سیروس جعفری، میدج، باقرزاده

چکیده

سیستم کشت نشان می‌دهد که (Saccharum officinarum L.) و گیاهان زراعی دیگر بدون کاربرد کود پتاسیم سالیان زیادی است که در جنوب غربی ایران ادامه دارد. با وجود تغییرات مقدار زیادی از پتاسیم خاک توسط گیاهان زراعی، تاکنون پاسخی به مصرف کودهای پتاسیم در این اراضی گزارش نشده است. از آنجایی که مصرف پتاسیم در کودشنایدهای باریک، کانی‌های رسی، قابل انقباض در خاک‌های کشت شده و تشکیل شده است، عدم وجود این نوع کانی‌های رسی در کشت‌های اراضی کشت نشده بیانگر نشانه‌گذاری این اراضی کشت شده است. علت این عدم وجود، اینکه پتاسیم در کود‌شنایدهای باریک، کانی‌های رسی قابل انقباض در خاک‌های کشت شده تشکیل شده است. عدم وجود این نوع کانی‌های رسی در کشت‌های اراضی کشت نشده بیانگر نشانه‌گذاری این اراضی کشت شده است.

واژه‌های کلیدی: پتاسیم، تری‌تیری، نشکش، رود، اراضی کشت‌نامه‌ای
مشاهده نمود (۱۴). در حالت که در خاک دیگری با همان کانی‌ها و درجه اشباع کمتر پتانسیم، زد و ۸۰ درصد از پتانسیم اضافه شده توسط خاک تثبیت شد.

رفاهی در بررسی طیف‌تیبی پتانسیم خاک‌های اسیدی و آهکی ایران تا کنار خشک و کردن انواع فارسی را در طیف‌تیبی تثبیت پتانسیم کاهشی با دمایی خاک نمود (۷). آنان می‌گویند تثبیت پتانسیم نسبت به کارهای واقعی بافت (۸). آنان می‌گویند تثبیت پتانسیم رسانه مذکور مطابق برای ۲۰ تا ۴۲ ساعت مول در کالکروم گزارش کرده‌اند تثبیت خاک با انفیسو گل‌طلس تثبیت با کارهای واقعی بافت (۹). آنان می‌گویند تثبیت پتانسیم خاک‌های سطحی از نوع کالکروم‌های شیبی و سیگل‌های تر و طیف‌تیبی Na⁺، Ca²⁺ و Mg²⁺ تثبیت خاک شد. رسانه‌های اشباع از K⁴ و NH₄⁺ هر کالکروم برای تثبیت خاک اشباع شده را کاهش و میزان پتانسیم قابل تبدیل خاک را افزایش می‌دهد (۱۰).

چهار ساعت پس از فارسی اسید هیمیک محلول، پتانسیم تبدیل و قابل عصاره‌گری انواع بالا و بیشتر این امر به واکنش تبدیل سریع ترکیبات آلی و پتاسیم تبدیل شده نه به تخریب و تجزیه کانی‌ها این محققان تحقیج کرده‌اند که در خاک‌های جنوب غربی از موارد آن از اسید هیمیک محلول، که طیف‌تیبی پتانسیم بالایی به داشته باشند، موارد آن‌ها نقش مهمی در قابلیت دسترسی پتانسیم برای گیاه دارد (۱۱). در اینجا تحت شکست کردن کالکروم پتاسیم علاآروم بر نام نیاز گیاه بسیار به افزایش و افزایش دیگری از کلیه‌های رسی نیز می‌شود (۱۸).

کشت ماده‌های درختگی در هفت‌رو در طی بیش از ۴۵ سال (با متوسط عملکرد ۱۰۰ تن ساله قابل آسیاب در هکتار) بدون کاربرد کود ناسیم، پتاسیم تبخیر خشک از پتانسیم این خاک‌ها شده است. در طول این مدت به علت عدم کاربرد کودهای پتاسیم محلول بر آی‌ای‌های و یا مواد جامد معلق انگیزکننده کم بیاری پتاسیم در خاک رخ داده است. این کم‌کار برخی از این پتانسیم جذب شده توسط گیاه از بخش ذخیره خاک (پتانسیم تثبیت شده) تأمین شده است (۵). برایش‌ان ساقه‌های قابل آسیاب نیاز شدید پتاسیم بخشهای مختلف پتانسیم جذب شده توسط گیاه در طول دوره رشد سالانه از خاک می‌شود. پتاسیم حدود ۱۸۰ کیلوگرم در هکتار پتاسیم در سال به افزایش ساقه قابل آسیاب نیاز شدید پتاسیم را از خاک خارج می‌کند (۲۱ و ۲۲). از سوی چهارگان که با همان نیاز شدید نیازکرده به

در مقاله اول پتانسیم در فضای شش‌ضلعی بین آزادسازی (Tetrahedral) کانتی‌ها: ۲ گیره. این نوع تثبیت ناشی گرفته شده در مقاله اول در نظر می‌گیرد. در مقاله اول پتانسیم در فضای شش‌ضلعی بین آزادسازی (Tetrahedral) کانتی‌ها: ۲ گیره. این نوع تثبیت ناشی گرفته شده در مقاله اول در نظر می‌گیرد. در مقاله اول پتانسیم در فضای شش‌ضلعی بین آزادسازی (Tetrahedral) کانتی‌ها: ۲ گیره. این نوع تثبیت ناشی گرفته شده در مقاله اول در نظر می‌گیرد. در مقاله اول پتانسیم در فضای شش‌ضلعی بین آزادسازی (Tetrahedral) کانتی‌ها: ۲ گیره. این نوع تثبیت ناشی گرفته شده در مقاله اول در نظر می‌گیرد.
نتیجه شد. نمونه‌های خاک به آزمایشگاه منتقل و پس از هوا خشک شدن، آسیب از این ۲ میلی متری زیر بنا شدند. سپس نمونه‌های خاک از شیشه کشت و درصد عمل به وسیله سازی به هم اضافه و نمونه مخلوط نور تغییرات در ناحیه ۵،۶ شاتر کشت و درصد عمل این نتایج نمود.

نمونه‌های آزمایش و بررسی
برای آزمایش و بررسی نیز از همان روش‌های گزارش شده است (۴ و ۵). در این تحقیق کشت و سایر گیاهان زراعی به مصرف کودهای پتاسیم در اراضی خوزستان در سال‌های اخیر نکته مهمی است که به نظر می‌رسد از پژوهشگران به تیمی کامل پتاسیم از روش توسط خاک و عدم امکان استفاده گیاه از پتاسیم کوده مربوط به روش استفاده گیاه از پتاسیم تخته شده و کاشت‌های جدید شده از این خاک‌ها در ارتقاء با نوع و مقدار کاشت‌های موجود می‌توانند در پرورش، تولید و درک رفتار فاک‌های خاک در رابطه با پتاسیم و واکنش گیاه واقع شود.

منطقه مورد مطالعه یکی از دشت خوزستان می‌باشد که از لحاظ فیزیوگرافی دشت آبریزی قدمی (Old flood plain) محسوب می‌شود. این منطقه بین وروندان‌های شاسور و در در ۱۰۰ کیلومتری شمال شرقی اهواز واقع شده است. (۲۱ طول و ۵۴ دقیقه غربی و ۳۲ دقیقه شمالی) ارتفاع آن از سطح دریا به میزان ۸۲ متر می‌باشد. نمونه‌های مربوط به خاک باید نوزده اراضی مجاور همین مزار تحت کاشت نیشکر که در این سال‌ها به‌صورت دست نخورده باقی مانده‌اند بررسی شده است. برای پیش‌بینی کشاورزی نیز از اراضی مجاور این کاشت و صنعت که در آن گیاهان مثل کلم، جو، صرفه‌ها ویژه با صندل سال کشت شده نمونه‌برداری دیده شده. صنعت نیشکر که در کشت نیشکر فاصله از مزار شماره ۱۲۲۰ و شماره ۶۰ سایر تراکم‌های خاک را داشته، نمونه‌های این مزار از اراضی ۲۰۸ و ۵۰ سانتی‌متری خاک با کمک متریک (Auger) و پتراده‌های شیشه پوشیده می‌باشد. نمونه‌های از نقاط مختلف مزرعه به‌صورت
90 میلی‌متر پتانسیم به این روش به‌طور جدی‌تر اضافه و 91 16 ساعت توسط نکت دهنده رفت و بر گشتش تکان داده شد. سپس با افزایش 10 لیتر استرس منیزیم 0/5 مولار تا سه مدل عضله گری کشا. در هر مدل عضله گری کشا، ابتدا نمونه‌ها توسط نکت دهنده کاملاً به‌هم زده شده و سپس با سانتریفیوز کردن بخش مربوط به جمجمه و انتهای شعله سنجش میزان پتانسیم موجود در محلول اندوز گری شد. اختلاف نسبی افزوده شده و عضله گری کشا به پتانسیم تثبیت شده و نسبت داده شد (10). توزیع رس شده در حالت تر (K fixed wet) مقدار پتانسیم تثبیت شده مقدار پتانسیم افزوده شده مقدار پتانسیم قابل استخراج در نمونه اولیه خاک

Kp = (Kf + Kd) - Kf

مقدار پتانسیم قابل استخراج در نمونه اولیه خاک

Kf = مقدار پتانسیم شده

Kd = مقدار پتانسیم قابل استخراج محدوده، یا پتانسیم پاسخگویی شده

توجه داشته باشید که نمونه‌های شاهد تا پایین تر و شکست به‌وسیله بر روی تهیه یا آزادسازی پتانسیم موجود در نمونه بوید. هر آزمایش حداقل 3 بار برای هر نمونه تکرار شد.

پاتسیل تثبیت پتانسیم به‌وسیله رس شده در حالت‌های تر و خشک

برای این کار در ابتدا درازات رس مربوط به هر نمونه خاک از بخش‌های نیمه جدا شد. به این منظور در ابتدا کریستال‌ها، سیس مواد آلی و در نهایت اکسی‌سیا به روی چکش حذف گردیدند (17). سپس درازات رس به کمک سیفون کردن از بخش‌های درست‌تر جدا گردیدند (18). سپس طرفین تثبیت پتانسیم رس‌ها در دو حالت تر و شکست با روی تهیه و همکاران (1) اندوز گری شد.

در حالت تر از 500 میلی‌گرم رس خالص شده، با کلسیم اشباع شد. سپس 10 میلی‌لیتر محلول‌های 30 و 60

نتایج و بحث

خلاصه‌ای مورد مطالعه منطقه‌های فلزی (Fine, carbonatic, hyperthermic, Calcic Haplustepts) سری کشور بوده که باتب خاک سطحی اثر آنها سنگین می‌باشد (26). برخی از بیماری‌های فیزیک‌شیمیایی این خاک‌ها در جدول 1 نشان داده شده است. اطلاعات بیشتر در مطالعات جغرافیا و همکاران (5) آمده است.
جدول 1: میانگین برخی از ویژگی‌های فیزیکوشهایی خاک‌های تحت سیستم‌های مختلف کشت

<table>
<thead>
<tr>
<th>شرایط نیازی</th>
<th>کمیت</th>
<th>شیمیایی</th>
<th>عمیق</th>
<th>شوری</th>
<th>pH</th>
<th>عمق</th>
<th>نمونه‌های خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cmol kg⁻¹</td>
<td>g kg⁻¹</td>
<td></td>
<td>dSm</td>
<td></td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کشت شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کشت نیمشک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کشت لنسفر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کشت نتنوری</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

یک‌ده کیلومتری از XRD. کانی‌های رسی کلبیت، ایلیت، پالیکورسکاپت، کانولیت بکر، در نمونه‌های دارای سطحی اراضی بایر مشاهده شد (شکل 1). شدت نسبتاً کمی از کانی رسی ایلیت نشاندهنده مقادیر نسبی زیاد این کانی در این اراضی بود. پیک‌های XRD اراضی تحت کشت نتنوری در لایه‌های سطحی علاوه بر کانی‌های موجود در اراضی بایر وجود دارد. کانی‌های قابل انقباض را از بین کانی‌هایی که در آنها آب‌های ۲۰ آگستر لوله در اثر انقباض با این لوله قابل بلندی می‌شوند (۳۰ و ۲۷). علاوه بر لایه سطحی وجود یک کانی قابل انقباض لیپک (۱۵۰ آگستر) در تیمار اشکاب با انقباض گلیکول در لایه عمیق (۴۰–۵۰ سانتی‌متر) اراضی تحت کشت نیمشک می‌تواند به عمق زیاد ریزی‌های این گیاه مربوط باشد. از سوی دیگر در زراعت نیمشک استفاده از شمع عمیق (نا حذف ۸۰ سانتی‌متر) ممکن است به منافع کشاورزی می‌باشد. این نوع شمع سبک می‌تواند مخمل شدن خاک نسبتاً سطحی و عمیق شود. این سفید در حالتی است که در سیستم نتنوری، گیاهان کشت شده از یک سو دارای ریشه کم عمق بوده و از سوی دیگر عمق شحم در این اراضی عموماً از ۴۰ سانتی‌متر تجاوز نمی‌کند.
شکل ۱. نمودارهای XRD نمونه‌های رس لایه‌های ۴۰–۶۰ سانتی‌متری اراضی تحت کشت نیشکر، تناوبی و بایر.

آزادسازی و تثبیت پتاسیم نوسط خاک‌های هفت نیمه میانکین پتاسیم قابل جذب اولیه و تغیرات آن پس از ۴۰ بار ترخک کردن خاک و همچنین تثبیت پتاسیم پس از دوره‌های ترخک و خشک کردن نمونه‌های خاک هفت نیمه در جدول ۳ آورده شده است. تحلیل آماری نتایج حاصل نیز در جدول ۳ آورده.
جدول ۲. میانگین ظرفیت نشیت پتاسیم خاک‌های تحت کشت‌های تناوبی و نیشکر و با بر هفت میلی‌متری‌های ده مرتعبه‌ای تر و خشک کردن خاک در مجاورت پتاسیم

<table>
<thead>
<tr>
<th>محل عمتونه‌برداری (cm)</th>
<th>پتاسیم قابل جذب خاک با ۱۰۰ بار تر و خشک کردن خاک (mg kg⁻¹)</th>
<th>پتاسیم قابل جذب خاک با ۵۰ بار تر و خشک کردن خاک (mg kg⁻¹)</th>
<th>پتاسیم قابل جذب خاک با ۱۰ بار تر و خشک کردن خاک (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۱۷۲</td>
<td>۱۴۸</td>
<td>۱۱۸</td>
</tr>
<tr>
<td>۶۰</td>
<td>۱۹۸</td>
<td>۱۷۷</td>
<td>۱۵۷</td>
</tr>
<tr>
<td>۴۰</td>
<td>۲۱۸</td>
<td>۱۸۷</td>
<td>۱۶۸</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۳۸</td>
<td>۱۹۸</td>
<td>۱۷۸</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۵۸</td>
<td>۲۲۸</td>
<td>۲۰۸</td>
</tr>
<tr>
<td>۶</td>
<td>۲۷۸</td>
<td>۲۴۸</td>
<td>۲۲۸</td>
</tr>
<tr>
<td>۴</td>
<td>۲۹۸</td>
<td>۲۶۸</td>
<td>۲۴۸</td>
</tr>
<tr>
<td>۲</td>
<td>۳۱۸</td>
<td>۲۸۸</td>
<td>۲۶۸</td>
</tr>
</tbody>
</table>

*: منظور از شاهد، پتاسیم خاک پس از سروی‌های ۱۰ بار تر و خشک کردن خاک بدون افزودن پتاسیم است.
جدول 3: تحلیل آماری مربوط به تناسب پتاسیم توسط خاک در ارتباط با نوع کشت و عمق نمونه برداری و اثرات مقابل آنها در اراضی هفت یه

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>رده آرادی</th>
<th>پتاسیم قابل جذب خاک</th>
<th>مقدار پتاسیم تثبیت شده</th>
<th>مقدار پتاسیم تثبیت شده</th>
<th>پتاسیم طی سه دوره</th>
<th>میانگین مربوط</th>
<th>تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع کشت</td>
<td>2</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>10/7</td>
<td>27/2</td>
<td>2</td>
</tr>
<tr>
<td>9921/5**</td>
<td>785/7**</td>
<td>185/7**</td>
<td>974/7**</td>
<td>106/7</td>
<td>32/2</td>
<td>11/6</td>
<td>4</td>
</tr>
<tr>
<td>352/5</td>
<td>119/7</td>
<td>237/7</td>
<td>734/7</td>
<td>327/7</td>
<td>119/7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td>2</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>2</td>
</tr>
<tr>
<td>عمق نمونه</td>
<td>2</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>2</td>
</tr>
<tr>
<td>نوع کشت×عمق نمونه</td>
<td>2</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>50/7</td>
<td>2</td>
</tr>
<tr>
<td>820/7**</td>
<td>172/1/10**</td>
<td>639/3/8**</td>
<td>287/3/8**</td>
<td>172/1/10**</td>
<td>639/3/8**</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>63/8</td>
<td>383/8</td>
<td>21/9</td>
<td>21/9</td>
<td>21/9</td>
<td>21/9</td>
<td>11/6</td>
<td>2</td>
</tr>
<tr>
<td>3/6</td>
<td>12/5</td>
<td>9/2</td>
<td>9/2</td>
<td>9/2</td>
<td>9/2</td>
<td>11/6</td>
<td>2</td>
</tr>
</tbody>
</table>

علامت **، NS: به ترتیب معنی دار در سطح 1، معنی دار در سطح 5 و معنی دار نیست.
کردن خاک هفته تی از لحاظ نوع کشت در سطح ۱/۱ عمک خاک نیز در سطح ۱/۱ معنی دارد. اثر مقیاس این دو نیز در سطح ۱/۱ معنی دارد. در اراضی هفت تی بیشترین مقیاس پتانسیل تپه مربوط به خاک‌های تحت کشت نیشکر در لایه سطحی بود. اختلاف متوالی این سطحی و عمق خاک از لحاظ تپه پتانسیل نیز به جذب بیشتر پتانسیل از لایه سطحی در مقایسه با لایه‌های عمیق مربوط می‌شود (جدول ۳).

این نتیجه نشان می‌دهد که بیشترین مقیاس پتانسیل از این نوع نمونه از خاک خارج شده و در نتیجه‌های اندازه‌گیری کشت، پتانسیل نهایی برای پتانسیل‌های در رس‌های خاک ایجاد می‌نماید. این نتایج نشان می‌دهد که عمق نیز برای بازیابی گیاهی از سطحی در حضور دیگر سبب شده که آب‌های آزاد ساپیسی پتانسیل از خاک در اثر این فاقدانگی تشکیل شود. با توجه به نیاز فراوان گیاهان نیشکر به پتانسیل، جذب این یون از محلول خاک در طول دوره رشد گیاه رخ داده و به‌دنبال این فرآیند، پتانسیل به‌طور مداوم از محل ذخیره آن از بین گرفته‌اند. در اثر کشت این یون از محلول خاک شده است. نتایج تپه نیشکر از این محلول برای تهیه نیشکر مصرف کننده می‌باشد. نشان می‌دهد که در این کشت‌های دیگر سبب شده که تابیه پتانسیل از این محلول خاک به بیشترین مقیاس پتانسیل در محدود نمودار نیشکر با نسبت ۱/۱۲ (۲۴) و ۲۵). در اثر عمل، پتانسیل رنگ بارا جایگزین نشان می‌دهد که در مکان‌های پتانسیل اضافه‌ای تهیه نیشکر بین لایه‌های کشت در نتیجه تپه آن توسعه خاک افزایش یافته است. تابیه مشابه تابیه تابیه به فراشی (۲۴) برای خاک‌های سودان و مونروک و دیگرین (۲۷). پمپ‌گراندنگر نیز گزارش شده است.

باید توجه به نوع کتاعه شناسایی شده در این نمونه‌ها مکمل اولیه در خاک سطحی بیش از سایر اعضا مورد مطالعه بود.

از ۴۵ بار تر و خشک شدن خاک مشخص شد که اختلاف معنی‌داری در سطح ۱/۱ در اندازه‌گیری جذب گیاه یک اثر اساسی با کشت‌های مختلف وجود دارد. بیشترین و کمترین پتانسیل قابل جذب گیاه به ترتیب مربوط به لایه‌های خاک باریک و خاک زیر کشت نیشکر بود (جدول ۲). این امر ممکن است نتایج تهیه پتانسیل لایه‌ای را به خاک‌های باریک باشد. این نتایج، پتانسیل را با رها نیشکر با پا دیده تر و خشک شدن در خاک‌های باریک خورشتن نشان می‌دهد. در خاک تحت کشت تناوي، افزایش پتانسیل قابل جذب گیاه با تر و خشک شدن متوالی (۴۰ بار) نسبت به خاک باریک افزایش گرفت و نسبت به خاک با کشت نیشکر افزایش پتانسیل و را نشان می‌دهد (جدول ۲).

در مجموع نتایج نشان می‌دهد که در تهیه پتانسیل قابل جذب خاک تر و خشک شدن کردن نمونه توانای خاک خود را این امر ممکن است به عدم خرید پتانسیل آزاد شده و در نتیجه عدم تغییر شرایط تعادل در جهت آزادسازی پتانسیل مربوط کرد.

این نتایج نشان می‌دهد که عدم تهیه پتانسیل آزاد شده سبب جلوگیری از آزاد شدن پتانسیل به میزان بیشتر و خواهد شد. از آنجایی که تعداد بین انکشاف پتانسیل غیر تابیلی، تابیلی و محلول قابل برگشت بین نیشکر خاک‌های میکرو‌نیشکر تخلیه شده از پتانسیل لایه‌ای گسترش شده را در مکان‌های خالی شده بین لایه‌های خود تهیه نماید. چنین نتایج تابیه پمپ‌گراندنگر نیز گزارش شده است.

در لایه‌های خاک‌های سطحی به تپه پتانسیل قابل جذب باید توجه به خاک کردن خاک بوده بعد حضور پتانسیل برای اراضی باید، کشت نیشکر و تناوي برتیبیت ۵/۴ و ۵/۹/۱/۵ میلی‌گرم در کیلوگرم نسبت به مقدار اولیه انفراشیشن نشان داد. این میزان افزایش در لایه‌های عمیق برای هر خاک نسبتاً کمتر بود (جدول ۲).

نتایج تابیه آماری مقدار نتیجه پتانسیل در حضور پتانسیل با گلطی کمتر گرم در کیلوگرم خاک همراه با هد بار تر و خشک شدن نشان می‌دهد.
شکل ۲. میانگین تیپت شده توسط نمونه‌های رس خاک‌های با سیستم‌های مختلف کشت در اعماق مختلف

(برای سه غلظت ۰.۳، ۰.۶ و ۰.۹ میلی مول تیپاسیم)
جدول 4: تحلیل آماری مربوط به تثبیت پتاسیم توسط رسما در ارتباط با نوع کشت و عمق نمونه برداری و اثرات مناسب آنها در اراضی هفت تیه.

<table>
<thead>
<tr>
<th>منبع تغییر</th>
<th>تثبیت پتاسیم در حالت تر</th>
<th>تثبیت پتاسیم در حالت خشک</th>
<th>تیپ</th>
<th>میانگین مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol K⁺</td>
<td>mmol K⁺</td>
<td>mmol K⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۹۸.۰</td>
<td>۹۶.۰</td>
<td>۹۶.۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/1</td>
<td>4/1</td>
<td>4/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۸/۸</td>
<td>۸/۹</td>
<td>۸/۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.V</td>
<td>C.V</td>
<td>C.V</td>
<td></td>
</tr>
</tbody>
</table>

نتیجه:
• تکرار نوع کشت: ۲
• خطای نوع کشت: ۴
• عمق نمونه: ۲
• کشت × عمق: ۴
• خطای: ۱۲
شكل 3. تشكل کانال‌های شبک اولیه در اثر ورود پاتاسم به درون لایه‌های نخله شاده از پاتاسم در راس‌های اولیه،

کاهش در سطح 1/3 درصد اختلاف معنی‌دار نشان داد. پیشینه میزان تئیب برای غلظت 90 میلی مول و در حال خشک بود.

در غلظت 90 میلی مول پاتاسم اضافه شده، میزان تئیب هفت تئیب در حالی سطحی خاک باران، کشت نیشکر و کشت رنگکننده هفت تئیب به ترتیب 7/59 و 5/69 سانتی متر در کیلوگرم

بود. پیشینه میزان تئیب پاتاسم برابر سرس انزیم مشابه با آنچه که در سطح 40 سانتی متری رس‌های جدا سازی شده خاک تحت کشت نیشکر بود. با افزایش غلظت پاتاسم، میزان تئیب توسط رس‌ها نیز افزایش یافت. میزان تئیب پاتاسم توسط رس‌های اولیه در حالی

خشک نسبت به حالت تر افزایش چشمگیری نشان داد.

برای نوع کشت در حالات خشک و سرد در حالات سرد در

سیغلت مورد مطالعه، مقادیر پاتاسم تئیب شده اختلاف معنی‌دار در سطح 1/3 نشان داد (شکل 2). این تکه نشان می‌دهد که قسمت مختلف بین شده است که تئیب تئیب پاتاسم در این رس‌ها به عوامل زیادی نگریز کند. روند مشاهده نیز برای

اعمال مورد مطالعه ملاحظه شد. اختلاف بین معنی‌دار خاک بارای اراضی تحت کشت‌های مختلف نیاز اختلاف معنی‌دار در حدود

1/3 نشان داد (شکل 2). این اختلاف در تئیب پاتاسم توسط رس‌ها در عناصر مختلف نیز مشابه با روند که برای نمونه‌های خاک نخله‌شده شد. بود. این امر به دلیل آن داشت که راهنمایی و عمق

نفوذ آن می‌باشد. روش‌های نیشکر عموماً تا گذشت به نفوذ خود که
نتیجه‌گیری

علی رغم تحلیل پتاسیم توسط نیشکر و سابقه طولانی کشت و عدم پژوهش کود پتاسیم با این اراضی طبیعی این مدت، با 30 بار و شکل گردیدن خاک در مجاورت پتاسیم، مقادیر پتاسیم جدولی (جدول 2) ارایه گردید. به خصوص پیشنهاد می‌شود که این خاک از دو ناحیه اصلی دوره‌ای که در این مدت کشت شده، توسط یک پتاسیم اضافه شده کرده نسبت داده می‌شود.

منطقه مرکزی ایران بخش‌های بافتی را از این خاک به پتاسیم تمایل نمی‌کند.

شده در اراضی تحت کشت نیشکر تربیتی مربوط به پرداخت

وازهداده (100) و این پتاسیم در برابر خاک و در نتیجه

افراش CEC این رسته‌ها (2) نیز گزارش شد. میزان تهیه پتاسیم

در خاکا علاوه بر نوع کیهان، راس و تراکم بار آنها، به

مقادیر رطوبت، غلظت بیان‌پذیر و سایر بیان‌پذیر بستگی کننده

خاک نیز سبکی دارد (19). در این آزمایش نیز با این اراضی

پیش‌تر صورت گرفت (جدول 2). بخش‌های توسط پتاسیم و

مک این (28)، حسین پور و کلیسیا (4) و همکاران، نیاز

(100) نیز نشان داد که این خاک به رسمیت پتاسیم غلظت را به

بیان گردیده و کیهان‌ها به مراتب بیشتر به آنها از

افراش تهیه پتاسیم توسط و این اراضی غلظت بیشتر را به

جدب سایر کشورها دویت خاک ملی کریم‌ها، موارد این و

اکسیدهای آهن و آلومینیم) در نمونه شخصی مقابله وله

با احتمال این نکته نیز این اراضی تهیه در رسمها نسبت به

خاک قابل ملاحظه است که می‌تواند به حفظ برخی تربیبات

نظر مزکوری اکسیده‌ها و آهی و اثرات آنها در مانعیت از

تهیه پتاسیم به لامهای روس مربوط شود (13). بیابید و

همکاران (100) نیز علت کاهش تهیه پتاسیم توسط روس را به

دیل نودن برخی از این تربیبات گزارش نمودند. تر و خشک

کود خاک را در مجاورت پتاسیم برای 20 بار، نهان

می‌دهد که شکست پتاسیم در خاکهای تهیه تحت کشت

نیشکر و تناوبی از حاویت به مقادیر پتاسیم تهیه شده در

اراضی بافر نزدیک می‌شود (شکل 2). این امر ممکن است تا

احداث ویژه بر بسته شدن فضای بین لایه‌ای کانی اثر گذشته

پتاسیم و میزان پتاسیم مکان‌ها داخلمانی کاهش برای

تهیه پتاسیم مربوط شود. مکان‌ها این فرآیند به‌طور کاملاً

توسعه بی‌پرورشگری اثرات است (13).

با وجودی که در پیش‌گام‌ها

اراضی تحت کشت XRD تناوبی و پیش‌گامی که در پیش‌گام

نیشکر و قابل انتباض به آنها مشاهده می‌شود. این

نیشکر و سپس‌مهم کشت بر پتاسیم در...
منابع مورد استفاده

1. افتخار، ع. 1365. میزان آسیب‌پذیری پتاسیم در خاک‌های بافت مختلف. گزارش طرح پژوهشی دانشگاه شهید چمران اهواز.

2. بهروزی، خ. 1378. تأثیر استفاده از سطوح مختلف کود سولفات پتاسیم بر روی کمیت و کیفیت عمادکرد محصول نیشوکر. مجله باغبانی.

3. نیشوکر. کشت و صنعت کارون، خوزستان، ص 31-34.

5. حسین پور، و. م. کلیاسی، 1380. تاثیر پتاسیم و ویژگی‌های بار آبیک‌های رس خاک در شمالی بخش خاکی مناطق مرکزی و شمال ایران. علوم و فناوری کشاورزی و منابع طبیعی (1380: 97-93.

6. جعفری، س. م. باقی‌نژاد و م. بهروزی. 1384. ارزیابی تغییرات برخی از خصوصیات فیزیکی‌های اراضی زراعی (تحت کشت نیشوکر و نباتی) و بکر منطقه هفت تیه خوزستان. مجله علمی کشاورزی دانشگاه شهید چمران اهواز (1384:165-182).

7. راده‌نژاد، س. 1378. واکنش خاک و گیاه نیشوکر به کاربرد کود سولفات پتاسیم در اراضی تحت کشت نیشوکر هفت تیه خوزستان بخش خاکی مناطق مرکزی و شمال ایران. مجله باغبانی، خوزستان، صفحه 12 تا 16.

8. رفاهی، ع. 1359. مطالعه تاثیر پتاسیم در برخی از خاک‌های آهکی و اسیدی ایران. مجله علوم کشاورزی (111:1-16).

9. نادیان، ح. و. صحس. 1365. مقایسه ظرفیت تثبیت پتاسیم در خاک‌های کشت شده و بکر و مطالعه نمره‌های آن توسط پراش آموزش ایکس در استان خوزستان. گزارش طرح پژوهشی دانشگاه شهید چمران اهواز. مجمع آموزشی پژوهشی رامی و اهواز.

soils rich in micas. Biol. and Fertil. of Soils 17:75-79.