاوت می‌باشد. هر چند روش تنمیون برداری در این تحقیق با روش افراد دیگر تفاوت ندارد، اما همکی به دنبال دوم هدف مهم بوده اند: اول این که تعیین محل تنمیون برداری بر روی پیکسل‌های مربوط به روی تصویر ماهوراهای به درستی انجام شود. دوم این که روی برای تنمیون برداری انتخاب شود که در واقع منطقه باشد. برای این که تعیین محل تنمیون برداری بر روی پیکسل‌های مربوط در روی تصویر ماهوراهای به درستی واختار کنتری انجام شود از واحدهای تنمیون‌برداری استفاده شد که شامل یک گروه 9 تایی پیکسل با مساحت حدود 800 هکتار می‌باشد و به دلیل این که منطقه به نظر نمی‌رسید که پیک نمونه کوچک زمینی (پلات) با مساحت یک متر مربع بتواند تهیه‌پذیر کننده یک گروه 9 تایی مجازبشه شدن (شکل 4).
جدول 3. معادلات رگرسیون و ضریب همبستگی برای تخمین پارامتر تولید در حضو سفیدآب لار

<table>
<thead>
<tr>
<th>شاخص</th>
<th>R</th>
<th>R²</th>
<th>SE</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>0.832</td>
<td>0.696</td>
<td>1259/57</td>
<td>Y = 1019.25 + 0.3269/28 VI</td>
</tr>
<tr>
<td>IR1</td>
<td>0.76</td>
<td>0.576</td>
<td>2333/79</td>
<td>Y = 1689/24 + 0.1582/00 VI</td>
</tr>
<tr>
<td>IR2</td>
<td>0.65</td>
<td>0.425</td>
<td>2024/79</td>
<td>Y = 1329/79 + 0.1576/18 VI</td>
</tr>
<tr>
<td>MSI</td>
<td>0.65</td>
<td>0.425</td>
<td>2251/79</td>
<td>Y = 1872/58 - 0.234/18 VI</td>
</tr>
<tr>
<td>MIR</td>
<td>0.55</td>
<td>0.303</td>
<td>2555/77</td>
<td>Y = -776/24 + 0.334/24 VI</td>
</tr>
<tr>
<td>VNIR1</td>
<td>0.55</td>
<td>0.303</td>
<td>2118/74</td>
<td>Y = 0.329/39 + 0.289/07 VI</td>
</tr>
<tr>
<td>VNIR2</td>
<td>0.55</td>
<td>0.303</td>
<td>3117/74</td>
<td>Y = -0.314/08 - 0.329/24 VI</td>
</tr>
<tr>
<td>RA</td>
<td>0.55</td>
<td>0.303</td>
<td>1989/35</td>
<td>Y = -159/35 + 0.13/25 VI</td>
</tr>
<tr>
<td>PD322</td>
<td>0.55</td>
<td>0.303</td>
<td>2410/81</td>
<td>Y = 1199/57 - 0.494/27/65 VI</td>
</tr>
<tr>
<td>PD312</td>
<td>0.55</td>
<td>0.303</td>
<td>1980/33</td>
<td>Y = -0.314/42 - 0.494/27/65 VI</td>
</tr>
<tr>
<td>MINI</td>
<td>0.55</td>
<td>0.303</td>
<td>2250/79</td>
<td>Y = 2292/79 - 0.134/15 VI</td>
</tr>
<tr>
<td>MIRV1</td>
<td>0.322</td>
<td>0.103</td>
<td>2164/75</td>
<td>Y = 171/18 + 0.134/15 VI</td>
</tr>
<tr>
<td>MIRV2</td>
<td>0.268</td>
<td>0.072</td>
<td>1975/89</td>
<td>Y = -0.314/08 + 0.233/77/45 VI</td>
</tr>
<tr>
<td>NIR</td>
<td>0.139</td>
<td>0.019</td>
<td>1171/44</td>
<td>Y = -0.314/08 + 0.233/77/45 VI</td>
</tr>
<tr>
<td>MND</td>
<td>0.056</td>
<td>0.003</td>
<td>1682/29</td>
<td>Y = 0.309/00 + 0.258/8/2 VI</td>
</tr>
<tr>
<td>TVI</td>
<td>0.043</td>
<td>0.002</td>
<td>1259/57</td>
<td>Y = -0.325/24 + 0.03/28 VI</td>
</tr>
<tr>
<td>PD311</td>
<td>0.244</td>
<td>0.060</td>
<td>2214/59</td>
<td>Y = -0.249/22 - 0.343/4 VI</td>
</tr>
<tr>
<td>PD321</td>
<td>0.244</td>
<td>0.060</td>
<td>188/0/9</td>
<td>Y = 0.309/00 - 0.291/51 VI</td>
</tr>
<tr>
<td>BAND5</td>
<td>0.294</td>
<td>0.086</td>
<td>2187/44</td>
<td>Y = 0.295/99 - 0.294/41 Band7</td>
</tr>
<tr>
<td>BAND7</td>
<td>0.294</td>
<td>0.086</td>
<td>2187/44</td>
<td>Y = 0.295/99 - 0.294/41 Band7</td>
</tr>
</tbody>
</table>
جدول 4. مقایسه مقدار اندازه‌گیری شده پیپوماس و مقدار برآورد شده آن با داده‌های ماهواره‌ای در واحدهای نمونه‌برداری

<table>
<thead>
<tr>
<th>(kg/8100m²)</th>
<th>NIR</th>
<th>NDVI</th>
<th>TVI</th>
<th>MND</th>
<th>VNIR2</th>
<th>PD321</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.078</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>6.18</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>13.01</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>25.11</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>29.19</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>13.20</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>31.81</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>3.078</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>4.86</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>5.87</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>7.78</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>10.03</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>4.86</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>21.78</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>13.08</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
<tr>
<td>12.05</td>
<td>29.11/34</td>
<td>1.14±0.13</td>
<td>1.14±0.14</td>
<td>1.14±0.15</td>
<td>1.14±0.16</td>
<td>1.14±0.17</td>
</tr>
</tbody>
</table>
نتیجه تحقیقات آندرسون و همکاران (9)، ویلیامسون و
الدیرنج (25) نشان می‌دهد که پیکسل مربوط به NDVI نمونه‌برداری در مقطع مناسب
های پیکسل مربوط استفاده شد. روشهایی که در این تحقیق برای تهیه متغیرهای
واحدهای نمونه‌برداری انتخاب شده، استفاده گردیده بود. یکی از آنها شامل
مناسبان و قابل اعتماد است. این روشهایی با این است که
ضمن کنترل واحدهای نمونه‌برداری برای تحقق آن با
یکپکسل مربوط به تقاریب ماهواره به محقق این امکان را
می‌دهد تا در هوا وابستگی به افکار با آزادی عمل نسبت به
انتخاب روشهای جمع‌آوری داده ادامه دهد.

روش‌های جمع‌آوری داده: برای خصوصی بازگردانی بر
روش که همان‌گاهی به ویژه گیاهان یکسانی که تأثیر به سایری دارد،
همزنده بودن داده‌های رفوم خریداری شده با داده‌های زمینی
همه‌پیکسل دارد و به همین اکنون که در خال حاضر برای
انتخاب تقاریب ماهواره مورد نظر (از نظر تغییر گذشته ماهواره)
محدودیت وجود دارد لذا سعی شد حتی اکنون تاریخ
برداشت‌های مبتنی بر تاریخ تقاریب ماهواره ای تطبیق داده شود.
بررسی اوریت و همکاران نشان می‌دهد که پیکسل‌های کاربردی
شاخه‌های گیاهی در زمینه برآورده پوشش است و در زمینه
برآورده تولید با پیکسل سابقه مطالعاتی جدیدی وجود ندارد، به
خصوصی در مناطق مشابه با زیر حوزه سفیدآب که در این
مطالعه مورد نظر ماند (12).

برداشت‌های ماهواره در منطقه نشان داد که از میان
شاخه‌های بررسی شده، شاخه (TM4 / TM3) شاخه (TM4 / TM3)
مساندی تنها شاخه برای برآورده بیوپلاست از منطقه
می‌باشد که حداکثر همبستگی به دست آمده مربوط به این
شاخه و 84% است. همچنین همبستگی شاخه‌های
با بیوپلاست نسبت به سایر شاخه‌ها MND, TVI, NDVI
پیشنهاد می‌باشد. وجود باند ۳/۴ (فرم متری) و ۴ (مادون فرم
نرمال) تا ام در شاخه‌ها فوت بیانگر متأثر شدن باندها
نسبت به بیوپلاست است، به دلیل اینکه میزان انکاس
پوشش‌های گیاهی در محدوده مادون‌فرم نرمال نزدیک به مراتب از
خاک پیشتر است.

۴۲۰
جدول 5. متریس خط و شاخص کایا برای منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>شاخص کایا</th>
<th>نقطه کنترل زمینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR</td>
<td>119</td>
</tr>
<tr>
<td>NDV</td>
<td>245</td>
</tr>
<tr>
<td>TVI</td>
<td>1319</td>
</tr>
</tbody>
</table>

شکل 5. مقایسه ضرایب همبستگی برخی از شاخص‌های از شاخص‌های اریبی

سیاست‌گذاری

این تحقیق با امکانات و حمایت‌های همه جانبه دانشگاه منابع طبیعی ساری، دانشگاه مازندران انجام گردید. لذا نویسندگان وظیفه خود می‌دانند تا به‌طور مناسب تحقیقات خود را از آنجایی که در انتخاب

منابع مورد استفاده

1. ارزانی، ج.، ک. کینگ و ب. فروستر. 1376. کاربرد اطلاعات رفومی ماهواره‌های ندست TM در تحقیق تولید و پوشش گیاهی. مجله منابع طبیعی ایران (1) 3-20.
2. خواجه‌وده‌نیا، ج. 1375. استفاده از داده‌های ماهواره Landsat 5 MSS در بررسی جوامع گیاهی و تعیین اراضی کشاورزی به‌وسیله ناحیه جنوبی کلیه ناحیه‌های جنوبی. شهرباز. 1375، انتشارات موسسه تحقیقات جنگل‌ها و مرتع‌های تهران.
3. خواه‌نژاد، ع. 1373. بررسی امکان تهیه نقشه پوشش گیاهی با استفاده از داده‌های ماهواره‌های لندست تا ام در منطقه نیروی. پایان‌نامه کارشناسی ارشد منابع طبیعی، دانشگاه صنعتی اصفهان.

