ارزیابی قابلیت داده‌های MAHORAYE + جهت تهیه نقشه طبقات پوششی ETM+

چچکهد

به منظور ارزیابی قابلیت داده‌های MAHORAYE + جهت تهیه طبقات پوششی، از آزمایشگاه‌های ارائه‌شده در این مقاله برای ارزیابی طبقات پوششی جشن و مرسوم در حضور دکتر نمازی انجام می‌گردد. جهت تصدیق بهبودی سنجش بعدی از روی ارائه ارتباط استفاده شد که میزان خطای ریشه میانگین مربعات (RMSE) برای تهیه نقشه طبقات پوششی ETM+ با استفاده از روش PoS دارای صفر درصد بود. در جدول ۱، مقایسه دقیقه تهیه نقشه طبقات پوششی جشن و مرسوم برای این داده‌ها نشان داد که ETM+ از جهت بررسی دقیق‌تر می‌باشد.

واژه‌های کلیدی: سنجش ETM+, طبقات پوششی جشن - اراضی درختچه‌ای مرطع - طبقه‌بندی، میزان رود - نظام رسیدگی

مقدمه

در سال‌های اخیر بر می‌خورد که این گونه نقشه‌برداری بکار رفته در این آنالیز قابلیت‌های آن‌ها را برای تهیه نقشه طبقات پوششی جشن و مرسوم در حضور دکتر نمازی انجام می‌گردد. جهت تصدیق بهبودی سنجش بعدی از روی ارائه ارتباط استفاده شد که میزان خطای ریشه میانگین مربعات (RMSE) برای تهیه نقشه طبقات پوششی ETM+ با استفاده از روش PoS دارای صفر درصد بود. در جدول ۱، مقایسه دقیقه تهیه نقشه طبقات پوششی جشن و مرسوم برای این داده‌ها نشان داد که ETM+ از جهت بررسی دقیق‌تر می‌باشد.

واژه‌های کلیدی: سنجش ETM+, طبقات پوششی جشن - اراضی درختچه‌ای مرطع - طبقه‌بندی، میزان رود - نظام رسیدگی

مقدمه

در سال‌های اخیر بر می‌خورد که این گونه نقشه‌برداری بکار رفته در این آنالیز قابلیت‌های آن‌ها را برای تهیه نقشه طبقات پوششی جشن و مرسوم در حضور دکتر نمازی انجام می‌گردد. جهت تصدیق بهبودی سنجش بعدی از روی ارائه ارتباط استفاده شد که میزان خطای ریشه میانگین مربعات (RMSE) برای تهیه نقشه طبقات پوششی ETM+ با استفاده از روش PoS دارای صفر درصد بود. در جدول ۱، مقایسه دقیقه تهیه نقشه طبقات پوششی جشن و مرسوم برای این داده‌ها نشان داد که ETM+ از جهت بررسی دقیق‌تر می‌باشد.

واژه‌های کلیدی: سنجش ETM+, طبقات پوششی جشن - اراضی درختچه‌ای مرطع - طبقه‌بندی، میزان رود - نظام رسیدگی

مقدمه

در سال‌های اخیر بر می‌خورد که این گونه نقشه‌برداری بکار رفته در این آنالیز قابلیت‌های آن‌ها را برای تهیه نقشه طبقات پوششی جشن و مرسوم در حضور دکتر نمازی انجام می‌گردد. جهت تصدیق بهبودی سنجش بعدی از روی ارائه ارتباط استفاده شد که میزان خطای ریشه میانگین مربعات (RMSE) برای تهیه نقشه طبقات پوششی ETM+ با استفاده از روش PoS دارای صفر درصد بود. در جدول ۱، مقایسه دقیقه تهیه نقشه طبقات پوششی جشن و مرسوم برای این داده‌ها نشان داد که ETM+ از جهت بررسی دقیق‌تر می‌باشد.

واژه‌های کلیدی: سنجش ETM+, طبقات پوششی جشن - اراضی درختچه‌ای مرطع - طبقه‌بندی، میزان رود - نظام رسیدگی

مقدمه

در سال‌های اخیر بر می‌خورد که این گونه نقشه‌برداری بکار رفته در این آنالیز قابلیت‌های آن‌ها را برای تهیه نقشه طبقات پوششی جشن و مرسوم در حضور دکتر نمازی انجام می‌گردد. جهت تصدیق بهبودی سنجش بعدی از روی ارائه ارتباط استفاده شد که میزان خطای ریشه میانگین مربعات (RMSE) برای تهیه نقشه طبقات پوششی ETM+ با استفاده از روش PoS دارای صفر درصد بود. در جدول ۱، مقایسه دقیقه تهیه نقشه طبقات پوششی جشن و مرسوم برای این داده‌ها نشان D

Downloaded from ippu.iut.ac.ir at 4:48 IRDT on Saturday August 3rd 2019
نظر کیفی (کاهش تغییر زیستی گونه‌ها و تغییر تدریجی جوامع گیاهان در اثر دخالت‌های انسانی و تغییرات محیطی) آثار خود را در محدوده ساختن گسترش گیاه‌ها هم در مناطق جنگل‌های کرانه دریا خور و هم در ارتفاعات بالایدست جنگل‌ها (در مجاورت مرتع پیلار) نشان داده است. از سویی، به دلیل دسترسی مشکل و گاه نیز می‌توان به وجود و شرایط دیگر، فیزیوگرافی و اقلیمی در مناطق مرتفع کوهستانی و همچنین عدم استفاده از اطلاعات در روز، امکان نظریه سنتر بر تغییر طبقات پوشش گیاهی بررسی روند آن در دوره‌های زمانی کوتاه برای برنامه‌ریزی امور جنگلی وجود ندارد. داده‌های پوشش تکراری و منظم در باران و انتخاب صفحه نموده به بیشتر فاکتورهای چنین گونه‌های چوبی‌ای نشان دو تراکم پوشش تغییرات نجوم و با بررسی آن در دوره‌های زمانی میزان تغییرات کمی (سطح پوشش) با کیفی (کیفیت پوشش) آن را مشخص نمود که از جمله تغییرات انجام شده می‌توان به مطالعه درویش صفت در جنگل‌های معتدل سوئسی و ساروئی در جنگل‌های غرب کشور (زاکرل) اشاره نمود (1 و 3). مناطق پوششی نظیر نامی و زابل‌سوسی بر اهمیت تغییرات رقومی داده‌ها ماهورایی در مناطق با پوشش گیاهی می‌توانند نظیر مرز جوامع گیاهی و محل اکتیون (Ecotone) جهت به حداکثر رسیدن انتشار در اثر طبیعت پوششی تأکید نموده‌اند (15). حجم (30 %) و همچنین تغییرات در دو رتبه از نظر منطقه گوشه طبقات و در شیب مختصاتی UTM در زون 39 واقع شده است (شکل 1). حداقل ارتفاع ازسطح دریا 150 متر و حداقل 140 متر در می‌باشد. اکثریت شیب متوسط 1+ 1متر در می‌باشد. پوشش درختی و درختچه‌ای منطقه از حدود 18 گونه چوبی تشکیل شده که از جمله آنها می‌توان به راش (Fagus orientalis Lipsky) اشاره کرد. از خانواده (Carpinus orientalis Miller) و نور (Carpinus betulus L) و Quercus castaneofolia C.A. Mey. (Carpinus betulus L) و Quercus macranthera Fisch. Et Mey. از بالا به پایین راه اندازی مناسبی را به طبقات پوششی تغییرات نمود.
از ریزایی قابل‌توجه داده‌های ماهواره‌ای ETM+ جهت نهی تنش طبقات...

بی‌جهت کسب اطلاعات از این امکانات به‌کارگیری داده‌ها با استفاده از پرگنماهای و تماشای آنها در نرم‌افزار کرید، در این مرحله داده‌ها به‌کارگیری در نرم‌افزار ETM+ خطا زیر هم قرار گرفتند. دست‌های خطوط اسکن و همچنین ناهنجاری‌ها جویی تظیپ ابزار مورد بررسی قرار گرفت و موارد فوق در آنها مشاهده شد.

تصحیح هندسی و ادامه داده‌ها
به‌منظور بررسی کیفیت هندسی داده‌ها، اقدام به استخراج خطوط مرزهای میزان و تیز شبکه آب‌های از نقشه رقیقوی منطقه شده و با تصویر روز هم اندازی شد (شکل 2). 

به‌عنوان محدوده PCI- Geomatica- version.9.1 پردازش‌های انجام شده بر روی داده‌های تصویری استفاده شد.

نتیجه موقعیت منطقه مورد مطالعه و تصویر آن در ترکیب تنگی ETM(4,3,2)

(Pyrus boissieriana Buhse.) و سفید کروماتیک (Acer hyrcanum Fisch.& C.A Mey.) اشاره کرد.

داده‌های مورد استفاده
داده‌های ماهواره‌ای مورد استفاده در تحقیق یک فرآیند تصویر حاصل از سنجش ETM+ ماهواره‌های لندست به‌دست آمده و در سیستم جهانی WGS84 در گذرانه 163 و رهیافت 35 واقع شده است. تاریخ اخذ داده مصادف با سال می‌باشد. میلادی برای نمایش در سال 1381 هجری خورشیدی برداشته و همچنین در مطالعه حاضر از سیستم افزایشی PCI- Geomatica- version.9.1 به‌عنوان محدوده اصلی
شکل 2. نمایش تصویری تصویر نشده (الف) و تصویر تصویرشده (ب) سری مورد مطالعه پس از رویه اندمازی شبکه آبراهه‌ها

فایل ضمیمه داده‌ها، با کمک گشت هندسی مشخص شد میزان از خطای هندسی در پیکسل‌های تصویر وجود دارد که میزان آن در راستای محور X‌ها تقیباً ۷۰ متر و در راستای محور Y‌ها حدود ۲۵ متر بر اورد شد لذا تصویر تطبیق هندسی داده‌ها با نیش‌های نسبتاً ضرورت بابت در این تحقیق روش تصویر تطبیق هندسی اروتو با استفاده از مدل رقمی ارتفاعی (Digital Elevation Model (DEM) مطلقه بکار گرفته شد (۶). اختلاف و نوع ارتفاعی عرضه که همان‌گونه که ذکر شد از حدود ۴۷۰۰ NA حدود ۳۴۰۰ متر از سطح دریا در می‌گردد و نیز اختلاف پستی و بلندی حاصل از آن که در مطلقه مشهد است باعث اختصاص این نوع جهت مثبت تصویر هندسی گردید (۶). لذا با انتخاب تعادل ۲۴ نقطه کنترل زمینی پایان‌مندبی در تمام سطح سری اقدم به تصویر به هندسی شده و میزان خطای ریشه میانگین (RMSE) میتوان به نشان این کنار می باشد.

میزان خطای پیکسل در راستای محور X‌ها و Y‌ها به دست آمد پس از رویه اندمازی مجدد شبکه آبراهه‌ها تطبیق مناسب بر روی تصویر تطبیق داده شد (شکل ۲) به نظر بیشتری گرفته شد. نقاط تطبیقی مکانی و طبقه مجموعه داده مورد استفاده در طبقه نیروی تصویر تطبیق داده شده توسط پیکسلی که داده‌ها با اجرای یکی از الگوریتم‌های (Data Fusion) اعمال شده و وضعیت داده‌ها اعمال ترکیب و وضعیت داده‌ها (Data Fusion) به دست گرفته شده‌اند. پانش‌پاش ۱۸ (۸).
عملیات پیش پردازش

به منظور اینکه بهتر با دقت پیش‌بینی و با اجرای طیف‌بندی اندک‌تر از تداخل طیف‌بندی، اقدام طرفینه نمود و تأثیر بذر نیز به دلیل تأثیر

شاخه‌های گیاهی در آن‌ها سازماندهی پوشش گیاهی، از

فیزیولوژی‌های مختلف گیاهی، شاخص‌های متنوع (NDVI (BAND4-BAND3)/(BAND4+BAND3) شاخه‌های رابطه به دست می‌آید.) و (BAND4/BAND3)

این شاخص حاصل توسط

باندی (IR/R) می‌باشد.) محاسبه شده و به

حواشی مورد استفاده جهت طبقه‌بندی اضافه شده.

به منظور فشرده‌سازی اطلاعات طیفی باندهای مورد

استفاده در تحقیق شامل باندهای اصلی + اقدام به اجرای

Principal Component (PCA) تجزیه مؤلفه‌های اصلی

(جهت جستجو در نیازهای اقتصادی، این عمل باندهای مؤلفه‌های ایجاد

 bev) می‌باشد و به این محل مؤلفه‌های نشست دارای پیش‌بینی درصد

واریانس تا نک مورد استفاده در تجزیه می‌باشد. بنابر

دیگر، می‌باشد برای باندهای مربوط (1,2,3,4 ETM+

مانند

کمترین تبیین را برای جفت‌بندی از پک مجموعه در نظر

گرفته. این می‌تواند دقت طبقه‌بندی را در بسترهای حالت

(کمترین تبیین) به حداکثر می‌رساند. مجموعه باندهایی که نتیجه شده

برای باندهای مادون قمر (ETM+ اقدام به تجزیه

مؤلفه‌های اصلی شد و مؤلفه‌های اول هر کدام به عنوان باندهای

مصنوعی مورد استفاده قرار گرفته (3). برخی اطلاعات مربوط به

منابع ارزی‌پایی پیکسل در باندهای 3 و 4.2، و انحراف معیار) در

جدول 1 در جهت است. بهره برداری از انتخاب و اصلاح گونه‌های

تعلیمی اقدام اقدام به بررسی تکنیک بذری طبقات با

شاخه‌های تکنیک پیش‌بینی گردید. شاخص‌های استفاده شده

شامل فاصله باتایانر (Bhattacharya Distance) بود. برای انتخاب باندهای

Transformed Divergence) داشته باشد. مناسب به شکل گه‌بندی از دستور خودکار انتخاب کانال‌ها

(انتقال) به استفاده از معیار تکنیک پیش‌بینی تبیین

ژنتیک (جویانه) (CHSEL

کمترین تبیین را برای جفت باندها در پک مجموعه در نظر

گیرند. این می‌تواند دقت طبقه‌بندی را در بسترهای حالت

(کمترین تبیین) به حداکثر می‌رساند. مجموعه باندهایی که نتیجه شده

NIR (IR/R) ) (J

ب) باندهای

افية (Bhattacharya Distance) به

Transformed Divergence) داشته باشد. مناسب به شکل گه‌بندی از دستور خودکار انتخاب کانال‌ها

(انتقال) به استفاده از معیار تکنیک پیش‌بینی تبیین

کمترین تبیین را برای جفت باندها در پک مجموعه در نظر

گیرند. این می‌تواند دقت طبقه‌بندی را در بسترهای حالت

(کمترین تبیین) به حداکثر می‌رساند. مجموعه باندهایی که نتیجه شده

NIR (IR/R) ) (J


جدول 1. مولفه‌های آماری و تعداد پیکسل‌های نمونه‌های تعیینی در دو مجموعه داده اصلی و ادغام شده

<table>
<thead>
<tr>
<th>مجموعه داده اصلی</th>
<th>انحراف معیار</th>
<th>تعداد پیکسل‌ها</th>
<th>نوع پوشش</th>
<th>مانگین</th>
<th>باند</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>داده‌های اصلی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>داده‌های ادغامی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

زیمتی مулته مورد محاسبه قرار گرفتند.

نتایج
همان‌گونه که ذکر شد، طبقه بنیادی کننده حداکثر احتمال بعنوان
الگوریتم طبقه بنیادی کننده داده‌ها استفاده شده و دو مجموعه
داده اصلی و ترکیبی با آن تحت طبقه بنیادی قرار گرفتند. تناژ
طبقه بنیادی نشان داد میزان معیارهای بیان صحبت (صحبت کلی و
شاخص کاپا) در تفاوت اصلی طبقه بنیادی شده به میزان انداز
یک (تا ۲ درصد) نسبت به داده ترکیبی بالاتر است. نفی‌شان حاصل
از طبقه بنیادی مجموعه داده اصلی (Original Data) و (Fused Data)
در شکل ۲ نمایش داده شده است.

نتایج حاصل از ارزیابی صحت طبقه بنیادی در دو مجموعه
داده باید شده در قیاس با واقعیت زمینی به شرح جدول:

پس از تشکیل فیلتر مدا در ابتدا در شاخص کاپا ۴۳ درصد را نشان داد. در ضخامت ترکیبی
این نتایج صحبت کلی برابر ۶۷ درصد و شاخص کاپا ۴۴ درصد به
دست آمد (جدول 2).

از این معیار برابر طبقه بنیادی دو طبقه که شیفت‌شان اختلاف را با
هم دارند مناسب است (۱۴). در تجربه این بررسی با عطف سعی کرده است
حاصل از تنو عناصر طبقه بنیادی در ترکیبی‌های می‌باشد که نتیجه‌ای
می‌گردد. لذا استفاده از قبیلیت‌های موجود در مجموعه داده
(شامل باندهای اصلی، نسبت کبری شده و مولفه‌های اصلی) در
قابلیت طبقه بنیادی تشخیصش داده شد.

پس از انتخاب و بررسی تفکیک پذیری نمونه‌های تعیینی،
طبقه بنیادی تصور با استفاده از دو مجموعه داده اصلی
(Mode Filter) و Fused Data) داده شده (مجموعه داده با تفکیک مکانی ۲۵ متری (۲۵ متری)
در اندامه (۱۴ متر).

*تمام مراحل ارزیابی صحت طبقه بنیادی به موضوعاتی تعیینی تعیین

که حذف دانه‌ها و

پیکسل‌های اضافی و منفرد در سطح تصویر طبقه بنیادی شده

(۳۰)، در مرحله ارزیابی صحت

پیکسل استفاده شد (۱۳). در مراحل ارزیابی

می‌باشد. در تجربه این طبقه بنیادی

پیکسل استفاده شد (۱۳). در مراحل ارزیابی

کاپا به (User Accuracy)
جدول 2 نتایج ارزیابی صحت طبقه بندی در دو مجموعه داده مورد استفاده

<table>
<thead>
<tr>
<th>شاخص کلی</th>
<th>صحت کلی</th>
<th>صحت کاربر</th>
<th>صحت تولید کننده</th>
<th>نام طبقه</th>
<th>نام مجموعه داده</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/3</td>
<td>77</td>
<td>74</td>
<td>67</td>
<td>جنگل (درختی)</td>
<td>ETM+</td>
</tr>
<tr>
<td>3/2</td>
<td>77</td>
<td>74</td>
<td>67</td>
<td>اراضی درختنگیای</td>
<td>ETM+</td>
</tr>
<tr>
<td>2/1</td>
<td>54</td>
<td>66</td>
<td>46</td>
<td>مرتع</td>
<td>ETM+</td>
</tr>
<tr>
<td>1/0</td>
<td>63</td>
<td>54</td>
<td>43</td>
<td>جنگل (درختی)</td>
<td>ETM+</td>
</tr>
<tr>
<td>0/1</td>
<td>63</td>
<td>54</td>
<td>43</td>
<td>اراضی درختنگیای</td>
<td>ETM+</td>
</tr>
</tbody>
</table>

نتایج حاصل از ارزیابی صحت نقشه‌های حاصلشده به شرح زیر می‌باشد:
در تصویر اصلی و پس از اعمال فیلتر م صباحی ارتباط
تولید کننده متعلق به طبقه جنگل و اراضی درختنگیای با مقادیر
مشابه 77 درصد بود. همچنین طبقه مرتع بالاترین میزان صحت
کاربر را با 74 درصد نشان داد. در تصویر ترکیبی معمارهای
صحت طبقه بندی، کاهش اندازی یا نشان دادند. در این تصویر
نیز بالاترین میزان صحت تولید کننده با مقادیر 77 درصد متعلق
به طبقه اراضی درختنگیای بود و بالاترین میزان صحت کاربر

در طبقه جنگل با میزان 72 درصد به دست آمد.
بر اساس طبقه بندی انجام گرفته بر روی داده اصلی و
ترکیبی ETM+، سطوح تحت پوشش هریک از طبقات سه گانه
(به هکتار و درصد سطح کل منطقه) به شرح جدول 3 می‌باشد.

بحث
در خصوص تحقیق حاضر می‌توان گفت در دایل برای عدم
به‌وجود صحت طبقه بندی در تصویر ترکیبی نسبت به تصاویر
ارتباط مستقیم که اثر سایر ترکیبی اتصالی ETM+ متجاوز است. در این ترکیبی وضوح، میزان از

445
جدول 3: سطوح تحت پوشش طبقات سه گانه بر اساس طبقه بندی
الف) داده اصلی
<table>
<thead>
<tr>
<th>سطح پوشش (هنکار)</th>
<th>تعداد گل انتخاب یافته</th>
<th>دارد سطح از کل منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گنجی‌کلا (درختی)</td>
<td>182</td>
<td>37/59</td>
</tr>
<tr>
<td>درختچای</td>
<td>4728</td>
<td>38/42</td>
</tr>
<tr>
<td>مرنگی</td>
<td>3191</td>
<td>259/19</td>
</tr>
</tbody>
</table>

ب) داده تکنیکی
<table>
<thead>
<tr>
<th>سطح پوشش (هنکار)</th>
<th>تعداد گل انتخاب یافته</th>
<th>دارد سطح از کل منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گنجی‌کلا (درختی)</td>
<td>9877</td>
<td>187/52</td>
</tr>
<tr>
<td>درختچای</td>
<td>1983</td>
<td>207/12</td>
</tr>
<tr>
<td>مرنگی</td>
<td>9374</td>
<td>207/24</td>
</tr>
</tbody>
</table>

Standardizing Spectral Reflectance

References


