تاثیر جیرلین و سرماهای مرطوب بر شکست خواب بذر کما

یحانه عمومآفایی\(^1\)

چکیده

گیاه کما یکی از گیاهان علوفه‌ای است که جوانزیتی بذری‌هاش با مشکل مواجه است. خصوصیات خواب دانه و شرایط بهینه جوانزیتی بذری‌ها کما ما را توصیف نشده است. تحقیق حاضر به منظور بررسی اثر استفاده از جیرلین و سرماهای مرطوب روی تحريك جوانزیتی بذری‌ها کما طراحی شده است. در اینجا یک آزمایش فاکتوریل در قالب یک طرح کاملاً تصادفی در شش تكرار برای ارزیابی فاکتورهاي: دمای زمان سرماده ه مرطوب در درجه سانتی‌گراد قُل (تُس) در شش سطح (9.09.20.0)، غلظت‌هاي (GA/GA، GA/1000 PPM) در سطح (0.1000،0.5000،0.2000 PPM) و زمان تیمار. دمای سرما جات (T50 در C) در سطح (9.09.20.0) به اجرا در آمد. در دو علی‌آزمایی، اثر تیمار

زمان سرماده و جیرلین روی تیمار و گرفت، به‌طور تیمار برای تحريك جوانزیتی بذری‌ها کما در تیمارهای سرما و گرفت، با توجه به نتایج فیزیولوژیکی درونی را نشان می‌دهد که سرما و گرفت، تیمارها سرما و گرفت، اثر رفع شود.

واژه‌های کلیدی: سرماده مرطوب، جیرلین، شکست خواب دانه، کما

مقدمه

گیاه کما از جمله گیاهان خانواده چتریان است که در مناطق نیمه استوایی و چراغ‌هایی انداخته و به‌همراه محیط بخش‌های یافت می‌شود و با ناحیه پوشش خوب، می‌تواند به عنوان یک علت مطرح باشد. این گیاه از نظر خوش‌خواهی در رد به قرار گرفته و زمانی برای دام مفید است که خشک شده و

1. استدیار فیزیولوژی گیاه، دانشکده علوم، دانشگاه شهید چمران.
واژه خواص عریف حالتی است که دنیهای یک گیاه حسی اگر در این وضعیت به بهترین شرایط محیطی قرار گیرد، خاصاً در حین زندگی بودن، بازدارنده قرار دهنده و نخواهد بود. بیشتر بزرگان مورد استفاده در زراعت و باغداری، خواص خود را درست قبل از جدایی از گیاه مادری و یا باسلامه پس از آن دست می‌دهند ولی به بزرگان گیاهان حاضری، خواص درازمدت می‌باشد. به طور بسیار کمتر از وجود دارد.(1) خواص به عنوان یک شبیه انجام است که از نظر قلمی اهمیت زیادی در حفظ

گونه‌های گیاهی دارد. طولی از سایر شرایط و شرایط بین‌همه گونه‌زی بذر به‌دست آمده به ناحیه تحقیقاتی است که دانسته بوده که از ناحیه از دست خلوتی و/or ناپایداری در این تحقیقات (ISTA)

کامیابی شده در کلاسیک‌های گیاهی از گونه‌های اغلب

می‌باشد. (8) خواص گیاهی بیولوژیکی نوع نمایا خواص اولیه در خانواده

چتریان و بذر گیاهی نازه برداشت شده برخی از گونه‌های علفی

است (8 و 18). بسته به گونه‌ی گیاهی برای شکست خواص

فیزیولوژیکی، بذرها یا بذری در خارج از معرض سرما و یا گرم فرار گیرند.

و با یا زیرین و یا مواد شیمیایی دیگر تمیز شوند (8 و 17).

مواد و روش‌ها

الف) اثر چتریان و سرما بر درصد جوانه‌زی بذر گیاه‌ها

کشاورزی ذهنی گونه‌ای بذر در اصل اتفاق نهیه کرده. بذر کما

نسبتی درشت و وزن هزار دانه از طرف متوسط 94/8 گرم

است. سطح شکمی آن به وسیله دانه‌ریختگی دراد و نیز

سطح پشت آن کم‌این است. رنگ بذر گیاه کم‌کدر

می‌باشد. به تعویض این است و طول بین 6 تا 8 میلی‌متر می‌باشد.

در کلیه آزمایش‌ها ابتدا بذرها سیاه است و به‌دست می‌آید.

عفونت سطحی شدن و سپس 5 می‌تواند به آب شستشو داده شدن

و همراه با اثری 15 ساعتی در واقع کافی است. ۱۴

شماره 1 غلاف بذر به عنوان یک گونه‌زی بذر خارج

از آزمایش اول برخی گیاه‌ها کمی در کل آزمایش فاکتور

در قابل پک طرح کمالی تصادفی در 4 تکرار از بزرگ‌های

حاوی 35 دانه رشد داده شدند. فاکتورهای مورد ارزیابی شامل:

می‌باشد. (8 و 17)
تأثیر چربی‌های سرانهی مرطوب بر شکست خواب بذر کما

این رابطه n تعداد بذردهای جوانه‌زده و n تعداد کل بذردهای
کشت شده می‌باشد.

(ب) تیمار تأثیر چربی‌های سرانهی بر مدت زمان لازم برای رسیدن به 50% جوانه‌زنی
را نشان می‌دهد.

ب) در این آزمایش اثر فاکتورهای غلفت چربی در 3 سطح
1000 ppm، 500 ppm و مدت زمان سرطان در 10 سطح
(0، 50، 100، 150، 200، 250، 300، 350، 400، 450 و 500 ppm)
(50 تا 9 هفته) روی تعداد روزهای شته‌گرد برای رسیدن به
60 جوانه‌زی دانه‌های کاملاً تصفیه‌برنده بود. به‌طور مثال، همه تیمارها
صادر رشد بود که حاوی 25 دانه بذر کم استفاده شد.

بتدرای حس فنجان‌های مخلوط 15 آب مقرط
(انتز) با محلول 50 جنریان واحد محلول
1000 ppm جنریان به مدت یک شب قرار گرفته. آن گاه بس از
جاگیری محلول‌هایی با آب مقرط در همه تیمارها
بدرهای، باقیمانده مدت زمان‌های 4، 5، 6، 7، 8 و 9
همه را در دمای 3-3 یا در مدت یک شب در روی
کاغذ‌های جوانه‌زی آن‌ها به محلول‌های
یوندی و پس از
اندزایی زمان‌ها نیز تعویض و در مدت باقیمانده
سرطان‌های بیشتر می‌تواند باً مخلوط
مختلف سرطان‌های استفاده کند.

برای گروه دوم تیمارها پیش سرطان‌های مرطوب در دمای
3-3 به مدت 0 تا 9 هفته مطابق طرح آماری اعمال شد. در همه
این تیمارها دانه‌ها به جینه سرطانی مدت یک شب در روی
کاغذ‌های جوانه‌زی آن‌ها به محلول‌های
یوندی و پس از
اندزایی زمان‌ها نیز تعویض و در مدت باقیمانده
سرطان‌های بیشتر می‌تواند باً مخلوط
مختلف سرطان‌های استفاده شد.

در گروه سوم تیمارها، دانه‌ها مدت زمان سرطان‌های لازم را
(انتز) با مخلوط 50 جنریان واحد محلول
15 آب مقرط به کار برده شده
در روی کاغذ‌های جوانه‌زی مرطوب شده با آب مقرط به طور
کامل یک قرنی و پس از اتمام دوره سرطانی به مدت یک
شب به پدرهای کاغذ‌های آن‌ها به محلول‌های
مختلف سطح. در همه تیمارها مقدار
GA3 با آب مقرط به کار برده شده
15 بود. هم‌هسته نمونه‌ها پس از اعمال تیمارهای فوق به اتاق
رض که می‌گذرد 14 ساعت در درجه سانتی‌گراد بی نور
فلورست در 8 ساعت در درجه سانتی‌گراد
در تاریکی در طبیعت شبانه روز برای سطح بود متقابل و
درصد جوانه‌زی را محاسبه کرد.

نتایج
تایپی آثار ایارینی نشان می‌دهد که اثر گرفتگی و زمان کاربرد
چربی‌های مدت زمان پیش سرطان باید درصد جوانه‌زی
بود که در سطح 1/4 منی دار است. هم‌چنین اثرات متغیر
فاکتورهای مدت سرطان‌های غلفت چربی و مدت سرطان‌های
× زمان کاربرد چربی در سطح 1/5 منی دار است.

تأثیر (GA3) در این آزمایش دانش که افزایش و
مثبت و منی داری در درصد جوانه با دسته داشته است. به
طوری که میانگین درصد جوانه‌زی بین ۲۷ درصد در متوسط
شده بدون تیمار با (GA3) به ۷۱ درصد در تیمار با غفلت
372

Downloaded from iipp.iul.ac.ir at 14:03 IRDT on Friday August 2nd 2019
شکل 1. تأثیر غلظت‌های چربی روی درصد جوانه زنی بذرها کمی حروف مشابه بین عدم اختلاف معنی‌دار در سطح 5/ بر طبق آزمون دانکن می‌باشد.

جدول 1: آنالیز واریانس اثر فاکتورهای مدت زمان سرماده‌ی غلظت چربی و زمان کاربرد چربی بر درصد جوانه‌زی بذرها کمی

<table>
<thead>
<tr>
<th>مقدار f</th>
<th>درجه آزادی</th>
<th>متغیر تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>تکرار</td>
</tr>
<tr>
<td>3/4*</td>
<td>5</td>
<td>مدت سرماده‌ی غلظت چربی</td>
</tr>
<tr>
<td>0/784</td>
<td>2</td>
<td>زمان کاربرد چربی</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>مدت سرماده‌ی غلظت چربی × زمان کاربرد چربی</td>
</tr>
<tr>
<td>0/81/1</td>
<td>2</td>
<td>غلظت چربی × زمان کاربرد چربی</td>
</tr>
<tr>
<td>2/11/1</td>
<td>2</td>
<td>مدت سرماده‌ی غلظت چربی × غلظت چربی</td>
</tr>
<tr>
<td>0/2/1</td>
<td>2</td>
<td>مدت سرماده‌ی غلظت چربی × غلظت چربی</td>
</tr>
<tr>
<td>1/6/1</td>
<td>2</td>
<td>غلظت چربی × غلظت چربی</td>
</tr>
<tr>
<td>5/6/1</td>
<td>2</td>
<td>غلظت چربی × غلظت چربی</td>
</tr>
</tbody>
</table>

مقدار تکرار (p) به طور معنی‌دار در سطح 5/ با درصد جوانه‌زی به بعد معنی‌داری 97.8% داشته است که در حضرت 4/5/ درصد در پذیرش 7/ هفته سرماده‌ی شده باید غلظت 1000 ppm چربی بالا بر گردیده است (شکل 1)
تأثير جیرلین و سرمایه مسترلعب بر شکست غاژی بذری کما

شکل ۲: تأثیر منقابل میزان جیرلین و مدت زمان سرمایه‌ی بر میزان غاژی زنی بذرها کما

سرمایه‌ی ضروری ندارد، چون تأثیر مناسبی دارد. میزان مناسبی ۵۰٪ غاژی نشان داد که دوباره می‌تواند در محصول جیرلین بدون سرمایه‌ی حداکثر ۲۹٪ غاژی نشان می‌دهد که پس از ۳ هفته سرمایه‌ی به ۷۵٪ بالغ می‌گردد و این تفاوت در سطح ۱٪ معنی‌دار است. اما با کاردیور ۱۵ و ۹ هفته سرمایه‌ی درصد جوانه‌ی بار بر دامنه سرمایه‌ی تفاوت معنی‌داری ندارد. این در حالی است که در نمونه‌های بدون افزایش مدت زمان سرمایه‌ی تا ۷ هفته هنوز اثر معنی‌داری بر درصد جوانه‌ی بذرها دارد. در این بذرها درصد جوانه‌ی بارد در ۵۰ و ۷۵ هفته به ترتیب به ۱۳ و ۱۹ درصد بالاگرفت که این تفاوت‌ها در سطح احتمال ۳٪ معنی‌دار است.

بررسی اثر منقابل مدت زمان سرمایه‌ی به زمان استعمار گیا Gای نشان‌می‌دهد که در سِرِمایه‌ی تکمیل از ۵۰ تا ۱۵ هفته شاهد بدون افزایش مدت زمان سرمایه‌ی به تعداد ۲ درصد درصد بیشتر داشت که این تفاوت‌ها در سطح احتمال ۱٪ معنی‌دار است.

دست‌یافتن نتایج از مدل‌های میزان غاژی بذرها کما

۳۷۵
شکل ۴: اثر متقابل مدت زمان سرمازده با زمان استعمال بر درصد جوانه‌زینی بذرهای کما GA

شکل ۵: اثر متقابل غلظت و زمان انفودون a بر درصد جوانه‌زینی بذرهای کما GA

نتایج حاصل از این تحقیق به حضور گویایی آن است که سرما نیز اثر بهبود معنی‌داری بر T50 بذرهای کما داشته است. با اعمال ۷ هفته سرمازده، بذرهای a در شاهد بودن سرمازده، به تنهایی ۳۰ روز کاهش یافته این تفاوت به عبارت دیگر سرما موجب تقویت بینه بذرهای کما شده و سرعت جوانه‌زینی آنها را افزایش می‌دهد. نتایج بررسی زمان لزوم (بر حسب روز) برای رسیدن به ۵۰ درصد جوانه‌زینی (T50) بذرها کما را در حضور تیمارهای مختلف سرما و a GA نشان می‌دهد که افزودن غلظت a GA (500 ppm) ۵۰۰ محلول a GA در مقدارهای شاهد (تیمار بدون a GA) در افزایش معنی‌داری در سرعت جوانه‌زینی بذرهای کما ایجاد کرده است (شکل ۴). با افزایش غلظت a GA از ۵۰۰ به ۱۰۰۰ ppm، a GA a افزایش معنی‌داری در سرعت جوانه‌زینی به دست آمد.
تأثیر جریان و سرمای مرطوب بر شکست خواب بذر کما

FH: تا 7 هفته غلظت GA و مدت زمان سرماده‌ی روی T_{50}

دوره سرمای بیش از 3 هفته، اثر معنی‌داری بر کاهش T_{50} ندارد.

و بنا به این، سرماده‌ی بیش از 3 هفته ضروری ندارد.

ازوندن GA همراه با 3 هفته سرماده‌ی نداده شده همراه با 5 گاه روز ورود روی T_{50} در جوان‌زندی را از 88 روز برای تیمار شاهد بدون GA و بدون سرماده‌ی به 24 روز کاهش داده است. چنین نتیجه‌ی برای شاهد بدون GA با 7 هفته سرماده‌ی قابل وصول است. این رخداد افزایش غلظت GA به 1000 ppm به GA در سرعت جوان‌زندی رخ نداده و GA تنوانسته بطور کامل نیاز برای سرماده‌ی افزایشی کند. افزایش دیگر سرماده‌ی کمتر از 3 هفته (1 هفته)، در حضور یا عدم حضور GA تأثیر معنی‌داری بر سرعت جوان‌زندی نداشت. بنا به این، حداقل 3 هفته سرماده‌ی حیاتی در حضور GA باید جوان‌زندی در GA برای GA در حضور 1000ppm سرماده‌ی حیاتی در حضور GA بد حضور در ضروری است.

بحث

نتایج این مطالعه نشان داد که دانه‌های کما نوعی خواب درنیز دارند که با استفاده از تیمار سرماده‌های مرطوب در مدت زمان

877
کرفس سطح سایر هورمون‌ها و همچنین چربی‌های پیوندی از Ca2+ و K+ جمله از خلال غشاء‌ها را تغییر می‌دهد و این تحولات موجب انتقال سیگنال‌ها و ولتاژ و تحرک شکست غافل
متابولیت‌ها و آنزیم‌های حاکم جوانزی به‌دلیل شوند (5).

یکی از پژوهش‌های اخیر، نشان داده که در هر اندازه حاوی برخی دانه‌های گزارش در ارتقاء تجربه مصرف از موانع فنلی از آن‌ها است. جبری از فعالیت‌های ترکیبی اکسیداز از آتشفشان می‌دهد و از این طریق موجب کاهش میزان مواد فنلی دانه و در نتیجه تحرک جوانزی می‌شوند (14).

می‌توانید از محققان معتقدند که برطرف شدن خواب از طریق تعادل بین مواد بازدارنده روی مانند آسپرین (ASIP) و مواد تأثیرگذاری کننده کاهش گما مانند از ترکیب‌های از جوراک و همچنین کواناگا و همکاران گزارش کرده‌اند که جبری‌ها مسیرها انتقال سیگنال‌هایی را غافل می‌کنند که باعث شود میزان آسپرین اسید بذر در کاهش و در مقابل میزان آسپرین و سیستم‌های دانه‌ها به‌دلیل مناسبی جهت گذار جامد شکست خواب ارتقای یابد (9 و 13).

کرفس بین تیمار سرمای پریورتن‌ها بررسی می‌شود و در نهایت سنت آنزیم‌های هیپودرلزی کننده مولکول‌های خطرناک دانه نظیر آمارسلا را تحریک می‌نماید. این آزمایش‌ها و اکتشافات ضروری جهت تولید انرژی و ترکیب‌های ساختاری لازم برای رشد و ظهور جنین را که مناسب و به این ترتیب پودر جوانزی را اطلاعی که جبری‌ها مسیر تبدیل چریها به نهایت مخلوط در آلبوم جو را فعل می‌نماید. جبری‌ها مسیر آنزیم‌های اکسیداز گل‌کالکس‌ها و همچنین پودر جوانزی را سرعتی که در تغذیه آن‌ها انورمی نشان داده، را نیز در آلبوم جو را تحریک می‌کند (15).

نویسنده و دانشجویان دانشگاهی که جبری‌ها در دانش‌های توماس و سامورکس نشان دادند که جبری‌ها در دانش‌های
تلئیم چربیل و سراماه مرطوب بر شکست خواب بذر کما

می دهد (۱۸ و ۹).

دانه‌های برفی از تری‌ههای گیاهی از جمله نیاه، داری خواب مرغوفازی‌پسیکی هستند. در این نوع خواب، جین دانی درای ترکیب از خواب فیزیولوژیکی و مرغوفازی‌پسیکی است و برای جوانه‌نیز هم‌آمد خواب فیزیولوژیکی شکسته شده و جین دانی نیز می‌باشد رشد نمو و طول و مرغوفازی‌پسیکی برسد. محقفان بذردهی دارای خواب مرغوفازی‌پسیکی را ارساس واکنش آنها نسبت به دما و جیرین به چنین گروه تقسیم می‌کند. چنانچه این بذردها بی‌قراری خواب نیازمند درفتای ماهیال‌ها باشد خواب از نوع ساده و اکر نیازمند برای ایجاد جوانه‌نیز باشد خواب را از نوع کمیلکس‌یا یا پیچیده دانند. خواب مرغوفازی‌پسیکی کمیلکس‌یا خواب عمق تا ۲ گونه است که عمق و عمق تقسیم می‌شود. بادا دارای خواب هنگامی و عمق نسبت به جیرین حساسیت تنش می‌دهد. جیرین می‌تواند در رفع خواب نیمه عمق مؤثر باشد (۷و ۲۸). بس اس تقسیم به فرق می‌تواند که خواب بذر کما از نوع خواب مرغوفازی‌پسیکی کمیلکس نیمه عمق است. زیرا بادار کما برای شکست خواب باید سراماه‌ی شوند و چربیل هم می‌تواند نیاز به سراماه‌ی آن را از ۷ به ۳ هفته تقلیل دهد.

اگر نتیجت این تقسیم که در بذر حمایت برخی از گیاهان خصوصاً نو‌آموزی نقب‌هایی در مرغوفازی‌پسیکی و وضعیت RNA و DNA و غنشاهی سلول‌های بذر و وجود دارد (۲۵و ۲۶) و (۳۰). برفی تیمارها نظر سراماه‌ی کاربرد چربیل، با راه اندازی فراپن‌هایی نظر تعمیر، جایگزینی و همین نتیجه تجمع آنزیم‌ها و دیگر مولکول‌های مربوط، کیفیتی انتقال و سرگرمی رشد ایجاد می‌نماید. به عبارت دیگر برخی تیمارها موجب تسریع تکامل مرغوفازی‌پسیکی و فیزیولوژیکی جین برخی شده و در نتیجه از ایجاد دارد جوانه‌نیز به بهبود سرعت جوانه‌نیز (T۳۰) کمک می‌نمایند (۳۳ و ۲۴).

نتایج این آزمایش‌ها نشان داد که ترکیب و تیمار چربیل و سراما برای تحریک جوانه‌نیز بذر شکست خواب بساً به چنین
حمض گیاهی که به تولید جریان داخلی کمک می‌کند قادر به شکستن آن می‌باشد. با پای که داشته که سرماده در با گروه که جریان دو طرف از تأثیرات سرما در جوانی‌زنی را می‌توان تحقیک تولیدی GA1 سرمایه ای در جوانی‌زنی دارد که احتمالاً GA3 یا دیگر گروهی از تحقیک جوانی‌زنی در حضور 1000 میلی‌گرم GA1 یا دیگر گروهی از حضور GA1 می‌باشد. همچنین دیگر گروهی از حضور GA1 می‌باشد. همچنین دیگر گروهی از حضور GA1 می‌باشد.

منابع مورد استفاده

2. مدرس‌هاشی، م. 1976. گروه‌پایان طرح روش‌های سرمایه‌گذاری جوانی‌زنی انتشارات معاونت آموزش و تحقیقات جهاد سازنده، تهران.
3. نیکزه، م. 1980. باباخانی و ج. علی‌سادات. 1382. تولید گرایش از سرمایه‌گذاری جوانی‌زنی بذر کرال. فصلنامه پژوهشی زیست‌شناسی و اصلاح گیاهان رئالی و جنگل آریان 11 (2): 257-274.