آرزوی مدیریت معنی‌دار در تنابه‌های آیش - چهول‌های جو - علی‌ع. اول و محمد بنی‌آبادی

چکیده

ان تحقیق در مزرعه خوک‌داری در سال 1382 در مزرعه تحقیقاتی دانشگاه فردوسی مشهد در دو قسمت زمین تحت کشت جو علوفه‌ای به اجرا درآمد. نمونه‌برداری بر روی قاشق‌های 7 نمونه در مزرعه بود. نمونه‌برداری در مزرعه از چهول‌های گونه‌های مختلف علف‌هرز در تنابه چهندان در مزرعه ایش - جو و تنابه چهندان در مزرعه جو - جو بود. نتایج نشان داد تراکم خاصی سایه‌های علف‌هرز را تأثیر می‌گذارد. اثرات این اندازه‌گیری با توجه به گونه و مزرعه تغییر نمود اما موجب مکانیکی چهول‌های بود و باعث منجر به کاهش چهندان نمود. درصد پخته پایداری از علف‌هرز در مزرعه ایش - جو در مزرعه اول و دوم نمونه‌برداری به ترتیب 11/5و 15 درصد در مزرعه ایش - جو 4/6و 50 درصد بود. این تأثیر علاوه بر تاکید اغلوبی‌ها بر تنابه چهندان در مزرعه ایش - جو ناکامی‌های برخود این تفاوت را از تنابه آیش - جو با مدیریت معنی‌دار اعمال شده در مزرعه نشان می‌دهد.

واژه‌های کلیدی: علف‌هرز، توزیع گونه‌ها، کریچینگ، مدیریت مناسب با مکان، جو علوفه‌ای

مقدمه

کشاورزی یکی از عوامل مؤثر در تکامل علف‌هرز هست. جو علف‌هرز تحت تأثیر مجموعه وسیعی از عوامل زراعی قرار گیرد. امروزه در سیستم‌های کشاورزی فشرده، علف‌هرز کشاورزی توسط کشاورز به‌طور مستقیم به آثار دراز مدت آن به شدت افزایش یافته است. دانلود و همکاران(1) گزارش کردند.

1. به ترتیب دانلودی سیاست کارشناسی ارشد، استاد، استادیاران و مربی زراعت، دانشگاه کشاورزی، دانشگاه فردوسی مشهد.

اکثریت مدیریت محصول در تنابه‌های آیش - چهول‌های جو - علوفه‌ای و اثر
عکس نمونه کشاورزی و متاب گیاهی / سال 1386 / بهار

آزمایش گاههای زراعی صبح، از توسیده جمعیت علف‌های و یا جلوگیری کرده و به تعداد کل جمعیت در زیر سطح آستانه خرداد اقتصادی کمک می‌کنند. کود و همکاران (11) نیز اظهار داشتند که توانایی زراعی در مواردی که کشت مداوم به دلیل زراعت قادره با اوایل توانایی علف‌های و یا بانش. عملای مختلف زراعت، بر ترکیب و ترکیب علف‌های و یا تأثیر قابل توجهی دارد. ارزش جریه از نظر دقت و کارایی مدیریت علف‌های و یا علی‌رغم از ترکیب و تراکم گونه‌ها، اطلاع از توزیع مکانی و نحوه پراکنش علف‌های و در سطح مزرعه، نظر به هر نوع می‌باشد.

مطالعات انجام شده در زمینه چگونگی توزیع علف‌های و یا نشان داده است که علف‌های و یا در مجموع در بیک یا جناغط متغیر می‌باشد. (17) جاکسن و همکاران (9) با مطالعه روی 5 مزرعه سویا و 7 مزرعه دریافتند که به طور متوسط در سطح 12 مزرعه. 70 درصد نواحی علی‌رغم زراعت به علت علف‌های و یا مصرف گرین و همکاران (8) از مطالعه انجام شده نشان دادند که 35 درصد مزرعه سویا در مزرعه 26 درصد مصرف علف‌کش می‌باشد. (16) در مزرعه نواحی و به سبب این ترتیب، علف‌های و یا در مزرعه طولانی مدت علف‌های و یا است. این روش نشان می‌دهد که کاهش زیستگی و میزان توزیع جویی علف‌کش یا کاهش زمان کاربرد علف‌کش، کاهش هزینه ناشی از مصرف علف‌کش، کاهش مقاومت به علف‌کش، کاهش هزینه ناشی از مصرف علف‌کش، کاهش زمان کاربرد علف‌کش، کاهش فشردگی خاک، کاهش سمی‌پیمایی گیاهان غیر هدف و افزایش کنترل علف‌های و یا مقاوم و سنج دارد. این روش مدیریتی نیاز به تکنولوژی پیشرفته داشته و به بزه در مورد لگه‌های که از نظر مکانی و زمانی باید باشد مقرون به صرفه است. در هر صورت نمونه‌برداری و تهیه نقش علف‌های و یا جهت سمی‌پیمایی لگه بسیار مقرون و راه‌گشاست.

با توجه به موارد شرح‌شده، هدف از این پژوهش ارزیابی نوع مدیریت و تأثیر آن بر تراکم و توزیع گونه‌های علف‌های و یا شهر مسجد می‌باشد.

Arnebia (بالین) بر عملکرد محصول زراعی تأثیر نداشت و حتی در برخی شرایط خاص باعث تخریب و گیاه زراعی می‌شود به Selosia argentea 3 Borreria arctioides, hispidissima
مواد و روش‌ها
این تحقیق در سال 1382 مورد مزرعه تحقیقاتی دانشکده گیاهشناسی دانشگاه فردوسی مشهد واقع در 10 کیلومتری جنوب شرقی مشهد با عرض ۶۳۴۰/۵ شمالی و طول جغرافیایی ۵۷۴۰،۵ شرقي در ارتفاع ۹۸۵ متر از سطح دریا در دو قطعه ژنی چگونه استفاده به طور جداگانه به اجرا درآمد.
عملیات زراعی انجام گرفته در این مراحل شامل:
- شخم، دیسک و کاپ بردار کردن سفرات آمونیم به میزان ۲۵۰ کیلوگرم در هكتار در پاییز سال 1381
- کشت در تاریخ 10/1/1381 با فاصله رديف ۲۰ سانتیمتر
- میزان دوز مصرف ۷۵ کیلوگرم در هكتار
- نوع بردار شده ره سه‌نما (دیم)، آزمایش در کشت رسمی
- سه‌نما یک رقم دوستانه میوه به کشت آزمایش در دهه سوم آزمایشگاه ومهم اول دهه در شرایط مناسب عاملی کردن بی‌با
- عکسهای در دها کشت تتوفر دی به میزان ۱/۵ لیتر در هکتار
- در تاریخ 19/2/1382
- برنامه‌جی در قرارداد نمایدی در تاریخ 31/12/1382 با
- استفاده از دستگاه درگرف عکسهای یک

قطمه اول
این قطعه به‌بعد ۷۲ متر/۱۴۲ متر بود که پس از اجرای شخم برگدان پایه و دیسک بهار، در سال قبل تحت کشت قرار داشت. این قطعه در پنج سال زراعی قابل به‌ترتیب تحت کشت گذار. گیاه‌های دوز، قطعه‌گیری، گندم، گزار داشت. برای نمونه‌برداری مزرعه به شکلی که مربعی ۷۲ متر/۱۴۲ متر تقویم بندی و در محل هر تقاطع، میل چوبی کوبیده شد. نمونه‌برداری در سه مرحله انجام گرفت:
الف) قبل از مصرف علف‌کشف (مرحله پنج زنی کامل) در تاریخ 19/2/1382
ب) بعد از مصرف علف‌کشف (خلف کشف توفرید) در تاریخ 28/1/1382

قطمه دوم
این قطعه به‌بعد 6۰ متر/۱۲۴ متر بود و در سال قبل به کشت چندجرید اختصاص داشت. این قطعه در پنج سال زراعی قبل تحت کشت خود، گوشه‌فرنگی گندم، چندجریدن کشت قرار داشت. تمامی عملیات انجام شده در این قطعه مشابه قطعه اول انجام شد. نمونه‌برداری در سه مرحله انجام گرفت:
الف) قبل از مصرف علف‌کشف (مرحله پنج زنی کامل) در تاریخ 16/1/1382
ب) بعد از مصرف علف‌کشف (مرحله سلبز دان) در تاریخ 8/2/1382

ج) بعد از برداشت محصول در تاریخ 26/3/1382

و در مجموع در هر مرحله از 150 نقطه نمونه‌برداری کشت به منظور تجزیه و تحلیل داده‌ها از روی‌های آماری انوینسنتیک استفاده شد (2). نظیره متناظر میکائیل ناشی از به‌دست‌آمده که خصوصیات مختلف محیطی دارای وابستگی مکانی هستند هم‌سینی میکائیل بین دو نمونه به صورت یک مدل ریاضی تحت عنوان سیمی‌ورایانس در قابل معادله 1 توصیف شد.

\[\gamma(h) = \frac{1}{N(h)} \sum_{i=1}^{N(h)} \left(Z(x_i) - Z(x_i + h) \right)^2 \]

که در آن \(h \) زوج نمونه‌ها که با فاصله از یکدیگر واقع‌اند. \(N(h) = N(h) \) تراکم علف‌هر متر مربعی در نقطه \(h \) در فاصله \(x \) در نقطه \(h \) در نقطه \(x \) \(Z(X(x_i) = Z(x_i + h) \) تراکم علف‌هر متر مربعی در نقطه \(h \) در فاصله \(x \) در نقطه \(h \) قرار گرفته است.
جدول 1. تراکم عفونت کردن موی گونه‌های موجود در مرحله بال (1) و بعد (2) از مصرف عفونت کش در مزرعه تحت تناوب آیش-جو

<table>
<thead>
<tr>
<th>علف‌های عفونتی</th>
<th>دارمه‌泰</th>
<th>درصد تراکم</th>
<th>حذف‌های</th>
<th>مدل</th>
<th>نام‌泰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolvulus arvensis</td>
<td>8%</td>
<td>28/58</td>
<td>24/59</td>
<td>نام‌泰</td>
<td>Convulvulus arvensis</td>
</tr>
<tr>
<td>Fumaria sp.</td>
<td>3%</td>
<td>30/08</td>
<td>27/06</td>
<td>نام‌泰</td>
<td>Fumaria sp.</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>5%</td>
<td>5/15</td>
<td>4/10</td>
<td>نام‌泰</td>
<td>Polygonum aviculare</td>
</tr>
<tr>
<td>Stellaria media</td>
<td>3%</td>
<td>2/10</td>
<td>2/33</td>
<td>نام‌泰</td>
<td>Stellaria media</td>
</tr>
</tbody>
</table>

در موزعه با تناوب آیش-جو در مرحله اول و دوم نمونه‌برداری، مهم‌ترین علف‌های عفونت‌کردن شامل شاه‌آلو (Stellaria media) و گندم‌کره (Fumaria sp.) (Convolvulus arvensis) و یکساله (Polygonum aviculare) بودند. (جدول 1) علف‌های عفونت‌کردن یکساله 50 درصد و علف‌های عفونت‌کردن حذف‌های چندساله (پیچک و معدودی)، جنگل‌ها و پدیده 79 درصد تراکم کن را در مرحله اول نمونه برداری شاه‌آلو حذف‌های شاه‌آلو هم اما تناوب چندساله جو، بیکاله‌ها و 8/5 درصد و چندساله‌ها

۱۱/۱۴ درصد تراکم کل علف‌های عفونت‌کردن را شامل می‌شوند.

(شکل 1.) آیش یکی از اجزای مهم و مؤثر در هر تراکم زراعی بوده و انجام عملیات شفه مکرر و مصرف عفونت کش های در شرایط آیش یکی از عوامل مؤثر در کاهش تراکم عنف‌های عفونت‌کردن و در تحقق کاهش غنای پاکی بذر است. اما از آنجا که در این موزعه، چندین

\[
\ln (x+1) = \theta
\]

\[
\text{می‌توان داده‌ها از این گزارش طبیعی گرفته شد.}
\]

\[
\text{بنابراین طی یک فیکس در ۱۶۸} \]
جدول۲. اجزای واریوگرام مربوط به گونه‌های متشابه موجود در دو مرحله قبل (1) و بعد (2) از مصرف علف کش در

<table>
<thead>
<tr>
<th>علف‌های حساس</th>
<th>درصد علف‌های حساس</th>
<th>مدل</th>
<th>نام‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>گیاه چندان تغیر نکرد. به نحوی که 72 درصد واریانس بین نمونه‌ها در مرحله اول و دوم نمونه‌برداری از طریق همبستگی مکانی قابل توجه بود. از علف‌های حساس تغییر نکرد و از 289/0 به 274/0 کاهش یافت.</td>
<td>37/6</td>
<td>Convolvulus arvensis</td>
<td>نام‌بایی</td>
</tr>
<tr>
<td>گیاه چندان تغیر نکرد. به نحوی که 72 درصد واریانس بین نمونه‌ها در مرحله اول و دوم نمونه‌برداری از طریق همبستگی مکانی قابل توجه بود. از علف‌های حساس تغییر نکرد و از 289/0 به 274/0 کاهش یافت.</td>
<td>37/6</td>
<td>Convolvulus arvensis</td>
<td>نام‌بایی</td>
</tr>
<tr>
<td>گیاه چندان تغیر نکرد. به نحوی که 72 درصد واریانس بین نمونه‌ها در مرحله اول و دوم نمونه‌برداری از طریق همبستگی مکانی قابل توجه بود. از علف‌های حساس تغییر نکرد و از 289/0 به 274/0 کاهش یافت.</td>
<td>37/6</td>
<td>Convolvulus arvensis</td>
<td>نام‌بایی</td>
</tr>
<tr>
<td>گیاه چندان تغیر نکرد. به نحوی که 72 درصد واریانس بین نمونه‌ها در مرحله اول و دوم نمونه‌برداری از طریق همبستگی مکانی قابل توجه بود. از علف‌های حساس تغییر نکرد و از 289/0 به 274/0 کاهش یافت.</td>
<td>37/6</td>
<td>Convolvulus arvensis</td>
<td>نام‌بایی</td>
</tr>
<tr>
<td>گیاه چندان تغیر نکرد. به نحوی که 72 درصد واریانس بین نمونه‌ها در مرحله اول و دوم نمونه‌برداری از طریق همبستگی مکانی قابل توجه بود. از علف‌های حساس تغییر نکرد و از 289/0 به 274/0 کاهش یافت.</td>
<td>37/6</td>
<td>Convolvulus arvensis</td>
<td>نام‌بایی</td>
</tr>
</tbody>
</table>
نمونه‌برداری، شاهد با 3/9 متر کمترین و هفت متر با 41/4 متر، بیشترین دامنهٔ تأثیر را داشتند. بنظر می‌رسد براز به دسترس داشتن اطلاعات دقیقتر از توزیع شاهد در مزرعه، به کارگیری فواصل نمونه‌برداری 23 متر تاثیج بهتری خواهد داشت. کازینه، همکاران (5) اندامهای مختلف گردن، کواردات و نقطه شروع (Acroptilon repens) را بروی دقت تغییر شاخصه‌های علف‌های مورد ارزیابی قرار دادند. آنها در نتایج که اندامهای گردن و نقطه شروع تأثیر زیادی بر دقت تغییر شاخصه‌ها دارد که تأثیر اندامهای کواردات بر دقت تغییر شاخصه‌ها اندک بود.

اجزاء واریوگرام در علف‌های گندمک و شاهد افراشته و بیشتری می‌کنند و تحقیق لکه‌هایی نمی‌باشند. می‌کند. باید به محتمل بودن هفت‌بند به علف‌کش تفکر کنیم، انتظار تشکیل لکه‌هایی نمی‌باشد. اما این تایید.

شکل 4. نمونه‌برداری قبل از مصرف علف‌کش.

شکل 2. نشان‌های توزیع و تراکم هفت‌بند در تناوب آبش-جو.

شکل 3. نشان‌های توزیع و تراکم هفت‌بند در تناوب چندزند-جو.
شکل ۵. نقشه‌های توزیع و تراکم شاهره در نتاوب چغندرفند-جو

هفت‌بند در مزرعه با تناوب آیش-جو به‌صورت چندین لکه مجزا و کوچک در فضای مزرعه مشاهده شد. در این نقشه‌ها کشیدگی لکه‌ها در جهت رفته‌رفته کاست و استقرار مراکز پرتراکمی با تراکم ۸ تا ۹ بیوته در متر هر مربع در جهات جنوبی و شرقی مزرعه قابل روند است. لکه‌های هفت‌بند در مزرعه با تناوب چغندرفند-جو، بوده و بزرگتر بوده. همان‌طور که ملاحظه می‌شود در این مزرعه، فضاهای زیادی از مزرعه حداکثر به ۲ بیوته در متر مربع، هفت‌بند آلوه‌بوده‌بوده. بنظر می‌رسد کشت چغندرفند در سال‌های قبل در بالابوده‌آلوکوکی این قطعه به‌هفت‌بند مؤثر بوده است. این ثابت جو اخذه‌زا، به‌طور کلی با این فضاهای چغندرفند بیش از فضاهای گسترش‌های این گونه علاوه‌بر نداشته است. این نتایج از مزرعه صورت مشابهشده است. به‌نظر می‌رسد حالت این فضاهای بزرگ‌ده بانک‌های چغندرفند-جو تفریق‌کننده تراکم‌های مشابه در تناوب چغندرفند-جو این امر در شکل‌های ۱ و ۳ دیده می‌شود.
 homepage علف‌های هرز تأثیرگذار است. گره‌های و یاکان (7) اظهار داشتند بر هر هرز که بانک نشان گرفته بر روی هرز توزیع یک‌های پایدارتر هم خواهند داشت و احتمالاً دلیل اصلی (Setaria spp.) به‌شکل طولانی مدت یکدیگر انتساب دهد. با طورکلی محصولات علف‌ها مثل جو که به‌تازگی یک یا که مشوید و خیلی سریع کانوی خود را می‌پنداند، از گسترش لکه‌های علف‌هرز ممکن است به عمل می‌آورد. از سوی دیگر عمد اجرای کنترل مکانیکی در این مرزه تفسیر یک‌زیست‌سریزم مبتلا در نشان دهنده حرکت علف‌ها در طی زمان دارد. اجزای اریزوپرام و نفس‌های توزیع و تراکم جوانه‌های هفت‌بند شته و گندم را استفاده می‌کنند. نشان دهنده توزیع و تراکم جوانه‌های هفت‌بند، شته و گندم، عدم موافقت کنترل شیمیایی را در این مرزه به‌تنهایی به‌نظر می‌رسد. انتخاب روش توزیع لکه‌های علف‌هرز در این مرزه بوضوح دیده می‌شود. تحقیقات نشان داده است که علف‌های علف‌هرز هزاران یک یا که تأثیر بیولوژی علف‌هرز، شرایط محیطی منطقه و برنامه‌های کشاورزی قرار دارد (7 و 14) از سوی دیگر پایین‌تر می‌شود که به‌تازگی یک یا که یک یا که در اثر توزیع غیریکنواخت علف‌هرز دارد (7 و 14). از آنجا که علف‌هرز در جهت ریزی کاشت کشاورزی دشت‌های جنگلی و هم‌کان (9) اظهار داشتند. گره‌های طی‌یلتر در جهت ریزی کاشت مکانیکی است به دلیل مدیریت زراعی، آب و جهت باشند. شکل 4 تا 7 نشان مکانیکی لکه را در طی فصل رشد نشان داده و بنگری‌های بیولوژی علف‌هرز نیز در پویایی

شکل 6. نفس‌های توزیع و تراکم گندم در تونوب آبی-جو
منابع مورد استفاده

1. کوچکی، ح. ج. ظرفی کتابی و ع. ن. فرش. ۱۳۸۰. رهیافت های اکورولوژیکی مدیریت علف‌های هرز (ترجمه). انتشارات دانشگاه فردوسی مشهد.

2. محمدی، ح. ۱۳۷۷. مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از نظریه پوستاژنتسیستمیک برای دسته‌بندی علف‌های هرز و... در کنترل آلودگی مفتی. برای کنترل علف‌های هرز بایستی براساس گونه‌های غالب علف‌های هرز در سطح مزرعه تعیین شد.

