کاربرد داده‌های ماهواره‌ای (TM) در برآورد تولید مرتع (مطالعه موردی زیر حوضه سفیدآب، سد لار)

چکیده
داده‌های ماهواره‌ای به ممتاز گشت و مدیریت منابع مرتعی همواره قاد در این امی اطلاعات لازم در نگهداری مختلف جوامع گیاهی منجمله بومیس‌ها نش می‌شوند. این به قدر مورد مطالعه در زیر حوضه سفیدآب از حوضه آیلیز سد لار، قسمت مرکزی رشته کوه‌های البرز در شمال کشور با قابلیت نیمه مرطوب معادل واقع شده است. به ممتاز بررسی قابلیت داده‌های ماهواره‌ای در برآورد تولید از داده‌های سنجشگر به ضعیف نمایش داده‌های مبادی باورش نمونه‌برداری نتایجی از ۲۰۰ واحدهای نمونه‌برداری در ۲۰۰۰ عدد چندی گوناگون برابر تشخیص Benchmark مختصات چرخ ویابی مثبت در داده‌های رقیمی از دستگاه تعیین موقعیت همراه با دقت و اساس استفاده شد. برای محاسبه شاخص‌های گیاهی و برای اینکه تعیین محل نمونه‌برداری بر روی پیکسل‌های مرطوبه در روی تصویر ماهواره‌ای به درستی و با خطا کمتری انجام شود، میانگین رقیمی و پیکسل‌های مرطوبه با واحد‌های نمونه‌برداری از تکاور صحتی شده است. گردد. بسیاری از داده‌های زمین‌یابی و شاخص‌های گیاهی حاصل از ترکیبیهای مختلف ارزیابی و پس از آن، شاخص‌های گیاهی مناسب تشخیص داده شدن. در نهایی محاسبات و بررسی‌های امتحان برای داده‌های مورد بررسی مدل سنجش داراها گردید که پس از آزمایش مدل‌ها نتایج به دست آمده حاکی از آن است که بین شاخص‌های گیاهی مناسب و داده‌های مبادی همستن قابل ملاحظه‌ای وجود دارد. نتایج این اکثراً بیشتر مقیاس دقت تولید مرتع از طریق استفاده از اطلاعات لندسی تأمین می‌گردد که می‌تواند به همراه نقاط کنترل زمینی وجود دارد.

واژه‌های کلیدی: لندسی تأمین، شاخص‌های گیاهی مرتع، سفیدآب (سالدار)

مقدمه
آگاهی از تولید در تعیین ضرورت مرتع یکی از ضروری‌ترین اطلاعات در مبرده می‌باشد. اندیشه‌گری تولید که یکی از موارد قابل انتخاب‌گری در مطالعات پوشش است از نگاه قرن بیستم

1. به ترتیب استادها. مربی و دانشجوی سالی کارشناسی ارشد مرتع و آبخیزداری، دانشگاه مازندران، ساری
2. استادیار جغرافیا، دانشگاه علوم انسانی، دانشگاه مازندران، پالسور

411
مواد و روش‌ها

منطقه مورد مطالعه زیر حوضه سفیدآب از حوضه آبخیز سد لار و در قسمت مرکزی رشته کوه‌های الیز در شمال کشور واقع شده که مساحت معدود گیلومتر مربع و با مختصات جغرافیایی ۵۱ درجه و ۵ دقیقه تا ۵۲ درجه و ۵ دقیقه و ۳۵ دقیقه تا ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیقه و ۳۶ درجه و ۵ دقیقه و ۳۵ درجه و ۵ دقیق...
 ولكنه تصاویر دریافت شده از مرکز سنجش از دور بکار برگزیده‌تر از منطقه مورد مطالعه بود، پس از رفتن کردن مرز حوضه مورد مطالعه و وارد کردن آن به صورت قابل قبول، در محیط ادراکی، این یافتن در هر یک از پایگاه‌های سنجش دارد و ضرر گردن تا محدوده منطقه مورد مطالعه در تصویر به دست آید.

الف) به کار گیری داده‌های ماهواره‌ای
داده‌های رقومی سنجش‌های تی ام لندست ۵ با استفاده از طول و عرض جغرافیایی منطقه مربوط به ۱۸ زوال (۲۹ خرداد) ۱۹۹۸ از سازمان سنجش از دور ایران خریداری و مورد استفاده قرار گرفت. برای تصویر هندسی، از نقاط کنترل زمینی (GCP) استفاده شد که از ۱۴ نقطه انتخاب شده بر روی نقشه و تصویر ماهواره‌ای ۱ نقطه که دارای خطای زیاد‌ترین بوده و ۱۰ نقطه برای بانورنیتصویر استفاده شد که بعد از آن، داده‌ها با استفاده از نقشه‌های توپوگرافی، ۵۰۰۰۰۰۰:۱ با روش ترمودکسترین هم‌سایه و با خطاپذیری RMS انجام تصویر هندسی گردیدند (شکل ۳) به علت

ب) پروش برداشت نیازمند
با توجه به تاریخ برداشت داده‌های ماهواره‌ای مورد استفاده در این مطالعه که مربوط به ۲۹ خرداد ۱۳۷۷ می‌باشد لذا برای رعایت هم‌زمانی در روش در اواخر خرداد و اواخر تیرماه ۱۳۸۰.
شکل 3. تصویر ماهواره‌ای تصحیح شده (محدوده 17 تا 29 = بدون پوشش گیاهی، 32 = پوشش مزمن، 26-27 = پوشش مزمن و 28-26 = آب).
جدول 1. فرمول شاخص‌های مورد استفاده (۱۳۷۴)

<table>
<thead>
<tr>
<th>فرمول شاخص</th>
<th>تعریف شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR1 (Infrared index)</td>
<td>(TM4 - TM5) / (TM4 + TM5)</td>
</tr>
<tr>
<td>IR2 (Infrared index)</td>
<td>(TM4 - TM7) / (TM4 + TM7)</td>
</tr>
<tr>
<td>MINI</td>
<td>(TM7 - TM4) / (TM7 + TM4)</td>
</tr>
<tr>
<td>MIR (Mir-IR index)</td>
<td>TM5 / TM7</td>
</tr>
<tr>
<td>MIRV1</td>
<td>(TM7 - TM3) / (TM7 + TM3)</td>
</tr>
<tr>
<td>MIRV2</td>
<td>(TM5 - TM3) / (TM5 + TM3)</td>
</tr>
<tr>
<td>MND (Modified normalized difference)</td>
<td>(TM4 - 1.2 TM3) / (TM4 + TM3)</td>
</tr>
<tr>
<td>MSI (Moisture stress index)</td>
<td>TM5 / TM4</td>
</tr>
<tr>
<td>NDVI (Normalised difference veg. ind.)</td>
<td>(TM4 - TM3) / (TM4 + TM3)</td>
</tr>
<tr>
<td>NIR (Near- Infrare/ red ratio)</td>
<td>TM4 / TM3</td>
</tr>
<tr>
<td>PD311</td>
<td>TM3 – TM1</td>
</tr>
<tr>
<td>PD312</td>
<td>(TM3 - TM1) / (TM3 + TM1)</td>
</tr>
<tr>
<td>PD321</td>
<td>TM3 – TM2</td>
</tr>
<tr>
<td>PD322</td>
<td>(TM3 - TM2) / (TM3 + TM2)</td>
</tr>
<tr>
<td>RA (Reflectance absorption index)</td>
<td>TM4 / (TM3 + TM5)</td>
</tr>
<tr>
<td>TVI (Transform veg. index)</td>
<td>( \sqrt{ (TM4 - TM3) / (TM4 + TM3) + 0.5 } )</td>
</tr>
<tr>
<td>VNR1 (Near infrared)</td>
<td>(TM4 - TM1) / (TM4 + TM1)</td>
</tr>
<tr>
<td>VNR2 (Near infrared)</td>
<td>(TM4 - TM2) / (TM4 + TM2)</td>
</tr>
</tbody>
</table>

د) تجزیه و تحلیل داده‌ها
برای معرفی مدل‌های رگرسیونی مناسب، بین مقادیر تولدید منطقه با داده‌های ماوراهای جدولی تیپه شد که سنت‌های آن شامل مقادیر تولدید گیاهی و شاخص‌های گیاهی محاسبه شده و راه‌هایی آن شامل شماره واحدهای نمونه‌برداری است. سپس این جدول که بر اساس آمار میانگین داده‌های زمینی منطقه به واحدهای نمونه‌برداری به عنوان متغیر وابسته (Y) و سپس میانگین در جداول و نشانه‌های (DMS) پیش‌بینی‌های منطقه به واحدهای نمونه‌برداری در مورد شاخص‌های با عنوان متغیر مستقل (X) با وارد پایگاه اطلاعاتی در نرم‌افزارهای Excel و SPSS مستقل و متغیر وابسته و همچنین برآورد مدل از رگرسیون ساده خطي استفاده شد. با اخیر اینکه برای تعیین صحت نتایج به‌دست آمده و ارزیابی آن در ضریب کاپا ایفای استفاده گردید. این ضریب با استفاده از رابطه زیر محاسبه گردید.

\[ K = \frac{(\Phi_1 - \Phi_2)}{(1 - \Phi_2)} \times 100 \]

که در آن، K همان ضریب کاپا، \( \Phi_1 \) صحت کلی و \( \Phi_2 \) نیز تواناق اتفاقی می‌باشد.

(ج) انتخاب شاخص‌های گیاهی
انتخاب شاخص مناسب برای هر منطقه از حساب‌های مرحله کار در هر منطقه است و باین الگوریتم برآورد میزان تولدید با استفاده از داده‌های حاصل از تصاویر ماوراهای، از ۱۸ شاخص استفاده گردید که توسط تعدادی از محققین استفاده شد (جدول ۱). این شاخص‌ها که از ترکیب باندهای مختلف تهیه می‌شوند، هدف اصلی این استفاده مدل‌های مناسب برای دست‌یابی اطلاعات از منطقه است. برای محاسبه شاخص‌های گیاهی میانگین رقمی یک کسی مربوط به واحدهای نمونه‌برداری از ۶ باند تی آم (به استثنای باند ۷)

415
جدول 2. مقادیر بیوماس پرآورده شده (Y) و قطع و توسعه شده (X) در واحدهای نمونه‌برداری بر حسب کیلوگرم

<table>
<thead>
<tr>
<th>X (kg / 0.81 ha)</th>
<th>Y (kg / 0.81 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تمام مراحلی که در مواد و روش‌ها عنوان شد بر اساس تجزیه و تحلیل‌های آماری به شرح زیر ارائه می‌گردد:

داده‌های زمینی

اگرچه که از عملیات میدانی به دست آمده‌بود (جدول 2) به عنوان داده‌های خام جهت بررسی‌های آماری به پایگاه داده وارد گردید. داده‌های خام میدانی با استفاده از نرم‌افزار SPSS تجزیه و تحلیل آماری گردید و سپس به وسیله EXCEL معادله رگرسیون تولید برآورد شده در پلاته‌های واحدهای نمونه‌برداری تصویح شد. ضریب همبستگی در انداره‌گیری‌های زمینی که در قالب روش نمونه‌برداری مضاعف انجام شد برابر 0.96 و معادله رگرسیون ساده خطي به دست آمده عبارت بود از:

\[ Y = 0.99 X + 446/17 \]
شاخص‌های سطح‌های سیفید آب‌لار

روش‌های مورد بررسی در این تحقیق با روش افرادی همچون خواجه‌الدین، جهادی و روش افرادی همچون ارزانی و همکاران نتایج را در مساوی در دو گروه تشکیل گردید. با توجه به جدول ارائه شده نتایج شاخص‌های میانگین در سطح 1/ و PD321, VNIR2, MND, TVI, NDVI, NIR و PD322, PD312, MIRV2, 5/ معنی‌دار شده‌اند. به‌منظور بررسی دقت شاخص‌های انتحاب‌شده و مقایسه مقادیر حاصل از معادلات و داده‌های میدانی برای آزمایش T-Student باید از آزمون F برای آزمایش تساوی میانگین‌ها صورت گرفته و فرض مساوی برای میانگین‌ها در سطح معنی‌دار 99/ و همچنین 95/ تأیید شد.

از انتخاب که تکنیک دورسنجی بی‌پایه یا داده‌های میدانی برای آشکارسازی بی‌پایه‌داشتهای استوار است، لذا در هر دو
جدول 3. معادلات رگرسیون و ضریب همبستگی برای تخمین پارامتر تولید در حوضه سفیداب لار

<table>
<thead>
<tr>
<th>شاخص</th>
<th>R</th>
<th>R²</th>
<th>SE</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>-0.34</td>
<td>0.12</td>
<td>1259/57</td>
<td>Y = 1 + 1.01 × 1842/57 VI</td>
</tr>
<tr>
<td>IR1</td>
<td>-0.64</td>
<td>0.41</td>
<td>2233/69</td>
<td>Y = 0.89 + 15982/57 VI</td>
</tr>
<tr>
<td>IR2</td>
<td>-0.55</td>
<td>0.31</td>
<td>222/79</td>
<td>Y = 0.79 + 13729/15 VI</td>
</tr>
<tr>
<td>MSI</td>
<td>0.17</td>
<td>0.03</td>
<td>2201/61</td>
<td>Y = 0.78 + 0.5 × 15 VI</td>
</tr>
<tr>
<td>MIR</td>
<td>-0.24</td>
<td>0.06</td>
<td>218/77</td>
<td>Y = 0.07 + 0.5 × 522/77 VI</td>
</tr>
<tr>
<td>VNIR1</td>
<td>0.19</td>
<td>0.03</td>
<td>218/77</td>
<td>Y = 0.07 + 0.5 × 522/77 VI</td>
</tr>
<tr>
<td>VNIR2</td>
<td>-0.66</td>
<td>0.44</td>
<td>1989/32</td>
<td>Y = -119 × 0.5 + 13791/12 VI</td>
</tr>
<tr>
<td>RA</td>
<td>0.51</td>
<td>0.26</td>
<td>197/62</td>
<td>Y = 0.26 × 0.8 + 13129/5 VI</td>
</tr>
<tr>
<td>PD322</td>
<td>0.27</td>
<td>0.07</td>
<td>230/71</td>
<td>Y = 119 × 0.8 - 20562/25 VI</td>
</tr>
<tr>
<td>PD312</td>
<td>0.74</td>
<td>0.54</td>
<td>1985/33</td>
<td>Y = -0.71 × 0.8 + 20529/33 VI</td>
</tr>
<tr>
<td>MINI</td>
<td>0.46</td>
<td>0.21</td>
<td>220/77</td>
<td>Y = 0.78 + 0.5 × 15 VI</td>
</tr>
<tr>
<td>MIRV1</td>
<td>0.32</td>
<td>0.10</td>
<td>2167/35</td>
<td>Y = 119 × 0.8 + 13129/12 VI</td>
</tr>
<tr>
<td>MIRV2</td>
<td>-0.28</td>
<td>0.07</td>
<td>197/62</td>
<td>Y = -119 × 0.5 + 13791/12 VI</td>
</tr>
<tr>
<td>NIR</td>
<td>-0.86</td>
<td>0.74</td>
<td>114/14</td>
<td>Y = -312 × 0.9 + 20529/14 VI</td>
</tr>
<tr>
<td>MND</td>
<td>0.55</td>
<td>0.30</td>
<td>129/22</td>
<td>Y = 0.5 × 0.8 + 12788/22 VI</td>
</tr>
<tr>
<td>TVI</td>
<td>0.52</td>
<td>0.27</td>
<td>127/22</td>
<td>Y = -312 × 0.9 + 20529/12 VI</td>
</tr>
<tr>
<td>PD311</td>
<td>0.24</td>
<td>0.06</td>
<td>2214/57</td>
<td>Y = -742/19 - 14913/57 VI</td>
</tr>
<tr>
<td>PD321</td>
<td>0.57</td>
<td>0.33</td>
<td>188/59</td>
<td>Y = 0.54 × 0.9 - 391/51 VI</td>
</tr>
<tr>
<td>BAND5</td>
<td>0.64</td>
<td>0.41</td>
<td>220/31</td>
<td>Y = 0.5 + 0.8 + 20529/31 Band5</td>
</tr>
<tr>
<td>BAND7</td>
<td>0.34</td>
<td>0.12</td>
<td>218/44</td>
<td>Y = 0.2 × 0.9 - 391/44 Band7</td>
</tr>
</tbody>
</table>

128
جدول ۴: مقایسه مقادیر اندازه‌گیری شده پیمانه و مقادیر برآورد شده آن با داده‌های ماهواره‌ای در واحد‌های نمونه‌برداری

<table>
<thead>
<tr>
<th>(kg/8100m²)</th>
<th>NIR</th>
<th>NDVI</th>
<th>TVI</th>
<th>MND</th>
<th>VNIR2</th>
<th>PD321</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۸۰</td>
<td>۲۹۱۱/۳۳</td>
<td>۳۰۱۹/۲۶</td>
<td>۱۹۴۶/۱۲</td>
<td>۲۳۹۹/۲۸</td>
<td>۲۵۹۷/۰۲</td>
<td></td>
</tr>
<tr>
<td>۶۳۸</td>
<td>۹۶۳/۲۵</td>
<td>۱۰۱۹/۲۵</td>
<td>۱۱۵۵/۱۲</td>
<td>۱۱۰۲/۵۰</td>
<td>۱۲۱۹/۰۱</td>
<td></td>
</tr>
<tr>
<td>۲۱۳۱</td>
<td>۴۲۲۹/۹۹</td>
<td>۴۲۲۲/۳۴</td>
<td>۶۰۵/۰۸</td>
<td>۲۷۶۸/۶۸</td>
<td>۷۷۶۸/۸۸</td>
<td></td>
</tr>
<tr>
<td>۲۵۱۱</td>
<td>۴۲۶۳/۸۲</td>
<td>۳۳۴۹/۱۷</td>
<td>۴۲۳۹/۱۴</td>
<td>۱۷۱۱/۷۸</td>
<td>۱۸۱۱/۷۸</td>
<td></td>
</tr>
<tr>
<td>۸۹۱</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td></td>
</tr>
<tr>
<td>۷۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td>۱۲۹۷/۱۷</td>
<td></td>
</tr>
<tr>
<td>۲۳۲۰</td>
<td>۲۳۴۹/۱۲</td>
<td>۲۳۴۹/۱۲</td>
<td>۲۳۴۹/۱۲</td>
<td>۲۳۴۹/۱۲</td>
<td>۲۳۴۹/۱۲</td>
<td></td>
</tr>
<tr>
<td>۶۳۱۸</td>
<td>۳۸۸۷/۰۳</td>
<td>۳۸۸۷/۰۳</td>
<td>۳۸۸۷/۰۳</td>
<td>۳۸۸۷/۰۳</td>
<td>۳۸۸۷/۰۳</td>
<td></td>
</tr>
<tr>
<td>۴۰۵</td>
<td>۴۰۵/۰۵</td>
<td>۴۰۵/۰۵</td>
<td>۴۰۵/۰۵</td>
<td>۴۰۵/۰۵</td>
<td>۴۰۵/۰۵</td>
<td></td>
</tr>
<tr>
<td>۴۷۷۲</td>
<td>۴۷۷۲/۰۹</td>
<td>۴۷۷۲/۰۹</td>
<td>۴۷۷۲/۰۹</td>
<td>۴۷۷۲/۰۹</td>
<td>۴۷۷۲/۰۹</td>
<td></td>
</tr>
<tr>
<td>۴۸۶</td>
<td>۴۸۶/۰۹</td>
<td>۴۸۶/۰۹</td>
<td>۴۸۶/۰۹</td>
<td>۴۸۶/۰۹</td>
<td>۴۸۶/۰۹</td>
<td></td>
</tr>
<tr>
<td>۵۶۷</td>
<td>۵۶۷/۰۹</td>
<td>۵۶۷/۰۹</td>
<td>۵۶۷/۰۹</td>
<td>۵۶۷/۰۹</td>
<td>۵۶۷/۰۹</td>
<td></td>
</tr>
<tr>
<td>۶۷۷۱</td>
<td>۶۷۷۱/۰۹</td>
<td>۶۷۷۱/۰۹</td>
<td>۶۷۷۱/۰۹</td>
<td>۶۷۷۱/۰۹</td>
<td>۶۷۷۱/۰۹</td>
<td></td>
</tr>
<tr>
<td>۱۱۰۳</td>
<td>۱۱۰۳/۰۹</td>
<td>۱۱۰۳/۰۹</td>
<td>۱۱۰۳/۰۹</td>
<td>۱۱۰۳/۰۹</td>
<td>۱۱۰۳/۰۹</td>
<td></td>
</tr>
<tr>
<td>۴۰۵</td>
<td>۴۰۵/۰۹</td>
<td>۴۰۵/۰۹</td>
<td>۴۰۵/۰۹</td>
<td>۴۰۵/۰۹</td>
<td>۴۰۵/۰۹</td>
<td></td>
</tr>
<tr>
<td>۶۸۵</td>
<td>۶۸۵/۰۹</td>
<td>۶۸۵/۰۹</td>
<td>۶۸۵/۰۹</td>
<td>۶۸۵/۰۹</td>
<td>۶۸۵/۰۹</td>
<td></td>
</tr>
<tr>
<td>۲۰۱۷</td>
<td>۲۰۱۷/۰۹</td>
<td>۲۰۱۷/۰۹</td>
<td>۲۰۱۷/۰۹</td>
<td>۲۰۱۷/۰۹</td>
<td>۲۰۱۷/۰۹</td>
<td></td>
</tr>
<tr>
<td>۴۸۵</td>
<td>۴۸۵/۰۹</td>
<td>۴۸۵/۰۹</td>
<td>۴۸۵/۰۹</td>
<td>۴۸۵/۰۹</td>
<td>۴۸۵/۰۹</td>
<td></td>
</tr>
<tr>
<td>۱۲۵۸</td>
<td>۱۲۵۸/۰۹</td>
<td>۱۲۵۸/۰۹</td>
<td>۱۲۵۸/۰۹</td>
<td>۱۲۵۸/۰۹</td>
<td>۱۲۵۸/۰۹</td>
<td></td>
</tr>
<tr>
<td>۱۲۱۵</td>
<td>۱۲۱۵/۰۹</td>
<td>۱۲۱۵/۰۹</td>
<td>۱۲۱۵/۰۹</td>
<td>۱۲۱۵/۰۹</td>
<td>۱۲۱۵/۰۹</td>
<td></td>
</tr>
</tbody>
</table>
نتیجه تحقیقات آندرسون و همکاران (۹)، ویلیامسون و 
الدیرج (۲۵) نشان می‌دهد که بیوماس و پوشش سبز می‌تواند با 
دقیق قابل قبول به وسیله شاخص NDVI أکسیجن زده شود.

از این نتایج است که شاخص NDVI و دیگر 
شاخص‌هایی که بر منابع تركیب باندهای 
۲-۳ و در طول موج‌های ۷۰-۸۰۰ میکرومتر هستند بیشتر به بیوماس و پوشش 
سیب گیاهی حساسیت می‌باشد. با بهبود بیوماس و پوشش خشک

شده، که نتایج این تحقیق نشان دهنده فوک را تایید می‌کند.

همچنین در مقایسه با نتایج تحقیقات آندرسون (۱۱) و اورپ و 
همکاران (۱۲) که معنادار باندهای ۵ و ۷ بهره‌برداری شده به 
برآورده بیوماس می‌باشد، تحقیق در حاضر با توجه به شرایط 
خاص توپوغرافی منطقه مطالعه و اختلافات بازتاب طیفی

در دو محدوده مادون ک فرصت ثبت خرابی انتظار بوده است.

علاوه بر شاخص‌هایی ذکر شده شاخص‌های 
VNIR2 و نیز با احتیاط ۹۹ درصد بیوماس در شرایط منطقه

می‌باشد. می‌تواند باندهای ۳۳ و ۳۰ میکرومتری از مبدا گیاهان در ناحیه ۲/۵ تا ۵/۳

شکل ۲۳۳ ترکیبی که از اکسکسیون گیاهان سبز است جستجو نمود.

در این زیرپوسته‌ها همان طور که ذکر شده نسبت باند ۴ تی 
ام به باند ۳ تی ام در NIR (۲)، با توجه به شرایط بوده به شرایطی که

علوی‌ترین نتایج در مرحله انتخاب شایعی براورد شد. 
اردارگذاری شده با روش انتخابی تصویری تحقیق داشت. شروط

بررسی اورپ و همکاران نشان می‌دهد که بیشترین کاربرد

شاخص‌هایی که در زمینه برآورده بیوماس است و در زمینه

برآورد نولید با بیوماس سابق مطالعاتی جادویی وجود ندارد، به

خصوص در مناطق مشابه با نیز جهت سفیدات که در این

مقطع مادون نظر می‌باشد (۲۸).

پردازش داده‌های ماوورهای منطقه نشان داد که با 
بررسی شاخص‌های مادون (TM4 / TM3) شاخص

مناسب‌ترین شاخص برای برآورده بیوماس معنی‌داری که در مختصات 
می‌باشد. که حاکم‌های همبستگی با دست آمده مربوط به این

شکل و ۹/۶ است. همچنین همبستگی شاخص‌های 
با بیوماس نسبت به سایر شاخص‌ها MND، TVI، NDVI

پیشین می‌باشد. وجود باندهای ۳ (فرم مرن) و ۴ (مادون قربان 
نرم) در شاخص‌های فوق بیانگر مسئول شدن باندها 
نسبت به بیوماس است، به لحیط اینکه میزان انکاس

پوشش‌های گیاهی در محدوده مادون قربان نرمی نرمی به مراتب از

خاک بیشتر است.
جدول ۵. مارپیچ خطا و شاخص کیفی برای منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>شاخص پراورد بومی</th>
<th>شاخص کیفی</th>
<th>نرخ خطا</th>
<th>نرخ خطا</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR</td>
<td>119</td>
<td>0.998</td>
<td></td>
</tr>
<tr>
<td>NDV</td>
<td>245</td>
<td>0.938</td>
<td></td>
</tr>
<tr>
<td>TVI</td>
<td>1319</td>
<td>0.773</td>
<td></td>
</tr>
</tbody>
</table>

شرایط میانگین

شکل ۵. مقایسه ضرایب همبستگی برخی از شاخص‌های ارزیابی

منابع مورد استفاده

۱. ارزانی، ج. و. گ. کینگ و ب. فروستر. ۱۳۷۶. کاربرد اطلاعات رفومی ماهواره و ندست TM در تخمین تولید و پوشش گیاهی. مجله منابع طبیعی ایران ۶ (۱): ۲۰.

۲. خواجی، الین. ج. ۱۳۷۷. ارزیابی داده‌های ماهواره و جواهری Landsat 5 MSS در بررسی جوامع گیاهی و زراعت اراضی شور منطقه کازرونیان. مجموعه مقالات دومین همایش بیانیات زاینده و روشنامه‌های بیانیات زاینده ۱۳۷۵، انتشارات گروه تحقیقات جنگل‌های و مرتع. تهران.

۳. خواجی، الین. ج. ۱۳۷۸. بررسی امکان تهیه نقشه پوشش گیاهی با استفاده از داده‌های ماهواره لندست تی ام در منطقه تیریز. پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان.


