توزیع فلوراید در آب‌های زیرزمینی، خاک و تعدادی از گیاهان زراعی منطقه اصفهان

چکیده
میزان فلوراید محلول در آب‌های زیرزمینی، خاک و تعدادی از گیاهان زراعی در اطراف اصفهان به وسیله روش الکترود انتخابگر یونی (ISE) بررسی گردید. میزان بالاتر و خطرناک مقدارهای محلول فلوراید در آب‌های منطقه مورد مطالعه در فصل بهار و تابستان به ترتیب 0/3 و 0/5 میلی گرم در لیتر بود. این مقادیر در حدود مجاز برای مصارف آبیاری بوده ولی برای مصارف آب آشامیدنی دارای کمبود می‌باشند. میزان‌گذاری محلول فلوراید محلول در خاک نشان داد که میزان محلول فلوراید در اطراف منطقه معتدل به‌مقدار 0/7 میلی گرم در کیلو گرم ورزش مشاهده گردید. با توجه به مقدار فلوراید شرایط به ترتیب در اعیان بی‌بی و در دسته 0/2 و در دسته بی‌بی و در کیلو گرم محلول 0/6 میلی گرم در کیلو گرم ورزش مشاهده گردید. میزان فلوراید محلول فلوراید در کیسه‌های محلول در خاک و آب آب‌پاشی دارای گیاه‌های چهارمیلی و در سطح 1 درصد معمولی و 2/5 درصد معمولی بود.

واژه‌های کلیدی: آلودگی خاک، فلوراید فلوراید، کیفیت آب، منطقه اصفهان، گیاهان زراعی

مقدمه
فلوراید کربنات و فیسیولوژی آن در جدول تناوبی است و به‌طور طبیعی در مقادیر مختلف در آب، خاک و گیاهان وجود دارد. میزان‌های آن در طول زمان حدود ۵۵ میلی گرم در کیلو گرم ورزش مشاهده گردیده و به عنوان یکی از عوامل غذایی، کم مصرف و ضروری برای انسان و حیوانات و غیر ضروری برای گیاهان شناخته شده است (۱۸). ترکیبات آن در صنایع مختلف از جمله کارخانجات آلومینیوم، ذوب آهن، شیشه‌سازی و...

سراییک، فرآورده‌های دارویی مانند خمیر دندان و دهان شویه‌ها
مورد استفاده قرار می‌گیرد. (8) به عنوان مصرف زیاد مواد فلوراتور، دار، آلوکسی ناشی از آن در خروجی از مناطق صنعتی به ویژه در اطراف کارخانجات کالید کود فسفات و آلومنیوم سازی گزارش شده است. (12، 13 و 14).

یکی از مهم‌ترین جنبه‌های بهداشتی فلوراید برای انسان، نقش آن در حفظ سلامتی و بهداشت دندان است. حضور فلوراکس در مقدار کم در آب آشامیدنی برای پیشگیری از

1. استادیار محیط زیست، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
2. دانشیار خاک شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

43
پوشیدگی دندان مخصوصاً براک کودکان ضروری می‌باشد. در خلف‌ظهرهای بالاری از حدمجاز در آب آشامیدنی، فلووراید سمتی بوده و موجب بروز بیماری فلوروروزیس (Fluorosis) می‌شود. بر اساس استاندارد سازمان بهداشت جهانی، حد مهم‌ترین فلووراید در آب آشامیدنی ۱/۵ میلی‌گرم در لیتر است (۱۰). از طرف دیگر، کم‌پوشیدگی فلووراید در آب آشامیدنی موجب کاهش مقاومت منایی دندان و در نتیجه افزایش پوسیدگی دندان‌های کودکان می‌گردد. بنابراین، برای جبران کم‌پوشیدگی فلووراید در برخی از کشورها به آب آشامیدنی فلوروروزیس اضافه می‌شود و استفاده از خمیر دندان‌های حاوی فلوروروزیس توصیه می‌شود. خلف‌ظهرهای فلووراید در آب آبیاری نیز به عنوان یکی از شاخص‌های کیفیت مورد توجه می‌باشد. فلوروروزیس آب آبیاری، خلف‌ظهرهای را یک میلی‌گرم در لیتر تعیین نموده است (۲).

اتشاع ترکب‌های حاوی فلووراید ویا مختلف می‌تواند موجب آلودگی هوا، خاک و گیاهان شود. در خاک، حکمت فلورتور نسبتاً بیشتر بوده و تحت تأثیر ویژگی‌های خاک محلی، ترکیبات معدنی نظر کلسیم، فسفر، آلومینوم و pH همچون آهن قرار دارد (۱۱ و ۱۳). خاک و آب‌های آلومینیوم در خاک و یا آب‌های به فلوروروزیس پیشی می‌گیرد (۹). جذب فلوروروزیس در مقدار بزرگ توسط گیاهان و محصولات زراعی از طریق آب، آب آبیاری با خاک‌های آلوده به فلوروروزیس می‌تواند آسیب‌های جدی به پوشش گیاهان و محصولات را برگزیده وارد نماید (۳). افزایش میزان فلووروروزیس با میزان طبیعی (Tip burn) با انسان در آب، گیاهان و زنبوری‌ها در بروز و گسترش بیماری فلوروروزیس دندانی و استحکام در جنگل‌ها و انسان نش می‌شود (۹ و ۱۲). افزایش طبیعی میزان فلووروروزیس در آب آشامیدنی و همچنین محصولات غذایی را به عنوان عامل گسترش بیماری فلوروروزیس در منطقه شرق آفرا کارا ساخته کرده. دامنه غلظت فلووروروزیس تا ۳۰ میلی‌گرم در کیلوگرم وزن خشک در زمینه‌ای ۷۷ کیلوگرم و زن خشک در دشت و سه‌گانه می‌گرد در امکان افزایش بوده است. زمین و همکاران (۱۲) یا بررسی‌های غلظت فلووروروزیس در نمونه‌های آب، خاک و محصولات مختلف کشاورزی در منطقه
شکل ۱. موقعیت نقطه نمونه‌برداری در تعدادی از شهرستان‌های استان اصفهان

مولار است. آنالیز آماری نتایج با استفاده از نرم‌افزار 10 Ilwis و رسم منحنی‌های هم‌میزان فلوراید به وسیله نرم‌افزار 3 انجام گرفت.

نتایج و بحث

غلظت فلوراید در آب مایعات غلظت فلوراید در آب‌های منطقه مورد مطالعه در فصل بهار و نامایدنشانه به ترتیب ۰/۳ و ۰/۵/۵ میلی‌گرم در لیتر است (جدول ۱). این مقادیر در محدوده مجاز کمیت آب آبیاری مطابق استاندارد فائزه (۱ میلی‌گرم در لیتر) می‌باشد. دانه‌ی میزان فلوراید در منابع آب شیرین از ۰/۳ تا ۲۵ میلی‌گرم در لیتر گزارش شده و معمولاً میزان آن در آب‌های سطحی کمتر از آب‌های زیرزمینی می‌باشد. متوسط غلظت آن در آب دریای ۰/۳ میلی‌گرم در لیتر است (۱۸).

کاهش غلظت فلوراید در فصل نامایدنشانه با شرایط هیدروشیمی ممتع ارتباط توده‌ی در. به طورکلی، در محیط‌های ناحیه زیرک باید به صورت فلوراید (CaF۲) رسوب خواهد کرد (۳ و ۱۵). افزایش سختی کل آب در فصل نامایدنشانه باعث کاهش کل‌سیم و نیکلی در آب و نشرک فلورایت و رسوب آن و در نتیجه کم شدن میزان فلوراید محلول می‌شود. جنون و گودنگ (۲) با بررسی توزیع فلوراید در منطقه خشک در مراحل مختلفی از رشد قرار داشتن که در جدول ۲ به آن اشاره شده است.

نمونه‌های خاک پس از انکال با آزمایشگاه در هوا خشک، کوبیده و از اکسیداسیون ترک و بافت به روش هیدرومتری تعیین گردید (۲). نمودن‌های گیاهی نیز در آزمایشگاه با آب معمولی شسته و با آب مفتخر اکسیداسیون سپس به مدت ۴۸ ساعت در دمای ۵۰ درجه سانتی‌گراد در آن خشک و به وسیله آسیاب پودر گردیدند.

اندازه‌گیری غلظت فلوراید محلول در نمونه‌ها با استفاده از روش الکترود انتخابگر بیونی (ISE) (Ion Selective Electrode) تعیین گردید. برای این منظور، به نمونه‌های آب و عصاره‌های گرفته شده از خاک و گیاه به وسیله محلول کلرید کلسیم محلول نسبی (TISAB) (Total Ionic Strength Adjustment Buffer) (۲) با بافت نظیه کننده کلیه حفظ فشار نیرویی یورتی و نتیجه که در منطقه خشک و هیدرولیک به صورت بافت نظیه کننده قدرت پس از محلول محلول‌های مراهم اضافه گردید (۲). پس از رسوم منحنی‌ها کلسیم و فلوراید در تعدادی از نمونه‌ها تعیین گردید. حساسیت الکترود فلوراید در محدوده ۰-۱۰ تا ۰-۱۰۰ خورشیدی.
جدول ۱. غلظت فلوئورید و برخی از پارامترهای آب

<table>
<thead>
<tr>
<th>شاخص آماری</th>
<th>فلوئورید (mg L⁻¹)</th>
<th>pH</th>
<th>EC(dS m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تابستان</td>
<td>بهار</td>
<td>انحراف معیار</td>
<td></td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۹</td>
<td>جدید</td>
<td></td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۴</td>
<td>جدید</td>
<td></td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۳</td>
<td>میانگین</td>
<td></td>
</tr>
<tr>
<td>۰/۱</td>
<td>انحراف معیار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۸</td>
<td>۷/۹</td>
<td>جدید</td>
<td></td>
</tr>
<tr>
<td>۸/۸</td>
<td>۹/۵</td>
<td>جدید</td>
<td></td>
</tr>
<tr>
<td>۸/۸</td>
<td>۸/۷</td>
<td>میانگین</td>
<td></td>
</tr>
<tr>
<td>۰/۲</td>
<td>انحراف معیار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۵</td>
<td>۵/۵</td>
<td>جدید</td>
<td></td>
</tr>
<tr>
<td>۱/۲</td>
<td>۶/۲</td>
<td>جدید</td>
<td></td>
</tr>
<tr>
<td>۴/۴</td>
<td>۴/۳</td>
<td>میانگین</td>
<td></td>
</tr>
<tr>
<td>۱/۵</td>
<td>انحراف معیار</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲. رابطه شوری و غلظت فلوئورید در آب

تأثیر شوری قرار ندادار (R² = ۰/۵۱)، در حالی که در فصل تابستان با شوری شدن آب، غلظت فلوئورید می‌بسیگی ضعیف و مثبت با میزان شوری نشان می‌دهد (R² = ۰/۶۴). احتمالاً با افزایش شوری از یک حد خاص، خلاصیت تعدادی از تکه‌های فلوئور به علت افزایش فشرد بیونی محلول مناسب با شوری شمال غرب چین، میزان کلسیم و سختی آب را از جمله عوامل کنترل کننده تغییرات غلظت فلوئورید ذکر کرده.

روابط همبستگی غلظت فلوئورید و شوری آب در فصول بهار و تابستان در شکل ۲ نشان داده شده است. به نظر می‌رسد در فصل بهار به دلیل شوری کمتر آب، غلظت فلوئورید تحت
جدول 2. غلظت فلوراید و برخی از ویژگی‌های خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شاخص آماری</th>
<th>فلوراید (mg kg⁻¹)</th>
<th>pH</th>
<th>ECₑ (dSm⁻¹)</th>
<th>CEC (cmol kg⁻¹)</th>
<th>رس</th>
<th>مواد آلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>حداقل</td>
<td>0.6</td>
<td>7/4</td>
<td>1/0</td>
<td>5/4</td>
<td>9/4</td>
<td>0/3</td>
</tr>
<tr>
<td>حداقلکرر</td>
<td>0/6</td>
<td>8/6</td>
<td>13/6</td>
<td>25/2</td>
<td>30/5</td>
<td>0/5</td>
</tr>
<tr>
<td>میانگین</td>
<td>0/6</td>
<td>7/8</td>
<td>10/9</td>
<td>15/6</td>
<td>25/8</td>
<td>1/8</td>
</tr>
<tr>
<td>انحراف میزان</td>
<td>0/3</td>
<td>2/5</td>
<td>0/4</td>
<td>0/4</td>
<td>0/4</td>
<td>1/0</td>
</tr>
</tbody>
</table>

خاک به فلوراید در مناطق دیگر از جمله در اطراف کارخانه‌های آلومینیوم بسیار کمتر است. آرنس و همکاران (1) غلظت فلوراید محلول در تمامی کرده‌های گرفته شده از خاک به وسیله کارای کلسیم 15 میلی‌گرم در مولار و با وابستگی به غلظت فلوراید و در اطراف کارخانه‌های آلومینیوم از نرخ 0.75 تا 0.15 میلی‌گرم بر کیلوگرم گزارش کردند.

این نتیجه توزیع میزان فلوراید محلول خاک در منطقه مورد مطالعه در شکل 1 نشان داده شده است. به طور کلی، منحنی‌های هم میزان فلوراید محلول در خاک (با فاصله 0.5 میلی‌گرم در یکی گرم) نشان می‌دهد که غلظت فلوراید در اطراف ماکرا عمده صنعتی یعنی کارخانجاتی دوب آهن و فولاد مبارکه و همچنین بالای‌گردا یا اداماتی مشابه تفکیک بیشتر می‌باشد. گرچه مقدار آن کمتر از حدود بحرانی و آندازه کننده قرار دارد. دامنه غلظت فلوراید محلول در خاک بین 0 تا 20 میلی‌گرم در یکی گرم از کارای کلسیم (18) بر اساس این بحث‌های اولیه، برای ارزیابی دقیق تأثیر این مراکز در انتشار فلوراید باید تعادل نمونه برداری یا افزایش در فاصله مختلف اندازه‌گیری شود.

غلظت فلوراید محلول با خاک گیاهان زراعی

نمونه‌های خاک مورد بررسی از نظر قابلیت هیدرات کردن، ظرفیت نباید کاتیونی، درصد رس و مواد آلی از تفاوت‌های قابل توجه دارند (جدول 2). واکنش خاک‌ها نسبتاً قلبیای با pH میانگین 7/6 بود.

از آنجایی که فلوراید در خاک‌های قلبیای با کلسم ترکیبات پادار و نامولو تشکیل می‌دهد که برای گیاه قابل دسترس نیست، قرار گرفتن، همان‌گونه غلظت فلوراید محلول در خاک 150 میلی‌گرم در یکی گرم در حوالی زیرین شهر بود. این مقایسه با مقایسه با اطلاعات منتشر شده در مورد آلودگی
شکل ۳: توزیع مکانی فلوراید محلول در خاک (اعداد نشانگر فلوراید در خاک بر حسب میلی گرم در کیلوگرم، خطوط نازک منحنی های هم غلتگت و خطوط تیره مرز شهرستان‌های استان مطابق شکل ۱ می‌باشند).

جدول ۳: غلظت فلوراید در اندازه‌های گیاهان زراعی بر حسب میلی گرم بر کیلوگرم وزن خشک

<table>
<thead>
<tr>
<th>گیاه</th>
<th>نام علمی</th>
<th>مرحله ترشح گیاه در زمان نمونه‌برداری</th>
<th>شاخص آماری</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>حداقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>برنج</td>
<td>Oriza sativa</td>
<td>شروع کل گده</td>
<td>0/9</td>
<td>۱/۸۸</td>
<td>۱/۵</td>
<td></td>
</tr>
<tr>
<td>پیاز</td>
<td>Allium cepa</td>
<td>شروع تشکیل پیاز</td>
<td>۱/۶</td>
<td>۱/۷۵</td>
<td>۱/۴</td>
<td></td>
</tr>
<tr>
<td>تره</td>
<td>Alliums pp.</td>
<td>رشد روشی</td>
<td>۱/۳</td>
<td>۱/۲۰</td>
<td>۱/۵</td>
<td></td>
</tr>
<tr>
<td>ذرت</td>
<td>Zea mays</td>
<td>ظهور کل نر</td>
<td>۱/۹</td>
<td>۱/۲۴</td>
<td>۱/۲</td>
<td></td>
</tr>
<tr>
<td>سبز زمینی</td>
<td>Solanum tuberosum</td>
<td>شروع تشکیل غله</td>
<td>۲/۶</td>
<td>۱/۶</td>
<td>۱/۱</td>
<td></td>
</tr>
<tr>
<td>کاهو</td>
<td>Lactuca sativa</td>
<td>رشد روشی</td>
<td>۲/۶</td>
<td>۱/۰</td>
<td>۱/۵</td>
<td></td>
</tr>
<tr>
<td>گندم</td>
<td>Triticum sativam</td>
<td>رسیدگی دانه</td>
<td>۳/۳</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td></td>
</tr>
<tr>
<td>گوجه فرنگی</td>
<td>Lycopersicum esculentum miller</td>
<td>شروع گل‌دهی</td>
<td>۳/۶</td>
<td>۱/۰</td>
<td>۱/۵</td>
<td></td>
</tr>
<tr>
<td>نعناع</td>
<td>Mentha arvensis</td>
<td>رشد روشی</td>
<td>۱/۳</td>
<td>۱/۶</td>
<td>۱/۲</td>
<td></td>
</tr>
<tr>
<td>هنیج</td>
<td>Daucus carota</td>
<td>شروع تشکیل غله</td>
<td>۱/۰</td>
<td>۱/۰</td>
<td>۱/۰۶</td>
<td></td>
</tr>
<tr>
<td>بونجه</td>
<td>Medicago sativa</td>
<td>شروع گل‌دهی</td>
<td>۳/۶</td>
<td>۱/۰</td>
<td>۱/۰۸</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای حرف مشابه از لحاظ آماری در مسطح ۵ درصد قابل اختلاف معنی‌دار هستند.
جدول ۲: ضرایب همبستگی بین غلظت فلوراید در گیاه، آب و ویژگی‌های خاک

<table>
<thead>
<tr>
<th>فلوراید گیاه</th>
<th>فلوراید خاک</th>
<th>pH</th>
<th>EC<sub>c</sub></th>
<th>CEC</th>
<th>مواد آلی % رس</th>
<th>مواد آلی %</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۷۷**</td>
<td>۰/۰۷۷**</td>
<td>۰/۰۴</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
</tr>
<tr>
<td>۰/۰۷۷**</td>
<td>۰/۰۷۷**</td>
<td>۰/۰۴</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
</tr>
<tr>
<td>۰/۰۷۷**</td>
<td>۰/۰۷۷**</td>
<td>۰/۰۴</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
<td>۰/۰۹**</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی‌دار در سطح ۱ و ۵ درصد

میانگین غلظت فلوراید مربوط به کوه‌های فریشکی با ۳/۶ میلی‌گرم در کیلوگرم می‌باشد. میزان معمول فلوراید در گیاهان از ۲/۰ تا ۲۰ میلی‌گرم در کیلوگرم گزارش شده است (۱۸). تفاوت میانگین غلظت فلوراید در اندازه‌های خاکی و بزرگ بوته‌های خاکی و فلوراید محلول در خاک اشکال نموده‌اند.

نتایج گیری

نتایج این پژوهش نشان داد سطح فلوراید در آب‌های زیرزمینی، گیاهان و بافتگی‌های در منطقه مورد مطالعه در وضعیت بحرانی قرار دارد. با این حال، پاییز دمی و دوره‌های این آلودگی به خاطر و جویانه‌های افزایش میزان آن در اطراف مراکز بزرگ صنعتی، منطقه که کانون‌های اصلی انتشار فلوراید در محیط را تشکیل می‌دهند باید مورد توجه قرار گیرد.

همچنین به دلیل اهمیت بهداشتی حضور فلوراید در آب آشامیدنی، انجام مطالعات در رابطه با میزان بهینه آن با توجه به شرایط آب و هوایی و ارتباط آن با شاخص‌های بهداشتی ضرورت دارد.

میانگین

میانگین مراتبی از اعداد پژوهشی دانشگاه صنعتی اصفهان تا ۶ میلی‌گرم به دنبال وسیله نشکر و قدردانی می‌گردید.

میانگین

میانگین مراتبی از اعداد پژوهشی دانشگاه صنعتی اصفهان تا ۶ میلی‌گرم به دنبال وسیله نشکر و قدردانی می‌گردید.

میانگین

میانگین مراتبی از اعداد پژوهشی دانشگاه صنعتی اصفهان تا ۶ میلی‌گرم به دنبال وسیله نشکر و قدردانی می‌گردید.

میانگین

میانگین مراتبی از اعداد پژوهشی دانشگاه صنعتی اصفهان تا ۶ میلی‌گرم به دنبال وسیله نشکر و قدردانی می‌گردید.

میانگین

میانگین مراتبی از اعداد پژوهشی دانشگاه صنعتی اصفهان تا ۶ میلی‌گرم به دنبال وسیله نشکر و قدردانی می‌گردید.

میانگین

میانگین مراتبی از اعداد پژوهشی دانشگاه صنعتی اصفهان تا ۶ میلی‌گرم به دنبال وسیله نشکر و قدردانی می‌گردید.
42: 35-43.
and the release of fluoride into tea liquor during infusion. Environ. Pollut. 104: 197-205.
52: 205-211.
Res. Section A. 83: 333-337.
16. Loganathan, P., M.J. Hedley, G.C. Wallace and A.H.C. Roberts. 2001. Fluoride accumulation in pasture forages and
from five areas in East Africa. J. Food Comp. and Anal. 10 (3): 233-245.
measures to control its plant uptake. Current Sci. 79 (9): 1370-1373.
33 (5): 399-402.
23. Xie, Z.M., Z.H. Ye and M.H. Wong. 2001. Distribution characteristics of fluoride and aluminum in soil profiles of