تأثیر کوتاهمدت خاکورزی و کود دامی بر ویژگی‌های ساختمانی خاک

آزاده صفادوست، محمد رضا مصدقی، علی اکبر محبوبی، عباس نوروزی و قاسم اسدیان

چکیده

افزایش فرسایش و تراکم خاک به واسطه کشت مداوم محصولات ردیفی و خاکورزی فرشه از دلایلی است که سبب تخریب و توجه به روش‌های خاکورزی حفاظتی شده است. هدف از این تحقیق بررسی آثار کوتاهمدت (یکساله) صدمه‌های منفی بر ویژگی‌های فیزیکی یک خاک لوم تحت کشت زراعی بود. تیمارهای شامل سیستم خاکورزی (یک خاکورزی، NT: خاکورزی با گازهای برگدنده) و CP و سه سطح کود گزار کالیاپسیده (صرف ۳۰ و ۶۰ تن در هکتار) بودند. آزمایش در قالب طرح کناره‌ای ۱×۶ درصد نوزده تیمار انجام گرفت. سه کاربرد به صورت پلوکدهای کامل تصادفی به رنگ فرآیند. هگازی که ۱۰۰ درصد برخی‌های درخت زراعی رشد. ضریب آبگذرا اشباع (K_e), تخلخل تاریکی (TP), تخلخل درشت (Macro-P), خاک و میانگین وزنی قطر خاک‌دانه‌ها (MWD) در لایه‌های مختلف خاک با عنص ۲۰۵ سانتی‌متر اندازه‌گیری شد. خاکورزی (Micro-P) و کود دامی در اثرات منفی دار بود. TP و Micro-P در محدوده شدت کلی کاهش محسوسی در روش NT و Macro-P نسبت به روش کناره‌ای CP در دو سطح کود و در دو سطح افزایش کناره‌ای MP نسبت به روش کناره‌ای CP. در سیستم افزایشی MP و در سیستم افزایشی نسبت به MP، MP و افزایش کناره‌ای MP افزایشی دارای اثرات منفی سیستم‌های کم‌افراشی (Micro-P) در تمامی تیمارهای خاکورزی گردید. نتایج این تحقیق نشان دهنده اثرات منفی کاربرد کود آلی (در دوره کوتاهمدت) بر ویژگی‌های منافذ و پایداری ساختمانی خاک تحت خاکورزی با گازهای برگدنده و گرداگردان قلمی در این منطقه بود.

واژه‌های کلیدی: ضریب آبگذرا اشباع، تخلخل کل، تخلخل درشت، تخلخل رزی، میانگین وزنی قطر خاک‌دانه‌ها، خاکورزی، کود دامی

مقدمه

ساختمان خاک یک ویژگی منگر و پیچیده تأثیرپذیر است که فراوانی‌های مختلف بر آن مؤثر است. این جمله از جمله خاک‌دانه‌ای می‌توان خاکورزی و کاربرد کودهای آلی را نام برد که از موارد مهم در مدیریت زراعی می‌باشد. ساختمان خاک اغلب با واژه‌های اندازه، شکل و مقاومت خاک‌دانه‌ها ایجاد و شکل پایداری

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استادیار و دانشیار خاکشناسی، دانشگاه بوزینیا، همدان
2. به ترتیب کارشناس و عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی همدان

منابع:

زاویه‌بینی و اندازه آب را تحت تأثیر قرار می‌دهد (۴). در میان عمق‌ریزی تاریکی به تنهایی تأثیر روش‌های خاکورزی یک ویژگی فیزیکی خاک که از استیل ویژگی‌های (۱) در یک پژوهش شناخته شده است. این فرمولی بیانیاتی اشباع (K_e) که در مزرعه‌ی خاک لوم شنی، ضریب آب‌گذرا اشباع
لذا کاربرد کود دامی بر ویژگی‌هایی از قبیل نفوذ آب به خاک، ضریب آبگیری و زهکشی خاک تأثیر می‌گذارند. مقاومت خاک‌ها و در نتیجه پایداری منابع خاک بستگی زیادی به یونسین بین مود آلی و اثرات خاک دارد. به طور کلی کردن خاک به عامل اساسی در پایداری ساختمان خاک محصول می‌شود.

dsپلوا و همکاران (14) با مطالعه اثرات کود دامی، کاه بسیج و کود بسی بر ویژگی‌های زهکشی خاک، گزارش کرده که تیترهای مواد آلی به میزان 5 و 10 تن در هکتار، میزان آبقابل استفاده در خاک را پس از یک ماه به مقصد قابل توجهی افزایش داد.

در ایران به خصوص خاک‌های نیمه‌خلخال، پژوهش‌های زیادی جهت انتخاب و اصلاح بهترین سیستم‌های مدیریت زراعی انگشته است. همچنین اثرات کوتاهمدت عملکرد کم‌خاکوروزی به عنوان افزایش کالهای ظاهری و مقاومت فوروری (Penetration resistance) خاک به خصوص در خاک‌های سبک‌گیتی تا ماه آلی کم ناپدیده بوده است (24).

لذا با توجه به اینکه اغلب خاک‌های ایران دارای ماه آلی اندک، حساس به سلبیتی و ساختاری نابدا می‌باشند (17 و 29)، پژوهش‌های بیشتر در زمینه روش‌های خاک‌وروزی و کاربرد کودهای آلی در مناطق مختلف ضروری می‌باشد. هدف این مطالعه بررسی تأثیر کوتاهمدت روش‌های خاک‌وروزی و افزودن کود دامی بر ویژگی‌های ساختمانی خاک در همدان بود.

محدودیت‌های بکارگیری سیستم‌های خاکوروزی به عنصری می‌شود. لزوم کود دامی بر ویژگی‌هایی از قبیل نفوذ آب به خاک، ضریب آبگیری و زهکشی خاک تأثیر می‌گذارند. مقاومت خاک‌ها و در نتیجه پایداری منابع خاک بستگی زیادی به یونسین بین مود آلی و اثرات خاک دارد. به طور کلی کردن خاک به عامل اساسی در پایداری ساختمان خاک محصول می‌شود.

گزارش کرده که سیستم‌های خاکوروزی پس از شش ماه تأثیری بر مقدار آب خاک در عمق 0-30 سانتی‌متری نداشتهند. در حالی که محیبی و همکاران (23) گزارش کرده که تیترهای مواد آلی به میزان 5 و 10 تن در هکتار، میزان آبقابل استفاده در خاک را پس از یک ماه به مقصد قابل توجهی افزایش داد.

در ایران به خصوص خاک‌های نیمه‌خلخال، پژوهش‌های زیادی جهت انتخاب و اصلاح بهترین سیستم‌های مدیریت زراعی انگشته است. همچنین اثرات کوتاهمدت عملکرد کم‌خاکوروزی به عنوان افزایش کالهای ظاهری و مقاومت فوروری (Penetration resistance) خاک به خصوص در خاک‌های سبک‌گیتی تا ماه آلی کم ناپدیده بوده است (24).

لذا با توجه به اینکه اغلب خاک‌های ایران دارای ماه آلی اندک، حساس به سلبیتی و ساختاری نابدا می‌باشند (17 و 29)، پژوهش‌های بیشتر در زمینه روش‌های خاک‌وروزی و کاربرد کودهای آلی در مناطق مختلف ضروری می‌باشد. هدف این مطالعه بررسی تأثیر کوتاهمدت روش‌های خاک‌وروزی و افزودن کود دامی بر ویژگی‌های ساختمانی خاک در همدان بود.

محدودیت‌های بکارگیری سیستم‌های خاکوروزی به عنصری می‌شود. لزوم کود دامی بر ویژگی‌هایی از قبیل نفوذ آب به خاک، ضریب آبگیری و زهکشی خاک تأثیر می‌گذارند. مقاومت خاک‌ها و در نتیجه پایداری منابع خاک بستگی زیادی به یونسین بین مود آلی و اثرات خاک دارد. به طور کلی کردن خاک به عامل اساسی در پایداری ساختمان خاک محصول می‌شود.
جدول 1. برخی از ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه

<table>
<thead>
<tr>
<th>منبع</th>
<th>بالا (٪)</th>
<th>شن (٪)</th>
<th>سیلیت (٪)</th>
<th>رس (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لومشی</td>
<td>92/0</td>
<td>34/3</td>
<td>56/5</td>
<td>11/8</td>
</tr>
<tr>
<td>استاتیک کلیم ماده (٪)</td>
<td>80/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کرتین آلی (٪)</td>
<td>98/8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. نمونه‌برداری از لاپه ۳۰ ـ ۳۵ سانتی‌متر انتهای شده است.

آبیاری با برای با ۱۹۹/۱/۱ متمرکب در هکتار بود. مقدار آب مصرف شده بر اساس نیاز تبخیر-تعرق محاسبه شده که برای ماه‌های خردماه، تیر، مرداد و شهریور به ترتیب برای با ۱۹۹/۱/۱۰۰/۷/۲۵/۲/۷/۲/۲/۱/۵ میلی‌متر بودگ (Zea mays L.) کشت مزارع در ذرات دانه‌ای است. بر اساس ویژگی‌های میکروسکوپیک و شیمیایی خاک مورد مطالعه در جدول ۱ آورده شده است.

این طرح به صورت بی‌پاسخ در مزرعه مذکور اجرا شد.

تیمارها شامل سه سیستم خاکورزی (بی‌خاکورزی خاکورزی بی‌گزار آهن قلمی, NT, (No-tillage), خاکورزی با چسب آهنتیافر (Chisel plowing) و خاکورزی با گزار این گرداندار (Moldboard plowing) می‌باشد. در سه سیستم آبنگ فرسودگی و کربن شوری، با، CP, و میلی‌متر در این‌جا آورده شده‌اند.

در حدود ۱۱۴ روز پس از اصلی تیمارها، هنگامی که تمامی پرچم‌های گیاه ذرات نظر شدند، نمونه‌های خاک مستخرد که به روش نمونه‌برداری سیلزندی با استفاده از سیلزندی‌های ذرات فیزیکی، دارای قطر داخلی ۵۱ میلی‌متر و ارتفاع ۷۵ میلی‌متر به منظور نمایش این ابزارهای بی‌خاکورزی، (Kc), تخلخل کلی (TP), تخلخل درشت (MWD), تخلخل ریز (Micro-P) و گزار این گرداندار (Macro-P) میانگین وزنی قطعی خاک‌دانه‌ها برداشت شد. نمونه‌برداری از محل ریز کشت جابی که جهت احیای ماسیون کشاورزی نشر نشده بوده و از جهت احیای (Visual-5/2/15/10-0/15/0/5-7/5-0/7-7/5) که در اینجا آورده شده‌اند، از لایه‌های ۵-۷/۵-۰/۷-۰/۵-۲/۵ سانتی‌متر صورت گرفته. همچنین به کمک یک پلاچه از لایه‌های مذکور نمونه‌برداری جهت اندازه‌گیری تیمارهای خاکورزی به صورت بی‌پاسخ روش طرح کرت‌ها توزیع گردید. کردهای شیمیایی دارای عناصر امروزی، فسفور و پتاس پیش از توصیه کردن به ارتفاع از ارتفاع خاک اضافه شدند. کود از آن به صورت همزمان با کشت و سرم بر اساس عرف محل به کار رفته است از اعمال تیمارهای خاکورزی در این تیمارهای خاکورزی به سیستم نمونه‌برداری (Leveler) بر اساس در تسلط زمین. درخت دانه‌ای (رقم ۱۰۹) یا تراکم ۳۰۰۰ برهنگ که هکتار با فاصله رخیف ۵۰ سانتی‌متر به صورت سنتی در کرت‌های ۵/۰ متری و به صورت ۱/۰ درصد کاشته شد. آبیاری به روش پاریز بر اساس عرف محل انجام شد. مقدار کل آب
تأثیر سیستم‌های خاکوریزی بر ویژگی‌های ساختاری خاک

1. ضریب ابعادی اشیاء خاک

این تجزیه به دست آمده اثر معنی‌دار نمایشگری خاکوریزی بر اثر

یگانه‌گری ایجادکننده مایه‌های خاکوریزی را اثربخش

(Log [Ks]) و در واقع

می‌باشد. (جدول 1). تأثیر نرخ‌های خاکوریزی بر

مختلف خاک در جدول 1 نشان داده است. در لایه‌های

MWD (Mean weight diameter)

ساختاری خاک با استفاده از فرمول زیر محاسبه شد:

\[
MWD = \frac{\sum_{i=1}^{n} w_i}{\sum_{i=1}^{n} x_i w_i}
\]

که معلامه فاصله میانگین قطر خاک‌کن‌های بلوکی مانده

روی هر سرند با میانگین قطر صورت که یکی با یکی و نسبت

نتیجه خاک‌کن‌های بلوکی هر سرند به وزن کل خاک‌کن‌ها و

تعداد سرند‌ها می‌باشد.

تجزیه و ارتباط برای ویژگی‌های اندازه‌گیری شده خاک با

طور منطبق برای هر لایه ماهی‌هایی که انجام گرفت بنا

توجه به این که تبدیل نگارنده سبب کاهش ضریب پراکندگی

داده‌های (Coefficient of variation)

واریانس روی داده‌های لگاریتم ضریب ایگندری اشیاء

انجام شد. منابع تغییرات شاخص روش‌های

(Log [Ks])

خاکوریزی، سطح کوارات و اثرات منفی آنها بود که بنا

استفاده از نرم‌افزار SAS (28) بردارش شد. مقایسه میانگین‌ها از

طریق آزمون دانکن در مساحت آماری 5 درصد انجام شد.

نتایج و بحث

تجزیه و ارتباط برای ویژگی‌های

Micro-P .Macro-P .TP .Ks
جدول ۲. تأثیر عدم تبدیل نکاتYP در آزمایشگاه خاک‌ورزی و کود دامی بر سریع‌تری اشباع (K)ی. تخلخل درشت (TP)، تخلخل درشت (MWD) و میانگین وزنی قطر (Micro-P) (Macro-P)

<table>
<thead>
<tr>
<th>MWD</th>
<th>Micro-P</th>
<th>Macro-P</th>
<th>TP</th>
<th>Log[K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 cm</td>
<td>2/0</td>
<td>4/2</td>
<td>4/2</td>
<td>1/0</td>
</tr>
<tr>
<td>7-5 cm</td>
<td>4/2</td>
<td>4/2</td>
<td>4/2</td>
<td>1/0</td>
</tr>
</tbody>
</table>

** نیازمندی‌های ۱۰۰ cm ۷-۵ cm ۵-۲۰۵ cm

برای هر عمق و در هر ستون، میانگین‌هایی که دارای چکیده یک حرف مشترک می‌باشند از نظر آماری در سطح ۵ درصد تفاوت معنی‌داری ندارند.

1. برای هر عمق و در هر ستون، دانش‌نامه‌هایی که دارای چکیده یک حرف مشترک می‌باشند از نظر آماری در سطح ۵ درصد تفاوت معنی‌داری ندارند.
2. برای هر عمق و در هر ستون، دانش‌نامه‌هایی که دارای چکیده یک حرف مشترک می‌باشند از نظر آماری در سطح ۵ درصد تفاوت معنی‌داری ندارند.
2. مشخصات حاضن خاک

تیمارهای خاکورزی به طور معنی‌داری منافذ خاک را در سه
لاه یا تولید خاک تحت تأثیر قرار داده (جدول 2). مقادیر

CP در لاه یارهای ۵/۷-۰/۷ و ۰/۷-۱/۰ـ۵ سانتی‌متر نسبت به
تیمارهای خاکورزی (NT) با حذف‌واره (MP) به صورت
NT < CP < MP

نامناسب است. در این مدل تغییرات به طور میانگین
میزان ماده آلی کمی بود، میزان نسبت به CP تحت تیمار
کاهش در هر نوع تیمار و در میانگین مدل کاهش

3. پایداری خاکادههای

پایداری خاکادههای CP به باشکوهی طوری ممکن دارد که
میانگین مدل، تأتیر MP < CP < NT به‌طور میانگین

میزان مدل، میزان تأثیر MP < CP < NT به‌طور میانگین

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین نسبت به CP تحت تیمار

میزان مدل در طبقات متغیرین N

M

CP
تأثیر کودهای ساختمانی خاک و کود دامی بر ویژگی‌های ساختاری خاک

1. ضریب ایگذاری انسداد خاک

افزودن کود دامی به شکستن سیستم افراشی (جدول 2). تیمارهای کودی 30 و 60 تن در هکتار، به طور Log [Ks] موفق باعث افزایش تریبون ۱۶ و ۳۰ درصدی معموله‌ای به شاهد گردید (جدول ۲). در واقع افزودن

کود آلی به خاک باعث افزایش تخلخل سطح ویره، تغییر توزیع انسداد خاک‌هایی به‌وجود می‌آید. تغییر میزان انسداد‌ها باعث یک نگه‌داری رطوبت و ضریب ایگذاری خاک می‌شود (۵) اسفرتور و همکاران (۵) ۵۲ هم‌اکنون خاک لایه‌ای می‌باشد. آنها دلیل این امر را سهولت حرکت آب

از مناطق به دلیل افزایش پوستگی آنها و افزایش تخلخل خاک ذکر کردند. هم‌اکنون همیان و همکاران (۲۹) گزارش کرده که افزایش کودی به طور مزید افزایش

رسی بیشتر در اصفهان را افزایش داد. افزودن کود دامی به شکستن سیستم افراشی

2. مشخصه‌های ساختاری خاک

ناپدید شدن روند خاک در این لایه به‌طور CP باعث شباهت می‌شود. این موضوع یافته‌ای که MWD

خاک‌روزی باعث شکستن شدند خاکاهای می‌شود و ذرات یا

خاک‌روزی ریزتری را به‌وجود می‌آورد (۲) این نتایج با

یافته‌های برزگر و همکاران (۸) حناط عباسی و همت (۷) و

محیوبی و همکاران (۳۲) هم‌اکنون باشد.

تأثیر کود دامی بر ویژگی‌های ساختاری خاک

برای تمام مشخصه‌های ساختار خاک، تأثیر کود دامی به

صورت ۶۰ در هکتار ۳۰ تن در هکتار > شاهد در تمامی

لایه‌ها بود. کلیک و همکاران (۱۱) تفاوت مطلوب به‌طور

کمیسیون، میکروبروزک، کود دامی و کود شیمیایی بر خواص

فیزیکی خاک گزارش کرده که افزودن کمیسیون و کود دامی

به ترتیب باعث افزایش ۴۰ درصدی مقدار آب قابل استفاده خاک گردید. اختلاف مشخصه ساختاری متفاوت بین تیمارهای

کودی در لایه‌ای بیشتر به‌وجود می‌آمد. نتایج طور

که جدول ۲ نشان می‌دهد اختلاف در توزیع انسداد در

لایه‌های سود بیشتر به‌وجود می‌آورد. نتایج بیشتر با گزارشات

اندروسون و همکاران (۷) و لال و همکاران (۲۲) متقابلی دارد.

بایگانی خاک‌مانده

اثرات معمول کاربرد کود دامی بر MWD در لایه‌های مختلف

خاک در جدول ۲ نشان داده شده است. در همه لایه‌ها شاخص

با افزودن کود دامی به خاک افراشی پیدا کرده است.

تأثیر کود دامی به صورت ۶۰ در هکتار ۳۰ تن

تأثیر کود دامی به صورت ۶۰ در هکتار ۳۰ تن

در هکتار < شاهد به ترتیب ۱۲/۳۷ و ۱/۳۷ میلی‌متر برای

لایه اول، ۱/۶۴ و ۱/۳۷ میلی‌متر برای لایه دوم و ۱/۵۶

۴/۳۷ و ۱/۳۷ میلی‌متر برای لایه سوم بود (جدول ۴). در نتیجه

بیشتر کود دامی در لایه‌های اول و لایه دوم به وجود آمد.

اختلاف باعث یک نگه‌داری Rطیتر و ضریب ایگذاری خاک

MWD انسدادی در اصفهان را افزایش داد.

اثرات معمول در کود دامی به طور مزید افزایش

چسباندن مواد آلی و در نتیجه تجمع ذرات خاک، افراشی

پایداری خاک‌مانده. تغییر در توزیع اندازه‌های مختلف و افراشی

ظرفیت جذب سطحی خاک انسداد ذرات شد. شرایط و همکاران

(۲۹) نیز در یک پژوهش دو ساله در مورد اثر خاک‌وزی و

کود دامی بر ویژگی‌های فیزیکی خاک گزارش نمودند که

افراشی کود دامی به میزان ۶۰ تن در هکتار باعث افزایش

بایگانی خاک‌مانده‌ها در لایه‌های زیر ۵ سانتی‌متر اثر کود دامی می‌باشد. همچنین

برزگر و همکاران (۹) با بررسی اثر مواد آلی و نوع رس بر

97
جدول ۲. تأثیر کود دامی بر ضریب آبگذری اشباع (Ks). تخلخل کل (TP)، تخلخل درشت (MWD) و کود دامی
(Micro-P و Macro-P)

| MWD (میلی‌گرم) | Micro-P (% حجمی) | Macro-P (% حجمی) | TP (% حجمی) | Log[Ks] (سانتی‌متر بر ساعت) | کود دامی
(تن در هکتار) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 cm</td>
<td>27.4 c</td>
<td>14.3 c</td>
<td>21.7 c</td>
<td>0.01 c</td>
<td>صفر</td>
</tr>
<tr>
<td>1/2 cm</td>
<td>31.7 b</td>
<td>16.9 b</td>
<td>28.4 b</td>
<td>0.09 b</td>
<td>۳۰</td>
</tr>
<tr>
<td>1/3 cm</td>
<td>35.3 a</td>
<td>20.6 a</td>
<td>35.5 a</td>
<td>0.06 a</td>
<td>۶۰</td>
</tr>
</tbody>
</table>

| 7/5 - ۱۵ cm | 29.7 b | 18.4 b | 29.4 b | 0.06 b | ۳۰ |
| 1/4 cm | 21.7 a | 14.2 a | 21.3 a | 0.04 a | ۶۰ |

پراکنش ذرات خاک، نشان دادند که مواد آلی باعث بهبود ساختار خاک‌های سدیمی، حتی قبل از کاهش قلبانیت، گردید. پاک‌کن و هم‌کاران (۲۴) نشان دادند که با افزایش خاک‌تان در خاک‌های تیمار شده با لح فاضلاب و کود گیاه‌پرورش، می‌تواند افزایش یابد.

نتیجه‌گیری

خاک‌ورزی با گاوآهن قلمی (CP) به عنوان کمتر شکسته‌شدن خاک‌تان و تعداد بیشتر کود دامی بر Micro-P و Macro-P و وزن‌گیری افزایش‌یافته و بهبود ساختار خاک و باعث‌گردید که هم‌کاران (۲۴) نشان دادند که با افزایش گروه افزایش-گرگردان صورت می‌گیرد. می‌تواند باعث بهبود ساختار خاک‌تان و دامی می‌شود و بهبود چرایی فیزیک اتمسفری خاک کرد. این نتایج نشان داد که افزایش گروه افزایشی، تعداد بیشتر کود در خاک دامی و بهبود چرایی فیزیکی اتمسفری خاک گردید. این نتایج نشان داد که افزایش گروه افزایشی، تعداد بیشتر کود در خاک دامی و بهبود چرایی فیزیکی اتمسفری خاک گردید.

۱ برای هر عمق و در هر ستون، میانگین‌هایی که حداکثر دارای یک حرف مشترک می‌باشند از نظر آماری در سطح ۵ درصد تفاوت معنی‌داری ندارند.

۲ میانگین در کتابخانه‌های (NT) در کتابخانه‌های (MP) به عنوان نشانه‌های مالف حاکم خاک داشت. در سپسیم خاک‌ورزی با گاوآهن پرگردان (CP) به عنوان نشان و حاکم خاک دامی و در نتیجه بهبود ساختار خاک و هم‌چنین ایجاد بازنشسته و ساختار بهبود و تیمار بیشتر مقادیر TP، Ks می‌باشد.

۳ خاک، نشان دادند که مواد آلی باعث بهبود ساختار خاک‌های سدیمی، حتی قبل از کاهش قلبانیت، گردید.
نتایج به دست آمده نشان می‌دهد که با کاربردن سیستم‌های خاک‌ورزی حفاظت‌های همراه با کود دامی می‌توان در به‌وجود آمدن شرایط فیزیکی مطلوب در خاک مؤثر باشند. لذا انجام پژوهش‌های مانندتی (5 سال) و درازمدت (20 سال) در رابطه با اثر سیستم‌های مدیریتی مختلف بر ویژگی‌های فیزیکی خاک بر توجه به شرایط خاک و اقلیم منطقه ضروری می‌باشد.

منابع مورد استفاده
1. افینون، م. و. م. ر. مصدقم. 1380. اثر روش‌های خاک‌ورزی بر ویژگی‌های فیزیکی خاک و حمل و نقل و فنون کشاورزی و منابع طبیعی. ۱–۳۹-۵۲.
2. حاج عباسی، م. و. م. مصدقم. 1378. اثر روش‌های خاک‌ورزی بر بعضی ویژگی‌های فیزیکی خاک و عملکرد ذرت در مزرعه تحقیقاتی لورک. علم. و فنون کشاورزی و منابع طبیعی. ۱۳-۲۳.
3. صفادشت، آ. ع. ا. مصدقم. 1384. اثر کوتاهیت روش‌های خاک‌ورزی و کود دامی بر جرم مخصول ظاهری. مقاومت فروری خاک و مشخص‌های ریشه ذرت. مجله پژوهش کشاورزی آب، خاک و گیاه در کشاورزی. ۱۴-۲۹.
4. همت، ع. و. م. مصدقم. 1385. خاک ورژی برای تولید محصول در مناطق کم باران (ترجیم‌های زمان تحقیقات، آموزش و ترویج کشاورزی). کر.