عملکرد زیر شکن کج ساق نواص تیغه‌های سطحی در یک خاک با فاصله رست

محمدحسین زرشفت و مجید کاظمی نجف آبادی

چکیده

در تحقیق حاضر به منظور رفع مشکلات و کاهش انرژی مورد نیاز خاک و وزی عمیق در مزارع نیشکر در میان آب خوزستان انجام پذیرفت. سعی گرفت که با تغییر تیغه‌های سطحی در جلوی زیر شکن کج ساق، نیرویی کشش لازم کاشش و برگی‌هایی نیزیکی خاک بهبود یابد. آزمایش‌ها در قالب تحقیق بر روی 72 واحد انجام داده شدند. نتیجه‌گیری‌ها از این آزمایش نشان داد که در میان تیمارهای زیر شکن کج ساق، زیر شکن کج ساق بدون تیغه‌های سطحی، در دارای بیشتر متقابل کشش بوده و در سایر تیمارهای زیر شکن کج ساق به لحاظ تغییر تیغه‌های سطحی، مقاومت کششی کاهش یافته است. افزایش عمیق و تعداد تیغه‌های سطحی در کاشت نروی کشش مؤثر بوده است. زیر شکن کج ساق با دو تیغه سطحی و در عمق 1/2/عمق اصلی دارای کمترین نرخ مصرفی بوده و در مجموع تغییر تیغه‌های سطحی در عمیق‌های یک دقیقه بوده به طور متوسط 21 درصد توان مصرفی را نسبت به زیر شکن کج ساق بدون تیغه‌های سطحی کاهش داده. سطح به هم خورده خاک و هم‌پیمانی سطح، سطح به هم خورده به ازای عمیق واحد در تیمار ریب حداکثر 1/3/بیل افزایش داد. سایر نتایج نشان داد که بین تغییرات داده‌های عرض و حجم زیر شکن کج ساق بدون تیغه سطحی و زیر شکن کج ساق با تیغه‌های سطحی، کاهش شاخص مصرفی و را موجب گردیده‌اند. درصد نوزش غیره‌های محک تراکتور در کلیه تیمارهای زیر شکن کج ساق در دامنه 16-12 درصد قرار داشته و بین ترتیب گونه مناسب جهت زیر شکن‌کی در اراضی سبک‌تر بیشتر می‌گردد.

واژه‌های کلیدی: زیر شکنی، زیر شکن کج ساق، تیغه‌های سطحی، نیشکر

مقدمه

امروزه به کارگیری ادواتی چون زیر شکن‌ها جهت انجام عملیات خاک و وزی عمیق مزارع با خاک سبک‌تر و سلیمان، به منظور افزایش تخلخل خاک بهبود نموده، نمود مناسب آب در

1. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد مکانیک ماسیون‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

117
ورزی بر مقاومت کشنی بوده به طوری که افزایش هر یک، موجب افزایش مقاومت کشنی می‌گردد. برای ساختن مطالعات رستاووار (1) زیرشنک کج ساق در دامنه رطوبی بین حرارتی نسبت به سایر زیرشنک‌ها قادر به کار است. بدین لحاظ از نظر مدل‌سازی و زمان استفاده از یک محدودیت‌های کمتری وجود دارد.

تئوری و همکاران (15): زیرشنک به نام دوساق (Ratooing) مزارع نیشکر مورد ارزیابی قرار دادند. این زیر یک شناور در دو ساق خمیده که در برخی راستا و بسته مصرفی قرار دارد، بوده. تغییر گلویی در عمق حدود 25 تا 30 سانتی‌متر و تغییر مطلق در عمق 30 تا 40 سانتی‌متر کیار می‌گردد. به دلیل خروج شدن خاک نسبت به توسط سکه، تغییر عمایری در اثر بایین ترین رنگ و درصد حالت افزایش شکاف به هم خوردگی و میزان خرده شدن خاک در عمق زیرین افزایش یافته و مقاومت وزنه کاهش یافته. نتایج حاصل از کاربرد دو زیرشنک در مزرعه یافته که نسبت به آن که ساق در مقطع به هم خوردگی توسط زیر جهت انجام زیر هشی یکی از زیر شکاف معمولی به دست آمد. سایر گزارش‌های این جوانه در مشابه بوده این زیر شکاف معمولی به دلیل افزایش ساق در مقایسه با زیر شکاف معیونی بالا به همگام بر در عمق مشخص خاک یک کیلو می‌مدازند.

آذر گزارش (8) جهت تعداد جانی بهبود طاریکی دستگاه مزکرو در ساخت ساق عمق و عرض گزارش این روش از جامعه عمیق و روانی با عواملی که وابسته به تنظیم و ساختگی در حال مصرف و روانی با عواملی که قرار گرفته بر روی نظر ویلیام (16) راکنیان ارزی معیونی گزارش این کج ساق تجاری گزارش جهت انجام زیر هشی یکی از زیر شکاف معمولی به داد. سایر گزارش‌ها که گزارش گردیده‌ای در مقطع به هم خوردگی توسط زیر جهت انجام جمعیت به دلیل افزایش ساق در مقایسه با زیر شکاف معیونی بالا به همگام بر در عمق مشخص خاک یک کیلو می‌مدازند.

مجدیدی و روتفت (10) تحقیقاتی را انجام داده‌اند که ساق مفرد نسبت به زیر یک تابعی 30 درجه انجام دادند. نتایج حاصل بیانگر آن بوده که مقاومت کشنی گزارش این کج ساق در رابطه حمله 3/ 4 درجه حادث خود و با افزایش عمق کاری، مقاومت کشنی گزارش این کج ساق در مقایسه با گزارش برگردان (نیما شاهد) بیشتر گردیده‌ام مقایسه وزنه آن به طور محسوسی کمتر است. این امر تأکیدی بر پای پایان مصرف انرژی در گزارش این کج ساق می‌باشد.

در ادامه روتفت و مشهدی (2) تحقیقاتی را به منظور تعیین فاصله بهینه به وارد گزارش این کج ساق و تعیین فاصله بین در ریف مولی گزارش این مکروکات جهت استفاده به خاک وری مطلب همه بنا مصرف گزارش انجام داده‌اند. بخش‌های از نتایج حاصل بیانگر اثر معنایی فاصله بین تغییرها و عمق خاک
عمارتند زیر شکن کج ساق توام با نیافته‌های سطحی در یک خاک با یافته رسی

افزایش عمق کار، مقاومت کششی افزایش می‌یابد. حداکثر بودن نیروی کششی لازم به ایجاد هرس، از مراحل عدالت زیرشکن کچ ساق نسبت به دو زیرشکن دیگر به‌هم‌چینن در زمین خاکوزی شده توسط زیرشکن کچ ساق بالاتر متوسط مقادیر شاخص مخروطی (متوسط ارتفاع اندام‌هایی شده درعرض کازیزشکن) نسبت به زمین خاک وری شده باید نوع زیرشکن دیگر ماهاده گردد.

اسپور و کادوین (14) در طی یک تحقیق آخر تیغه‌های سطحی بر مقاومت کششی و سطح مقطع به هم خورد خاک را در مورد زیر شکن یک شاهداد بهتر مطالعه قرار دادند. آزمایش‌ها در دو ماه متوالی در دو ماه رسی انجام گرفتند. در تیغه سطحی در اعماق 15، 24 سانتی‌متری و در فواصل 50 و 100 سانتی‌متر مورد ارزیابی قرار کردند. نتایج حاصل بیانگر آن بود که اضافه کردن تیغه‌های سطحی، بر مقاومت کششی تاثیر داشته و هم‌چنین اندیزه سطح مقطع خاک به هم خوردن را نیز افزایش می‌دهند. مقاومت ویژه باری این حالت به حداقل مقدار خورد می‌رسد.

در تحقیق دیگری، میلکد و همکاران (11) پیک تیغه سطحی بالدار را روی عمارتند زیرشکن مرده ارزیابی قرار دادند. نتایج حاصل بیانگر آن است که در تمام موارد، اضافه کردن تیغه سطحی موجب افزایش کسب می‌کند. در خاک شده و خورده واقعی نیافته‌ها می‌دهد. علاوه بر این، راهی‌کاری بر این انتخابی ارزی مصرفی و هم‌چنین میزان به هم خوردگی خاک افزایش می‌یابد.

گزار و نقوی (2) در تحقیقات خود، اثرات اضافه نمودن تیغه‌های سطحی بر مقاومت کششی و سطح مقطع خاک به هم خوردن در سه فاصله بین تیغه‌های در عمق 25 سانتی‌متر در مقایسه با زیرشکن یک شاهداد بدون نیافته‌های سطحی در عمق 50 سانتی‌متر را بررسی قرار دادند. نتایج حاصل بیانگر آن بود که تعداد تیغه سطحی بر مقاومت کششی، سطح مقطع خاک به هم خوردن، مقاومت ویژه، شاخص مخروطی و جرم مخصوصی نیافته‌های آثار معنی‌دار دارد و در عمق ۳۰ تا ۴۰
مواد و روش‌ها
آزمایش‌ها در اراضی کشت و صنعت میان آب واقع در منطقه
هفت‌تیه در حدود ۱،۵ خاک و گردو به سرعت ۳۰ دور در دقیقه استفاده
(جدول ۱). این آزمایش می‌تواند از نوع مفید با
دوسر ساقه و بی‌سرعت با راه‌کارهای مختلف دچتری بود. در راستای
انجام این مطالعه، سقع ناواتانی برد ریوی شیاهی است.
تعیین مقدار شکر (شیاهی ۱)، بطوری که هر مویگرده به دست آمد
ویژه پیک تیغه سطحی (و سطحی و وضعیت در تیغه
سطحی (ب) فاصله ۵۰ سانتی‌متر از یکدیگر به طوری که تیغه
به مسکن خاص مولت یا بانه شده. همچنین عمق کار تیغه نیز تیغه
قابل تغییر بود، به طوری که تیغه‌های سطحی در دو وضعیت قابل
نصب بودند. یا توجه به بافت سختی خاک که سیلیک
محصول آزمایش) و همچنین انجام آزمایش‌های مقدماتی با استفاده
نحوه سنج معکوسی که از ناحیه تراکم خاکی در
ساختار زیرکارکردن به سرعت ۲،۵ خاک و گرد
شکر (در دور متوسط ۵۰ دور در دقیقه استفاده گردید.
به حدکت در آدره‌های راه‌پیمایی دی و بولدوزر کوماتو
با توان متوسط ۲۵۰،۴۰ دوری (در دور متوسط ۲۰۰ دور در
دیقیقه) که استفاده از ان در منطقه معمول می‌باشد، استفاده شد.

درجه قابل تنظیم بود، اما توجه به نتایج مطالعات مجددی و
در جدول ۵،۰) برای اندازه‌گیری فشار را دو نشانه از ریز سوار بر بولدوزر
رشد، تیمارهای آزمایشی عبارت بودند از ریز سوار بر بولدوزر
تشابه خاک وری معمول در منطقه)، زیر شکر که سطح دیگر
تشابه سطحی (Sw) در حدود ۵۰ سانتی‌متر خاک، زیر شکر که
ساق مجهز به یک تیغه سطحی در جلو در دو عمق

DBP = \frac{FS}{h}\]

که در آن:

کW = \text{وان مالنیت تراکتور}

kN = \text{مقایسه کشتی زیر شکر}

در نتیجه کاشت هر هر عملیات خاک وری، بررسی اثر استفاده
از زیر شکر که ساق مجهز به تیغه‌های سطحی و پابند
تشابه سطحی بر کشت مورد نیاز و شرایط بهبود سایر
شکل‌های خاک‌وری در مقایسه با رو محور مورد
مطالعه قرار گرفت.

۱۲۰
عملکرد زیر شکن کج ساق توام با توجه به سطح در یک حکاک با پاflat رسی درجه 1. پایه‌های مزرعه آزمایشی در محدوده عمق‌های مختلف

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>درصد شن (%sand)</th>
<th>درصد رس (%Clay)</th>
<th>درصد سیلت (%Silt)</th>
<th>پاflat رسی</th>
<th>رسی</th>
<th>رسی</th>
<th>رسی</th>
<th>رسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>16</td>
<td>50</td>
<td>345</td>
<td>31</td>
<td>255</td>
<td>355</td>
<td>385</td>
<td>394</td>
</tr>
<tr>
<td>15-30</td>
<td>14/5</td>
<td>13</td>
<td>345</td>
<td>30</td>
<td>255</td>
<td>355</td>
<td>385</td>
<td>394</td>
</tr>
<tr>
<td>30-45</td>
<td>13</td>
<td>11</td>
<td>345</td>
<td>31</td>
<td>255</td>
<td>355</td>
<td>385</td>
<td>394</td>
</tr>
<tr>
<td>45-60</td>
<td>11/5</td>
<td>13</td>
<td>345</td>
<td>30</td>
<td>255</td>
<td>355</td>
<td>385</td>
<td>394</td>
</tr>
<tr>
<td>60-75</td>
<td>14</td>
<td>14</td>
<td>345</td>
<td>31</td>
<td>255</td>
<td>355</td>
<td>385</td>
<td>394</td>
</tr>
</tbody>
</table>

شکل 1. نحوه انضمام تیپ‌های سطحی به یک دستگاه زیرشکن کج ساق

محرک محاسبه گردد.

برای تعیین درصد لغزش چرخ‌های محبرک تراکتور از روش دور ثابت استفاده شد؛ بدبین صورت که هنگامی که تراکتور به سرعت مورد نظر وزیرشکن کج ساق نیز به عمق مطلوب میرسد، مسافت طی شده به ازای تعداد دور می‌گیرد. جرخ عقب تراکتور اندازه‌گیری می‌گردد. یک بار دیگر بعد این که وزیرشکن کج ساق درخاک فرو برده شود، مسافت طی شده به ازای همان تعداد دور قبلی جرخ عقب تراکتور اندازه‌گیری شد و با استفاده از رابطه 2 درصد لغزش چرخ‌های

$$ kmh^{-1} = S \times \frac{la - lb}{la} \times 100\% $$

که در آن:

- مسافت طی شده به ازای دور ثابت چرخ عقب تراکتور در حالت بدون بار la
- مسافت طی شده به ازای دور ثابت چرخ عقب تراکتور در حالت با بار lb

جهت اندازه‌گیری شاخص مخروطی خاک از دستگاه فرو ستون Findly Irvine مدل SP1000 ساخت شرکت Findly Irvine. قطر SP1000 ساخت شرکت Findly Irvine مدل SP1000 ساخت شرکت Findly Irvine.
نظر مقاومت کششی با احتمال ۹۹٪، نتایج آزمایش‌های متعدد نشان داد که مقاومت کششی تیمارهای (d1, d2, d3, d4) با نیازمندی مشابهی در هر یک از اتفاقات معنی‌دار است. میانگین مقاومت هر یک از تیمارها در صورت عرضی به فاصله ۱۰ سانتی‌متر منجر به عجیب‌الحال تا عجیب‌الحال تا عکس، این امر به کمک راحتی در زمان اندام‌گذاری مشاهدهگری مقاومت کششی بود. قبل از انجام عملیات خاک‌برداری، به دلیل متقابل بودن خاک سطحی و کم بودن رطوبت، آن امکان هیچ گونه افزایش تغییر مقاومت خاک مبخر ندار. به منظور اطلاع دقیق از چگونگی و اندام سطحی مقطع خاک ورودی در دستگاه فشرتهای آزمایشی می‌باشد. بتین منظور مقاومت سطحی مقطع خاک به‌هم خوردیده به ازای عرض واحد، عرض کار یک‌نقطه‌ساز ۲۳ سانتی‌متر (بولون‌دار دایره‌ای) به وسیله عمومی اندام‌گذاری کرده و بدین ترتیب شکل سطحی مقاومت با کاربرد هر قرارداد این ذوق‌دهی به دست آمده و ساخته‌ای به ظرفیت یک مقاومت سطحی محاسبه گشت. به

نرخ فشرده که در ادامه خواهید آمد، یک متر از نظر شرایط که این مقادیر افراد با فاصله دو تغییر زیرشنک می‌باشد. از تقسیم سطح مقطع خاک به‌هم خوردیده به ازای عرض کار اساسی، میزان سطحی مقطع خاک به‌هم خوردیده به ازای عرض واحد به دست آمده. لازم به ذکر است که مقدار ابزار و تجهیزات ترویجی و منشی (۲)، فاصله بهینه تفاوت نموده و در اینجای زیرشکن کانال سی‌سول با ۲۳۵ سانتی‌متر و فاصله بین در ریفی‌سازی ۲۵ سانتی‌متر بایسته. اما به این که تراکتور سی‌سول که ۲۳۹ متر به کشیدن برنامه راه‌سازی با یک عرض کار و تغییر زیرشنک در فاصله ۵۵ سانتی‌متر در اراضی نسبتاً و متقابل به‌هم خوردیده به دلیل این اثر تغییر و به‌هم خوردیده به ازای عرض واحد زیرشکن روز شناسی، عرض کار به یک متر کاهش داده شد.

نتایج و بحث

مقاومت کششی و نمای مصرفی

با توجه به نتایج تجزیه‌بنا و رایانش مشخص کرده که تیمارها از
کشمش، در مقادیر توان مصرفی نیز وجود دارد. در حالی که تیمار زیر شکن بدون تیغه‌های سطحی به توایی در حدود 35 کیلو وات نیاز دارد، متوسط توان مصرفی تیمارهای دارای تیغه‌های سطحی و در اعمال مختلف برای 27/6 کیلو وات بوده است. یعنی به طور متوسط، توان مصرفی در تیغه‌های اضافه نمونه از تیغه‌های سطحی، 21/7 کاهش یافته است که مقدار قابل توجهی است.

نواز و همکاران (15) توان کشمش مورد نیاز زیر شکن‌های مرسوم را در محدوده 90 تا 110 کیلووات اعلام داشته‌اند که این مقدار از توان مصرفی زیرشکمش کش سطحی استفاده می‌تواند در تحقیق حاضر سپار فواید است. نتایج مشابهی نیز در ارتباط با استفاده از تیغه‌های سطحی به مظهر کاهش مقاومت کشمش افزایش سطح مقطع خاک به هم خوردگی و کاهش مقاومت ویژه به حالت تعبیه تیغه‌های سطحی در جلوی زیرشکمش توسط استدرا و گازدین (14)، میلادک و همکاران (11) و گازر و لغوي (4) گزارش شده است.

برای نظارت پیچی (7) و کوکلی (5) زیرشکمش کش سطحی در طی عملیات خاک و زیرهای خاک را در سر چای خود به سمت بالا حرکت داده، شکمش و خرد می‌کند. افزودن
سطح مقطع خاک به همدیواره‌ها

تجزیه‌و-ارای‌دانه‌های آزمایش حاکی از آن است که تیمارها از نظر سطح مقطع خاک به همدیواره‌ها به احتمال 99 درصد یکدیگر دارای اختلاف معنی‌داری می‌باشند. اعداد مندرج در شکل 3 بیانگر آن است که با افزایش تعداد تیغه‌ها، سطح مقطع خاک به همدیواره‌ها به طور معنی‌داری آن را کاهش داده است؛ اما این کاهش از نظر آماری معنی‌دار نیست. است. بیشترین سطح مقطع مربوط به تیمار a1d که به ترتیب بیشترین سطح مقطع را دارد اندکی ارائه دارد. این نتیجه گرفته شده است که طوری که تعداد اورتی تیغه‌ها به همدیواره‌ها اصلی تبریز ۷۵ سانتی‌متر می‌باشد. لذا حاکم این نتیجه‌ها در جلوی برترین سطح مقطع خاک تیغه‌های اصلی می‌باشد و بعد از این که خاک سست شد، تأثیر تیغه‌های اصلی می‌باشد. بیشتر شد. به طور متوانده بیشتر شد و خاک طرفین بیشتر.
عملکرد زیر شکن کچ ساق تواو با تیم‌بیانی سطحی در یک حاک با پاترسی

عرض کار (cm)

![نمودار عرض کار (cm)](https://via.placeholder.com/150)

شکل ۴: متوسط سطح مقطع به‌هم خورده‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق

مقایسه متوسط عرض کار به‌هم خورده‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق نشان می‌دهد که معیار سطح مقطع کار به‌هم خورده‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق نسبت به تیم‌بیانی بر طور معنی‌داری افرازش داشته است.

در تیغه‌های سطحی، سطح مقطع حاک ورزی شده به‌هم خورده به‌هم خورده‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق نسبت به تیم‌بیانی بر طور معنی‌داری افرازش داشته است.

شکل ۵: سطح مقطع حاک به‌هم خورده توسط تیم‌بیانی مصلح به پولدوتز

گرفته شود، شکل ۳ نشان می‌دهد که معیار سطح مقطع خاک به‌هم خورده‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق نسبت به تیم‌بیانی بر طور معنی‌داری افرازش داشته است.

در جدول ۲ مقایسه میزان‌های مختلف عمق و تیم‌بیانی که گیرنده روش مورد بررسی قرار گرفته است. به‌هم خورده‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق نسبت به تیم‌بیانی بر طور معنی‌داری افرازش داشته است.

در صورتی که دریافت‌کننده دو سردرفی توسط تیم‌بیانی زیر شکن کچ ساق نسبت به تیم‌بیانی بر طور معنی‌داری افرازش داشته است.
شکل ۶ مقایسه اثرات ریز (R) و زرشک (SW) بر تیمارهای (fine) و میانگین تیمارهای
زیر شکن کج ساق با تیغه‌های سطحی (SW) و برخاس مخروطی

جدول ۲ مقایسه میانگین شاخص مخروطی برای تیمارهای مختلف (kPa)

<table>
<thead>
<tr>
<th>تیمارهای</th>
<th>آزمایش</th>
<th>سانتی‌متر</th>
<th>سانتی‌متر</th>
<th>سانتی‌متر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۰-۱۰</td>
<td>۱۰-۲۰</td>
<td>۲۰-۳۰</td>
</tr>
<tr>
<td>Sw</td>
<td></td>
<td>۱۹۰۵۰۰</td>
<td>۲۷۱۹۰۰</td>
<td>۳۵۸۹۰۰</td>
</tr>
<tr>
<td>t1d1</td>
<td></td>
<td>۱۳۸۷۰۶۶</td>
<td>۲۴۳۳۰۶۶</td>
<td>۴۷۴۷۰۶۶</td>
</tr>
<tr>
<td>t1d2</td>
<td></td>
<td>۲۴۹۲۰۴۶</td>
<td>۳۷۱۳۰۴۶</td>
<td>۴۵۳۴۰۴۶</td>
</tr>
<tr>
<td>t2d1</td>
<td></td>
<td>۱۴۹۰۰۹۹</td>
<td>۲۴۳۳۰۹۹</td>
<td>۴۷۴۷۰۹۹</td>
</tr>
<tr>
<td>t2d2</td>
<td></td>
<td>۲۴۹۲۰۵۰</td>
<td>۳۷۱۳۰۵۰</td>
<td>۴۵۳۴۰۵۰</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>۲۴۹۲۰۶۵</td>
<td>۳۷۱۳۰۶۵</td>
<td>۴۷۴۷۰۶۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۴۹۲۰۷۰</td>
<td>۳۷۱۳۰۷۰</td>
<td>۴۵۳۴۰۷۰</td>
</tr>
</tbody>
</table>

* در هر ستون میانگین‌های با جدیدترین اخلاقی معنی دار تنها باشند (داتاکن ۲).}

نتیجه‌ی به‌اندازه‌ی مثبت‌تری دست‌نخورده‌ی در بین تیغه‌ها، نوعی غیر یکن‌نوشتی به وجود می‌آید. این غیر یکن‌نوشتی در مجموع باعث می‌گردد تا اکثر مقادیر به تیغه‌های ۲۰-۳۰ سانتی‌متر نسبت به سایر تیمارها شده است. بعد از تیمار ریز، پیشین و Sw واحد می‌باشند که این امر به علت خاک وری کمتر در بین تیغه‌ها و زرشکین کج ساق حاصل شده است. سایر تیمارها که دارای تیغه‌های سطحی می‌باشد در آخر موارد، از این نظر اختلاف معنی‌داری با هم ندارند. بین بررسی در هر حداکثری با افزایش تعداد تیغه‌های سطحی، مقدار شاخص مخروطی کاهش پیدا کرده است. همچنین در هر حداکثری با افزایش عمق کار،
نگرش خریدی محکم تراکتور

تجزیه و تحلیل جمعیت اثر اصلاحات صنعتی و سازشی بر مصرف کننده مصرف کننده اقتصادی این محصولات به شرح می‌تواند و این امر به تغییراتی در نظر گرفته شود که در محیط اقتصادی و سپس انجام داده شود.

مباحث مورد استفاده:

۱. مصالح و مواد استفاده از ۱۳۸۸ ساخت یک دستگاه زرسکن کج ساق به اندازه‌های معیوب و مقاوم‌سازی عملکرد آن با زرسکن‌های معمولی و ساختار خاص، پایان نامه کارشناسی ارشد مهندسی کشاورزی، دانشگاه شیراز.

۲. روش‌های جدید برای کاهش کهنه محصولات در واقع معیوب و نیازمند به سازشی مورد استفاده قرار گرفت. مجله علمی کشاورزی ایران ۰۳/۱۳۸۶، ص: ۳۱۹-۳۳۰.

۳. کارگری تجهیز باید به بهترین آبادی های زرسکن کج ساق جهت خاک ورزی در مزرعه‌های کشاورزی ارائه شود.

۴. تجربه‌های مختلف مصرف باعث کاهش مصرف خودکار می‌شود. نتایج نشان داده که کارگری زرسکن کج ساق به خوبی حرکت می‌کند و به کاهش کرایه‌زی محصولات منجر می‌شود.

۵. نتایج نشان داد که با کاهش چکگی بهترین مصرف باید به استفاده از تجهیزات رو به رو برای آبادی بهترین مصرف به دنبال داشته شده است.