مقایسه کارایی شاخص‌های تعیین الگوی پراکنش در درمته زارهای استان یزد

محمد موسایی سنجاری و مهدی بچری

چکیده

انتخاب شاخص‌های مناسب برای نشان دادن و کمی نمودن دقیق الگوهای پراکنش یکتایی، تصادفی و کبیه‌ای گیاهان در جوامع گیاهی مختلف حائز اهمیت فراوانی است. برای مقایسه کارایی شاخص‌های تعیین الگوی پراکنش، سه تیپ گیاهی در منطقه ندوزن بید انتخاب و در هر تیپ محدوده‌ای با ابعاد (۱۰۰۰×۷۵۰ متر) برای نمونه برداری انتخاب شد. نمونه برداری به صورت ستیتیک تصادفی اجرا شد. بدین ترتیب که انتزاعی‌های در ۵۰ توده و کواردات در ۱۰۰ توده از هر جفت که در داخل هر محدوده نمونه‌برداری انتخاب شده بودند ذخیره شد. شاخص‌های پراکنش مطلق شده شاخصِ شاخص‌های کودرایتی مورسیتی‌ای استاندارد، مورسیتی، گرین، پراکنش، کبیه‌ای لوث و شاخص‌های فاشلی‌ای پیلو، هاپکینز، ریس، اره‌نار، هیز، جانسون زیمر و هولگیت بودند. نتایج نشان داد که از بین شاخص‌های بررسی شده شاخص مربع ۱ و شاخص هولگیت توانایی زیادی در نتایج تک بودن‌ها و کبیه‌های کوهکی مقياس داشتند و شدت پراکنش کبیه‌ای بودن‌ها را در مناطق مورد مطالعه به درستی مشخص نموده‌اند. از بین شاخص‌های فناصای پراکنش، شاخص جانسون زیمر و از بین شاخص‌های کودرایتی، شاخص مورسیتی‌ای استاندارد (در مناطق با پوشش بیش از ۵٪) پراکنش خود کبیه‌ای خفیف و تک بودن‌ها را به خوبی نشان داده‌اند. از بین شاخص‌های بررسی شده، شاخص گرین بالاترین دقت و به استاندارد خاص شاخص دقت شاخص‌های فاشلی‌ای از شاخص‌های کودرایتی بیشتر بوده است.

واژه‌های کلیدی: شاخص‌های تعیین الگوی پراکنش، شاخص‌های فاصله‌ای، شاخص‌های کودرایتی

مقدمه

بررسی الگوهای پراکنش گیاهان نقش بسیار مهمی در ارزیابی یکنواختی و عدم یکنواختی محیطی، نوع تثبیت و تولید مثل، انتشار، رقابت، و الگوهای زیستی گیاهان و تعیین روش‌های مناسب و دقیق برای انتزاع‌گیری خصوصیات کمی گیاهان مثل پوشش و تراکم، یا سه نوع الگوی پراکنش اساسی در جوامع شناسی داده شده است: الگوی پراکنش تصادفی (Clumped) و غیر تصادفی که شامل الگوی کبیه‌ای (Random) و یکنواخت (uniform) می‌باشد. در پراکنش تصادفی افراد مستقل از هم قرار گرفته و حضور یک فرد در توزیع (پراکنش) افراد دیگر تأثیری ندارد. پراکنش تصادفی در یک جامعه مربیح (یکنواختی) محیطی و یا الگوهای رفتاری غیر انتخابی در پراکنش یکنواخت افراد با فاصله منظم در کنار هم

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار مرتع‌داری، دانشکده منابع طبيعي، دانشگاه صنعتی اصفهان
در پایان (5)، لودیکی‌های تک دندان کلم شاخی مربع توزینی از پایان با کمک و نشان دادن گل‌دهی‌های پکنگانه و کهایی
دارند (9). هدف از این تحقیقات شاخ‌های مناسبی است که به‌طور مطلق تمام تک‌پراکش (حداکثر پکنگانه تا حداکثر کهایی) را در جوامع مختلف گیاهی نشان داده و تحقیق اندام نمونه و تراکم گیاهان خاک تیزگری، بدنی معمایی که شاخ مناسب باید زمانی که گل‌دهی پراکش گیاهان از حالت مافیک شاخص نشانه‌ها بسمت نجات‌داده و
فاکتور مکی که گروه‌بندی که که‌پر شرکت گیاهان. مایه خاک

مواد و روش‌ها
برای مقایسه کاراگاه شاخ‌های نوریلو گل‌دهی پراکش سه تیپ گیاهی از منطقه تندوئن برد به شرح زیر انتخاب‌گر کردند.

1. منطقه فولاد مید
آب با پوشش حداکثر 3
درصد و تراکم 25 درصد مربع (25 درصد یا 50 درصد) که گونه Fortuynia bungei با پوشش کمتر از 5/7 درصد پوشش شده Ar.Fo
بوده، نوع خاک Calcaric regosols، Calcaric yermosols یا ألدی. خاک سرد و باروتی مزاری و
در ارتفاع حدود 1000 متر قرار دارد. وسعت تیپ حداکثر 125 متر مربع (1) شاخص (72).

2. منطقه حسن‌آباد
پوشش گیاهی این منطقه حداکثر حدود 9 درصد بوده به‌طوری که با پوشش حداکثر 9 درصد و تراکم در حدود 55 درصد مربع (55 درصد) یا 70 درصد یک گونه Scariola orientalis، Salsola arbusculiformis باها شاهکار آب‌زیتون. پوشش کمتر از باید درصد را شامل می‌شود. تیپ گیاهی این
منطقه می‌باشد. این منطقه با وضعیت معادل 1500 سال گیاهان
بر روی دشت سرایه ای‌بی‌دی و نزدیک به حدود ارتفاع 1960 تا
مقایسه کارایی شاخص‌های تبعین الگوی پراکنش در دو منطقه زاره‌ای استان یزد

شکل ۲. منطقه فولاد میبد ندوزن یزد

شکل ۳. منطقه حسن‌آباد ندوزن یزد

در هر منطقه محدوده‌ای به مساحت ۵۰۰۰ متر مربع (بعضی ۵۰۰ متر) برای نمونه برداری انتخاب می‌شود و میزان پوشش درمانه با استفاده از ترانسکت و میزان تراکم درمانه با شمارش کلی بوته‌ها

۲۱۴۰ متر قرار دارد. نوع خاک شنی لومی، اقلیم خشک سرد و میانگین بارندگی در حدود ۱۸۰ میلی‌متر می‌باشد (۱) (شکل ۳).

۳. منطقه صدرآباد

پوشش گیاهی در این منطقه حدود ۱۵ درصد می‌باشد به طوری که Artemisia sieberi که حدود ۹۵ درصد (۴۰۰۰ در هکتار) و Astragalus glaucacanthus

۴۸۵
شکل 2. منطقه صدرآباد ندوشین پژه

کوارداتی محاسبه شده در سطح احتمال 5 درصد با استفاده از تست آماری مربوط به همان شاخص آزمون شد طی اختلاف هر یک از پراکنش تصادفی مشخص گردید (10). برای مقایسه شاخص‌های گروه پراکنش از نظر دقت، از طرح کامل تصادفی و جدول نجزیه واریانس استفاده شد، بدین ترتیب که واریانس بین 12 مقدار به دست آمد به هر شاخص در سه منطقه محاسبه و سپس میانگین مربعات خطای آزمایشی و خطای (MSE) استاندارد برای هر شاخص محاسبه گردید.

شاخص‌های فاصله‌ای تعیین گروه پراکنش در این تحقیق

عبارتند از:

1. شاخص فاصله‌ای پراکنش جانسون و زیمزر (Johnson and Zimer's Index)

در این روش فاصله هر یک از نقاط تصادفی تا نزدیک‌ترین گیاه اندامگیری و شاخص با استفاده از فرمول زیر محاسبه می‌گردد

\[
I = \frac{\sum_{i=1}^{N} d_i^2}{\left(\sum_{i=1}^{N} d_i\right)^2}
\]

\[n \text{ در این شاخص } d \text{ فاصله نقطه تصادفی تا نزدیک‌ترین گیاه و }
\]

محاسبه گردید. نمونه برداری در هر محدوده ۵۰۰۰ متر مربعی به صورت سیستماتیک تصادفی اجرا شد. هر یک از شاخص‌های الگوی پراکنش در هر سایت با ۴ تکرار اندازه‌گیری شد. بدین ترتیب که در هر تکرار ۴ ترانسکسی ۱۰۰ متری به صورت تصادفی در داخل محدوده ۵۰۰۰ متر مربعی قرار داده شد و سپس در اتماد ۴ ترانسکسی استفرار باته در هر تکرار، ۵ نقطه به صورت تصادفی انتخاب شد. با این که فاصله بین نقطه به اندازه‌ای یافته که یک گیاه دو یا بیشتر به اندازه‌گیری نشود، ابتدا ۱۰۰ نقطه به فاصله ۴ متر از هم در اتماد ۴ ترانسکسی در نظر گرفته شد (۱۵ نقطه به فاصله ۳ متر از هم در اتماد یک ترانسکسی) و از بین آن ۱۰۰ نقطه، ۵ نقطه به صورت تصادفی انتخاب و شاخص‌های فاصله‌ای محاسبه شدند. برای محاسبه شاخص‌های فاصله‌ای پراکنش در هر نقطه فاصله نقطه تا نزدیک‌ترین گیاه دردنه فاصله این گیاه تا نزدیک‌ترین گیاه هما می‌باشد و فاصله هر نقطه تا دو این گیاه نزدیک‌ترین اندازه‌گیری کش. برای اندازه‌گیری شاخص‌های پراکنش در هر منطقه، ۵۰ کواردات (۱۸۲) و (۲۴۲ متری) به صورت تصادفی در اتماد ۴ ترانسکسی در هر تکرار قرار داده شد. سپس تعداد درمده در کواردات‌های استفرار پایه شهری شدند و شاخص‌های کوارداتی پراکنش محاسبه شد. سپس مقدار به دست آمد از هر یک از شاخص‌های فاصله‌ای و
مقایسه کارایی شاخص های تبعین الگوی پراکنش در درمان زارعی استفاده زد
\[ri = \frac{\sum x_i^2}{\sum r_i^2} \]
در این شاخص \(X_i \) فاصله نقطه تصادفی تا نزدیکترین گیاه و فاصله نزدیکترین گیاه تا گیاه اول است.
\[H = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \]
در حالت تصادفی 2 = 1. در حالت کیهی 2 (به طور معنی‌داری در سطح احتمال 5/می‌باشد) و در حالت پیکنوخت 2 (به طور معنی‌داری در سطح احتمال 5/کوچکتر از 2 می‌باشد). برای تست معنی‌دار بودن آن از حالت تصادفی (2) یک مقدار استفاده می‌شود:
\[Z = \frac{1-r}{\sqrt{N(1-r)}} \]
در این ترتیب \(N \) تعداد نقاط تصادفی می‌باشد. برای نقطه که \(Z \) مقدار
\[P = \pi D_{\text{linear}}(\frac{\text{distance}}{N})^2 \]
در این شاخص \(i \) مجموع فاصله اندازه‌گیری شده نقطه تصادفی تا نزدیکترین گیاه، آتاق واقعی گیاهان در متر مربع می‌باشد. تراکم واقعی گیاهان
\[P = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \]
در این شاخص پیکنوخت 2 را در هر متر مربع می‌باشد. برای تست معنی‌دار بودن
\[H = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \]
در این شاخص برابری اندازه‌گیری فواصل بین نقاط تصادفی تا نزدیکترین گیاه می‌باشد.
\[C = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i^2}{(x_i^2 + y_i^2)} \right) \]
در این شاخص تمایل نموده برداری، \(X_i \) در این شاخص نموده نقطه تصادفی تا نزدیکترین گیاه و فاصله نزدیکترین گیاه تا گیاه اول به
\[C = \frac{1}{(N-1)} \sum_{i=1}^{N} \frac{1}{n_i} \]
برای تست معنی‌دار بودن اختلاف در حالت تصادفی مقدار مقدار می‌باشد.
\[Z = \frac{1-\rho}{\sqrt{N(1-\rho)}} \]
در این شاخص تعداد نقاط تصادفی و \\[H = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i} \]
در این شاخص مربع \(T \) تعداد آن‌ها از شکل (5).
براکتش کیهای (۷۷) (محاسبه شده بیشتر از مقدار بحرانی آن (جدول) در سطح احتمال ۵٪ با دو جریه آزادی \(h_T > 1/4 \).

\(\text{محاسبه شده بیشتر از مقدار بحرانی آن (جدول) با \(h_T \) باشند و در پراکش یکنواخت (۷۷) (ممحاسبه شده کوچکتر از مقدار بحرانی آن (جدول) در سطح احتمال ۵٪ با دو جریه آزادی \(h_T \) باشند. (۷))}

\(\text{(Holgate's Index)} \)

۷. شاخص هولگت

شاخص هولگت یک روش اندامگیری شاخص مربع \(T \) محاصره شده برگردان از \(Z \) نتایج باشد اختلاف از حالت مستقل معنی‌دار می‌باشد (۸).

\(\text{(Eberhardt's Index)} \)

۵. شاخص ابرهارت

در این روش فاصله هر یک از نقاط با زنده در اندامگیری می‌گردد و میانگین انحراف معیار فواصل اندامگیری شده محاسبه می‌گردد.

\(\text{(Hines Index)} \)

۶. شاخص هاین

در این روش فاصله هر یک از نقاط با زنده در اندامگیری می‌گردد و میانگین انحراف معیار فواصل اندامگیری شده محاسبه می‌باشد (۹).

\(\text{محاسبه شده بیشتر از مقدار بحرانی آن (جدول) با \(\text{محاسبه شده بیشتر از مقدار بحرانی آن (جدول) در سطح احتمال ۵٪ با دو جریه آزادی \(h_T \) باشند. (۷))}

\(\text{ID = } S^2 / \bar{X} \)

در این شاخص \(\bar{X} \) میانگین تعداد افراد در واحد باشد \\

\(\text{ID = } S^2 / \bar{X} \)
مقایسه کارایی شاخص‌های تبعین گوی پراکنش در دمنه زارهای استان یزد

کوارداتها و n تعداد کل افراد در واحد‌های توزیع‌برداری (کوارداتها) می‌باشد. در حالت تصادفی = 0 و در حالت مراکز کمی = 1 می‌باشد و مقادیر منفی = 0 نشان
دهنده گوی یکنواخت می‌باشد (10).

\(LID = \frac{\sum (x_i - \bar{x})^2}{\sum x_i^2 - \frac{1}{n}(\sum x_i)^2} \)

(شاخاص کیهای لید)

\[\chi' = \frac{\sum (x_i - \bar{x})^2}{\bar{x}} = \frac{\sum x_i^2}{N} \]

(شاخاص کیهای موریسیا)

\[GI = \frac{\bar{x} - \bar{X}}{N} \]

(شاخاص گرین)

در این شاخاص می‌توان برای محاسبه درجه کهیه‌ای بودن استفاده کرد.
شکل احتمال مورد نظر با شاخص استاندارد موریسیتا از (1) جالت تصادفی معنی‌دار خواهد بود (0.71 0.8 0.72 0.71).

شکل استاندارد موریسیتا (Standardized Index of Morisita) اکسکنتر از جدول با دچره آزادی 1

\[\chi^2_{1/2} = \frac{n(\sum_{i=1}^{k} d_{i} - \lambda)}{\lambda} \]

درای 1/2 مقدار مساحت در سمت راست می‌باشد و

\[\chi^2_{1/2} = \frac{n(\sum_{i=1}^{k} d_{i} - \lambda)}{\lambda} \]

درای 1/2 مقدار کای اکسکنتر از جدول با دچره آزادی 1-\(\alpha\) که

\[I = \sum_{i=1}^{k} \left(\frac{\mu_{i} - \mu_{0}}{\sigma_{i}} \right)^2 \]

می‌باشد. سپس شاخص استاندارد موریسیتا توسط یکی از 4 فرمول زیر محاسبه می‌گردد:

\[I_{p} = \frac{5+\frac{5}{\mu_{0}}}{I_{p}} \]

\[I_{p} = \frac{5}{\mu_{0}} \]

\[I_{p} = \frac{5+\frac{5}{\mu_{0}}}{I_{p}} \]

\[I_{p} = \frac{5}{\mu_{0}} \]

شاخص استاندارد موریسیتا (I_p) از 1-\(\alpha\) با حذف اطمنی 95\% در محدوده 0/5 تا -0/5 نوسان دارد.

اگر پراکنش تصادفی باشد (I_p = 0) در پراکنش کیفیت (1-\(\alpha\)) می‌باشد (16).

نتایج

جدول 1 شاخص‌های فاصله‌ای و کوورداتی محاسبه‌شده، اگزیون

490
جدول 1. شاخص‌های فاصله‌ای و کوادراتی محاسبه شده و الگوی پراکنش تعیین شده در شاهد و شاخص‌های تعیین الگوی پراکنش به ترتیب دفت برآورد شده
در ه شاخص در مناطق مورد مطالعه

<table>
<thead>
<tr>
<th>شاخص‌های تعیین الگوی پراکنش</th>
<th>فاصله و ابعاد</th>
<th>شاخص‌های مربوط</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کورک‌پارک</td>
<td>مقدار محاسبه شده در فاصله‌های درمان</td>
<td>کورک‌پارک</td>
<td>متغیر</td>
</tr>
<tr>
<td>پراکنش</td>
<td>مقدار محاسبه شده در فاصله‌های درمان</td>
<td>پراکنش</td>
<td>متغیر</td>
</tr>
<tr>
<td>شاخص‌های تعیین الگوی پراکنش</td>
<td>فاصله و ابعاد</td>
<td>شاخص‌های مربوط</td>
<td>مقدار</td>
</tr>
<tr>
<td>کورک‌پارک</td>
<td>مقدار محاسبه شده در فاصله‌های درمان</td>
<td>کورک‌پارک</td>
<td>متغیر</td>
</tr>
<tr>
<td>پراکنش</td>
<td>مقدار محاسبه شده در فاصله‌های درمان</td>
<td>پراکنش</td>
<td>متغیر</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محدّد</th>
<th>(SE)</th>
<th>(M_{SE})</th>
<th>(SE)</th>
<th>(M_{SE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
<td>(\delta)</td>
<td>(\varepsilon)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محدود</th>
<th>(SE)</th>
<th>(M_{SE})</th>
<th>(SE)</th>
<th>(M_{SE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
<td>(\delta)</td>
<td>(\varepsilon)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>محدود</th>
<th>(SE)</th>
<th>(M_{SE})</th>
<th>(SE)</th>
<th>(M_{SE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
<td>(\delta)</td>
<td>(\varepsilon)</td>
</tr>
</tbody>
</table>
شاخص فصل‌های جانوی و زیمر پراکش یک‌و‌حدود گیاه‌ها و
نک بوته‌ها را نشان داده است. گروه پراکش در منطقه دوم (با تراکم متوسط) گیاه زیادی به هم پراکنش تصادفی داشته است.
در منطقه دوم، تراکم بوته‌ها و در حد سطح زیردری در دم‌رو (مربع) و بوته‌ها به هم نزدیک شده و آگرچه این
حالت بیشتر خیفی و کوچک می‌دهند و جوی گردار وی به دریا گیاه شدت بوته‌ها و کیفیت. حالت بیشتر
شکل‌گیری گیاهان کمتر شده و اگرگاه گیاهان شدت بوته‌ها و کیفیت به مضرب تغییرات تعداد افزایش شمارش شده
در کوادرات‌ها نسبت به شاخص‌های فصل‌های م سنگین بود. میزان تعداد افزایش شمارش شده در
گیاهان بیشتر باشد و در محیط‌های شاخص کوادراتی، در تکرارهای مختلف نتایج متغیرات حاصل گردید و با شاخص‌های فصل‌های کوادراتی
دقت کمتری نسبت به شاخص‌های فصل‌های دارد.

بحث

به طور کلی ماهیت پراکوش بوته‌های در منته به دلیل شرایط اقیانوسی و و مویژیکالومی و محیطی بدن صورت است که بوته‌ها در بعضی
قسمت‌ها به صورت جفتی شده و به حاصل تا نشان یافته در کاز
بکداری قرار نمی‌گیرد و کیفیت خیفی و کوچکی مشکل از تعداد
کم بوته‌ها را ایجاد می‌نماید. حدود این کیفیت‌های کوچک در سه
نک بوته‌ها درمی‌باشد ابتدا ایجاد تغییرات در شاخص‌های پراکش
در گروه در جوامع کم تراکم تا گروه پراکش گیاهان کمی
به سمت پراکش کیفیت بیشتر می‌کند. به طوری که کیفیت‌های کوچک
مقیاس و مشکل از تعداد افزایش کم و تراکم بحث داشته باشد.
همچنین انتخاب نقطه تصادفی به تعداد بیشتر در بین یک‌و‌حدود
کوچک‌تر قرار می‌گیرد نما در داخل کیفیا و بین‌ارتار بیشتر
اوازده گیاه شاخص‌های در حاشیه کیفیا برگر و
فواصل انتاژی گیاه شاخص‌های داخل کیفیا چک خواهد بود.
بین‌ارتار شاخص‌های به پایه‌ای انتاژی‌های نقطه نیز کاهش‌زده و
گیاه یا نیز کاهش‌زده‌است. هستند و شاخص‌های که بر پایه
انتاژی‌های نقطه نیز کاهش‌زده که نقطه نیز کاهش‌زده
هستند می‌توانند این کیفیا را اما میزان سختی و نشان دهد، اما
شاخص‌های که نتها بر اساس انتاژی‌های نقطه نیز کاهش‌زده گیاه

۴۹۲

