تجزیه و ارزیابی عملکرد و اجزای عملکرد بذر در کلونهای فسفیو (Festuca spp.)

محمد مهدی مجیدی، آقافاخر میرلوری و محمد رضا سیزغلیان

چکیده

کشف رابطه همبستگی قارچ‌های انفودافیت با گراس‌های سردسیر در میان نژادهای بذری و تأثیر انفودافیت بر اثرات مثبت و منفی منابع اکثریت صفات بر عملکرد بذر فستوکا مورد بررسی قرار گرفته‌اند. کلونهای عصاره‌ای از طریق اعمال فارچک‌های بر روی کلونهای حاوی انفودافیت (F. v.) ایجاد و به سبب بهره‌وری هنگام تزریق داده شدند. طی دو سال مجموعه‌ای از صفات از جمله عملکرد و اجزای عملکرد بذری کلونهای انفودافیت گردید. نتایج نشان داد که بذر انفودافیت تولید بذر به‌طور معنی‌داری از 0.38 تا 0.29 درصد افزایش داد. با این حال عملکرد برخی زننده‌ها تحت تأثیر این رابطه همبستگی قرار گرفته که حاکی از وجود اثر متقابل بین قارچ و میزان می‌باشد. حضور انفودافیت به‌طور مستقیم صفات یا یکپارچگی و نیز آغاز وارد درد شدن آنها در مدت زمان مشخص را نیز تغییر داد. نتایج تجزیه و ارزیابی عملکرد بذر یکپارچگی با فستوکا انفودافیت، مقدار و جهت تأثیرگذاری صفات از طریق مصرفی مثبت و منفی منابع اکثریت صفات بر عملکرد بذر فستوکا مورد بررسی قرار گرفته‌اند. در گاهانه‌ای از فستوکا باروری خوش به‌طور مستقیم و افزایش به‌طور مناسب تولید می‌شود. نتایج نشان داد که در این گاهانه‌ها به‌طور خوش به‌طور مناسب مصرفی و سایر صفات اکثریت تأثیر خواه بر عملکرد دانه اعمال نمودند. نتایج نشان داد که لزوم اصلاح‌گرایی قبل از شروع پروژه‌های اصلاحی از حضور یا عدم حضور انفودافیت در زمین‌های مورد مطالعه اطلاع کافی کسب می‌تواند بسیار افزوده دهند به انفودافیت از باروری خوش به‌طور خوش به‌طور مناسب مصرفی و سایر صفات به‌طور مناسب تأثیر خواهند داشت. بنابراین با افزایش عملکرد دانه و خون‌سازی بذر به‌طور مناسب مصرفی و سایر صفات به‌طور مناسب تأثیر خواهد داشت.

واژههای کلیدی: فستوکا، قارچ انفودافیت، تجزیه و ارزیابی عملکرد بذر

مقدمه

جنس فستوکا (Festuca spp.) یک بیش از یکصد گونه‌ها یکساله و بزرگ و منشوع می‌باشد. این جنس شامل گونه‌های یکساله و چند ساله بوده که به‌طور عمومی برابر تولید علف‌ه، مصرف و تولید نبات‌های حیاتی از این گونه‌ها استفاده می‌شود.

1. به ترتیب دانشجوی سابق دکتری (در حال حاضر استادیار)، دانشیار و دانشجوی دکتری زراعت و اصلاح بیوتکنولوژی و اصلاح نباتات، دانشکده کشاورزی، دانشگاه
کمی، برشش مراتع و حفاظت خاک مورد استفاده قرار می‌گیرند (34). فستوکی بلند (35) فستوکی دیپلیوید جنس سیستمیک به نظر می‌رسد که از اجاید فستوکی باندی، این جنس خم‌چین پراکش و سیستمیک ماهی فستوکی مرتبه برای به‌هم‌اروی ترمکرد. و به‌هم‌اروی از واسطه قرن گذشته آغاز شده است (13) و کمیفی، از آخرین اقتباس در این فستوکی در بافت‌های غربی و شمالی کشور روش داشته و در یونسیل بالایی برای تولید علمه به‌صورت زراعی و مرتبه برخوردار می‌باشد، این حال مناسب‌اند بی‌کلیه مورد توجه جدی قرار نگرفته است. (33) است. نتایج کشوری که در تولید علمه و نیز احیای منابع کشور باعث شده که این گیاهان در سال‌های اخیر بیشتر مورد توجه قرار گیرند (34).

در بین نه‌های میانی نیست و رابطه هم‌مانی از مکاوانگی‌ها تحت عنوان فستوکی اندوفاتی با برخی گونه‌های غلیف از جمله گونه‌های جنس سیستمیک توجه به Neotyphodium داشتند. قارچ در جنس گیاهی‌های هستند که یک سوخت خانواده به صورت سیستماتیک در بافت‌های گیاه‌های زیر خانواده Pooidae است. رشد می‌باشد (33) بستر فستوکی در نیاز به این گونه‌ها نیست و سیستمیک چه لولی N. coenophialatum می‌باشد که به ترتیب با فستوکی بلند، چچم N. uncinatum چند ساله (راز راکس) و سیستمیک برخی گیاهی 34 می‌باشد (33) این قارچ‌ها به نوسازی ریشه و به‌صورت بین سال‌های برای متاب و بافت‌های گیاه به استناتی ریشه رشد کرده و

چنین، قارچ سیستمیک 1386

Downloaded from jcpp.iut.ac.ir at 19:45 IRST on Friday February 28th 2020
مواد و روش‌ها
در این پژوهش از ۶ کلون حاوی اندوفایت و ۳ کلون غیر حاوی اندوفایت استفاده شده است. برای این منظور سه زنده‌بینی فسیکویی بند زنده محلی کامپانی کردستان (موسوم به ZnT1 یا ۷۵C*) و سه زنده‌بینی فسیکویی بند زنده محلی فرسه‌سوز (موسوم به ZnT8) و دو زنده‌بینی فسیکویی مرتعی از زنده محلی بروجین (موسوم به ZnT1 یا ۷۸*۶۲۱۶ به اساس حضور و تراکم کافی قلی در گیاهان مورد بررسی انتخاب گردید. آلوده بهدن کامل این ZnT1 که در طول اندازه‌گیری حد تا ۱۷ هفته دارد. به نوع مطالعات توسط روش رنگ‌آمیزی شفاف برک تیغی گردیده (۳۱). این زنده‌بینی زایش از انتقال به فلوران در مدت ۳ ماه پورش داده شده و سپس هر زنده‌بینی به دو بخش مسایلی تقسیم شد. به منظور حل کردن هر زنده‌بینی توسط ماده تولید و تولید (با نام تجاری خصوصاً در مرحله بهبود این ماده بهبود در زمره ماده دوم به عنوان مواد تشکیل‌دهنده کار کردن نشان داد که نتایج بهبود گردید و در نهایت مشاهده گردید.
جدول 1. مقایسه میانگین زنوتیبه‌های فسکو در دو حالت وجود و فقیدان‌قارج

<table>
<thead>
<tr>
<th>عامل‌کننده در بوته (گرم)</th>
<th>عملکرد در بوته</th>
<th>تعداد خشخاش در بوته</th>
<th>حاوی</th>
<th>بدون خشخاش</th>
<th>فارج</th>
<th>تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال زنوتیبه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75A</td>
<td>7.6/0.8</td>
<td>8.19</td>
<td>58/7</td>
<td>12/11</td>
<td>14/29</td>
<td></td>
</tr>
<tr>
<td>75B</td>
<td>8.7/0.8</td>
<td>8.38</td>
<td>57/7</td>
<td>10/11</td>
<td>10/29</td>
<td></td>
</tr>
<tr>
<td>75C</td>
<td>7.8/0.8</td>
<td>14/7</td>
<td>54/7</td>
<td>10/11</td>
<td>10/29</td>
<td></td>
</tr>
<tr>
<td>83A</td>
<td>14/7</td>
<td>14/7</td>
<td>54/7</td>
<td>10/11</td>
<td>10/29</td>
<td></td>
</tr>
<tr>
<td>60A</td>
<td>7.6/0.8</td>
<td>7.8/0.8</td>
<td>54/7</td>
<td>10/11</td>
<td>10/29</td>
<td></td>
</tr>
<tr>
<td>60B</td>
<td>7.6/0.8</td>
<td>7.8/0.8</td>
<td>54/7</td>
<td>10/11</td>
<td>10/29</td>
<td></td>
</tr>
</tbody>
</table>

* برای هر سال تفاوت بین میانگین در زنوتیبه‌های فسکو و یا دونده میانگین حاوی قارج و بدون قارج که دارای حرف متغیرهای متغیر در سطح احتمال 0.05

درصد معنادار می‌باشد.

- مواردی که تفاوت بین میانگین در زنوتیبه‌های فسکو و یا دونده میانگین حاوی قارج و بدون قارج که دارای حرف ثابت در سطح احتمال 0.05

آماری (SAS) انجام گرفت.

نتایج و بحث

تجزیه آماری ساده

نتایج تجزیه واریانس حاکی از آن بود که اثر قارج انگوشتی بر صفات تعدیل خشخاش در بوته، تعدیل دانه در بوته و عملکرد دانه در بوته در هر دو سال معنادار بود و لی بر سایر صفات تأثیر معناداری نداشت. برهمکنش (اثر مقابل) قارج و زنبور به غیر از صفت تعدیل دانه در بوته، برای سایر صفات معنادار نبوده (نتایج تجزیه واریانس نشان داده نشد).

مقایسه میانگین زنوتیبه‌های فسکو در دو حالت وجود و فقیدان قارج برای یکه‌سیب‌های تجربه در جدول 1 آمده است. بین زنوتیبه‌ها از نظر صفات عملکرد دانه و اجزای آن در هر دو جدول وجود و

Downloaded from jcpp.iut.ac.ir at 19:45 IRST on Friday February 28th 2020
تقدیم اندوکافیت نفوذیی می‌دارد و وجود داشت. کلون‌های بدن قارچ اندرودکافیت زنوتیپ‌های 75B و 75C در سال اول و زنوتیپ A 75A در سال دوم بیشترین عملکرده داشتند. در پاتریندان و کلون‌های زنوتیپ‌های 75B و 75C در سال اول و زنوتیپ‌های 75B و 60A در سال دوم بیشترین عملکرده دانه‌یده در بونه را به‌عده اختصاص دادند. نتایج جدول 1 نشان می‌دهد که شفافی عملکرده، تعداد خوش‌کننده و تعداد دانه‌یده سال‌های سطح دوم در مقایسه با سال اول هدف شدته افزایش یافته است. این افزایش را می‌توان ناشی از این سال استرال استرود بهره‌وری و گیاه نتاهیت‌های آزمایشگاهی از سطح ییادی در حالی که در سال دوم گیاه فسکیور دیده شکلی، توضیحاتی می‌یابند. شکل‌گیری کره و پچ‌ها خود را توسیع داده است. این توان پنجه به‌دست آمده به‌بینی خوردن و دانه‌گشته و عامل‌کرده بسیار را به شدت افزایش می‌دهد.

قازی اندرودکافیت عامل‌کرده دانه‌یده در زنوتیپ‌های 75A و 60A در سال اول و زنوتیپ‌های 75B و 60A در سال دوم به‌طور معنی‌داری نسبت به کلون‌های بدون قازی اندرودکافیش داد. شناخت دقیقاً دقیقه نشان می‌دهد که بیشترین افزایش برای صفت اندوکافیت بی‌نیش در اثر وجود اندرودکافیت مربوط به زنوتیپ A 60A به‌طور یکی فارق اندرودکافیت دانه‌یده در سال اول 249 درصد و در سال دوم 180 درصد عامل‌کرده دانه‌یده در بونه را در این زنوتیپ افزایش داده است. این زنوتیپ (60A برای صفت تعداد خوش‌کننده در بونه و تعداد دانه‌یده در بی‌نیش بیشترین تأثیر پذیرین در از اندرودکافیت داشته است به‌طوری که در حضور اندرودکافیت، این صفت بیشتری از دیگر فراستافیزی فانوسید (جدول 1). هم‌زیستی قازی اندرودکافیت هیچ گونه تأثیری بر عامل‌کرده دانه‌یده تعداد خوش‌کننده و تعداد دانه‌یده در بونه در زنوتیپ‌های 75B و 60A در هر سال نداشت و در زنوتیپ‌های 75C و 83A. به‌طور معنی‌داری افزایش داد. نتایج نشان می‌دهد که قازی اندرودکافیت توانست بی‌بزد را به‌زیستی وی را به‌طور معنی‌داری افزایش داد.

مهیضی صفات

ضربه‌ی مهیضی بین صفات مختلف مطالعه برای کلون‌های زنوتیپ‌های عالی از از جدول 2 نشان داده شده است. در هر دو حالت وجود و فاقدان اندرودکافیت، عامل‌کرده دانه‌یده در بونه با تعداد خوش‌کننده در بونه، تعداد دانه‌یده در خوش‌کننده و تعداد دانه‌یده در بونه در طبقه بک‌رد درصد و با برآورد خوش‌کننده در صفحه 5 درصد مهیضی می‌باشد و معنی‌داری داشت که نشان می‌دهد این چهار صفت به عنوان مهم‌ترین اجزای
جدول ۲. همبستگی صفات بیشتر در کلون‌های فسکویی عاری از قارچ انفولایت و حاوی قارچ انفولایت (داخل پرانتز)

<table>
<thead>
<tr>
<th>صفات</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- روز تا گردش افتتاحی</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۲- تعداد خشونت در بوته</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۰۹</td>
<td></td>
</tr>
<tr>
<td>۳- طول خشونت</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۱۰</td>
<td></td>
</tr>
<tr>
<td>۴- تعداد دانه در خشونت</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۴۴</td>
<td></td>
</tr>
<tr>
<td>۵- تعداد دانه در بوته</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۸۹</td>
<td></td>
</tr>
<tr>
<td>۶- وزن هزار دانه</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۲۲</td>
<td></td>
</tr>
<tr>
<td>۷- عملکرد دانه در بوته</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۸۹</td>
<td></td>
</tr>
<tr>
<td>۸- وزن دانه در خشونت</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۲۵</td>
<td></td>
</tr>
<tr>
<td>۹- باروری خشونت</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۷۵</td>
<td></td>
</tr>
<tr>
<td>۱۰- طول بزرگ</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۴۴</td>
<td></td>
</tr>
<tr>
<td>۱۱- عرض بزرگ</td>
<td></td>
</tr>
<tr>
<td>(۱)</td>
<td>۰/۲۵</td>
<td></td>
</tr>
</tbody>
</table>

ضراحت همبستگی بzewگتر از ۰/۵۷ و کوچک‌تر از ۰/۰۷- در سطح احتمال ۵ درصد و ضراحت همبستگی بzewگتر از ۰/۰۷- در سطح احتمال ۱ درصد معنی‌دار می‌باشد.

حضور قارچ توانسته بر روابط عملکرد دانه با این ویژگی‌ها تأثیر معنی‌دار بگذارد. فانگ و همکاران (۱۹) نیز همبستگی عملکرد دانه در بوته را با تعداد هزار دانه در بوته، وزن دانه در خشونت، باروری خشونت و عرض بزرگ در زنون‌های فسکویی مرتبط به این انفولایت، مثبت و معنی‌دار گزارش کرده‌اند. اما عملکرد می‌باشد (صرف نظر از رابطه همبستگی با انفولایت). در کلون‌های بدود انفولایت، عملکرد دانه در بوته با وزن دانه در خشونت نیز همبستگی معنی‌داری (۰/۵۸) نشان داد. در کلون‌های حاوی انفولایت، عملکرد دانه با عرض بزرگ بزرم همبستگی مثبت و معنی‌داری (۰/۵۷) داشت که نشان داد...
گزارشی در زمینه تأثیر الگوی اندودوافیت بر همبستگی صفات در
کلونهای فسکیو موجود نمی‌باشد. همبستگی بین وزن هزار
دانه با عملکرد دانه در هر دو نوع کلونهای مورد بررسی
معنی‌دار نبود (فانسک و همکاران 19) در فسکیوی مرتعی
همبستگی مثبت بین این دو صفت گزارش‌کرده‌اند. در غلظت نیز
گزارش‌ها در زمینه همبستگی عملکرد دانه با وزن هزار دانه
متنافق گزارش شده است به عنوان مثال فتحی و رضایی (5) و
بوسن و اینکول (11) در جای همبستگی مثبت گزارش
نمودند در حالی که آقایی و همکاران (1) و نامی و هاشمی (3)
آن را منفی گزارش کردند.
روز تا گذشته افتخانی در کلونهای حاوی اندودوافیت با همیج
صفت همبستگی نداشت در حالی که در کلونهای بدون
اندودوافیت این صفت با طول خوشه و وزن هزار دانه و وزن دانه
در خوشه و همبستگی مثبت و معنی‌داری نشان داد این تبیع
حاکی از آن است که اول‌اول تأثیر در افتخانی می‌تواند به
عنوان یکعامل کاملاً تأثیر منفی بر اجرای عملکرد دانه
داشته باشد و ثانیاً نشان می‌دهد که در کلونهای حاوی
اندودوافیت، حضور اندودوافیت این تأثیر منفی را خنثی می‌کند و در
توجه براین کلی اجزای عملکرد را به شدت ترکیب بیشتر
سق مدهد. روز تا گذشته افتخانی به عنوان یکی از مهم‌ترین
صفات مرتبط با تولید بذر می‌باشد. عملکرد خاک شده است زیرا
تغییر از نظر این صفت درون جوامع گراسهای دگرگون شده
به اتاقه، نتایج روز حشره جور شده (Assorting mating) و افرازی
(اجتهاد راهنما شدن زنبزوحی) (Genetic drift) و نیز کاهش کیفیت
(در گردن 31) این صفت در فسکیوی بلند و مرتعی دارای
ورالت پذیری بالا بوده و تحت تاثیر ناشی از افزایش زنده
می‌باشد (28). تعداد خوشه در بوته برای هر نوع کلونهای
با تعداد دانه در بوته همبستگی منفی ولی با وزن هزار دانه
همبستگی منفی نشان داد و برای کلونهای بدون اندودوافیت
با تعداد دانه در خوشه نیز همبستگی منفی داشت. پایه‌ای در
کلونهای حاوی فرچ و بوته دانه و وزن دانه در خوشه در
کلونهای
جدول ٣٦. نتایج رجربسیون مدل‌های برای عملکرد دانه به عنوان منفی‌تاج و صفات دیگر
به عنوان منفی‌تاج مستقل در زنی‌تپی‌های فسفری به‌وند انفودافیت

<table>
<thead>
<tr>
<th>پژوهشگر</th>
<th>مدل</th>
<th>عندی</th>
<th>به‌وند</th>
<th>دانه</th>
<th>تعداد دانه در خوشه</th>
<th>روز</th>
<th>عرض از میابه</th>
<th>تعداد دانه در دانه</th>
<th>روز</th>
<th>عرض از میابه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۸/۹۱</td>
<td>*</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۳۵۰/۰۶</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
<td>۱۰۵/۱۵</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
</tr>
<tr>
<td>۵/۵۸</td>
<td>*</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۳۵۰/۰۶</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
<td>۱۰۵/۱۵</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
</tr>
<tr>
<td>۵/۳۴</td>
<td>*</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۳۵۰/۰۶</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
<td>۱۰۵/۱۵</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی‌داری در سطح احتمال ۵ درصد و یک درصد و غیر معنی‌دار

جدول ۳٧. نتایج رجربسیون مدل‌های برای عملکرد دانه به عنوان منفی‌تاج و صفات دیگر
به عنوان منفی‌تاج مستقل در زنی‌تپی‌های فسفری به‌وند انفودافیت

<table>
<thead>
<tr>
<th>پژوهشگر</th>
<th>مرحله</th>
<th>عندی</th>
<th>به‌وند</th>
<th>دانه</th>
<th>تعداد دانه در خوشه</th>
<th>روز</th>
<th>عرض از میابه</th>
<th>تعداد دانه در دانه</th>
<th>روز</th>
<th>عرض از میابه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۸/۹۱</td>
<td>***</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۳۵۰/۰۶</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
<td>۱۰۵/۱۵</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
</tr>
<tr>
<td>۵/۵۸</td>
<td>*</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۳۵۰/۰۶</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
<td>۱۰۵/۱۵</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
</tr>
<tr>
<td>۵/۳۴</td>
<td>*</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۰/۸۴</td>
<td>۳۵۰/۰۶</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
<td>۱۰۵/۱۵</td>
<td>۱۵۰</td>
<td>۴۹/۸۴</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی‌داری در سطح احتمال ۵ درصد و یک درصد و غیر معنی‌دار

هم‌زیستی همانطور که بر دیگر صفات تأثیر گذاشته و بر اولویت وارد شدن منفی‌تاج به‌وند رجربسیون مدل‌های بی‌سر به‌وند، آماری شده است. تأثیر داشته وارد شدن تعداد خوشه در برابر کلون‌های حاوی مصرف از این انتخابیت در گیاه نجات زنی و در نتیجه تولید خوشه در گیاه را افزایش داده است که در نتایج مذر به افزایش عملکرد دانه شده است. تأثیر انفودافیت در افزایش تعداد منفی‌تاج توسط دیگر محققین به‌صورت شر آور شده است (۴ و ۶). با این حال در هر دو حالت تعداد دانه در بینه به عنوان مهم‌ترین جزء عملکرد دانه تشخیص داده شد. با وجود این که تعداد دانه در بینه نیز هم‌زیستی بالایی با عملکرد دانه داشت، اما به‌دلیل هم‌زیستی بالایی جوهر دانه شد.

پس از آن با تعداد دانه در خوشه، وارد مدل رژیسونی نشده.

تجزیه علیت

تعیین منفی‌تاج برای تجزیه علیت به روش فانک و همکاران (۱۹) انجام گردید. برای این منظور کلیه مدل‌های رجربسیون چنین منفی‌تاج با ترکیب‌های مختلف منفی‌تاج مستقل از جنبه از بین برده و یک دستگاه کدده کننده از جنبه تجربیات دانه به‌وند رجربسیون

نتایج رجربسیون مدل‌های نشان می‌دهد که وجود رابطه
جدول 4. تجزیه همبستگی برای تعبیه اثرات مستقیم و غیر مستقیم صفات بر عملکرد دانشگاهی در کلونه‌های فسیکوری بدون اندازه‌گیری و کلونه‌های حاوی اندازه‌گیری (داخل پراتز)

<table>
<thead>
<tr>
<th>اثر مستقیم از طریق طول خورشید در جدول</th>
<th>عملکرد مستقیم</th>
<th>عملکرد غیر مستقیم</th>
<th>تعداد دانشگاه</th>
<th>وزن هزار دانه</th>
<th>تعداد دانشگاه در جدول</th>
<th>وزن هزار دانه</th>
<th>خوش‌بینی</th>
<th>مورد مطالعه با عملکرد در جدول</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول خورشید در بیونه</td>
<td>0.898</td>
<td>0.623</td>
<td>0.924</td>
<td>0.35</td>
<td>0.899</td>
<td>0.29</td>
<td>0.45</td>
<td>0.86</td>
</tr>
<tr>
<td>وزن هزار دانه</td>
<td>0.894</td>
<td>0.623</td>
<td>0.924</td>
<td>0.35</td>
<td>0.899</td>
<td>0.29</td>
<td>0.45</td>
<td>0.86</td>
</tr>
</tbody>
</table>

از طریق تعداد دانشگاه در جدول و وزن دانه در جدول
برازش داده شد و در نهایت مدل متعادل شمرده شد. با تعداد دانشگاه
در جدول، تعداد دانشگاه در بیونه، وزن هزار دانه، طول خورشید،
عملکرد دانش ناحیه دانشگاه (49) و وزن هزار دانه
(56) تأثیر منفی بر عملکرد
دانشگاه می‌گذارد. از آنجایی که گروه‌ها توانایی تولید تعداد زیادی
دانشگاه با اندازه‌گیری را دارند، لذا تعداد دانشگاه در بیونه
از مدل متعادل شان که تأثیر آنها در توجه مدل قابل
توجه بود، نیاز استفاده گردید. نتایج تجزیه علیت برای هر دو
توجه کلمه‌های جدول 4 را ارائه دست. بر مبنای این جدول،
بر عملکرد دانشگاه از اثر غیر مستقیم آن پیش‌بینی است (49)
در بررسی (35/0). تعداد دانشگاه در بیونه پیش‌بینی اثر غیر مستقیم خوش‌بینی را

185
جدول ۱: تفاوت‌های آماری در نتایج آزمون‌های کنکور بر اساس استان

| استان | میانگین کلی نمره | میانگین کلی نمره در جامعات
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>استان ۱</td>
<td>۱۴۸</td>
<td>۱۴۶</td>
</tr>
<tr>
<td>استان ۲</td>
<td>۱۴۷</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>استان ۳</td>
<td>۱۴۶</td>
<td>۱۴۴</td>
</tr>
<tr>
<td>استان ۴</td>
<td>۱۴۵</td>
<td>۱۴۳</td>
</tr>
<tr>
<td>استان ۵</td>
<td>۱۴۴</td>
<td>۱۴۲</td>
</tr>
<tr>
<td>استان ۶</td>
<td>۱۴۳</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>استان ۷</td>
<td>۱۴۲</td>
<td>۱۴۰</td>
</tr>
<tr>
<td>استان ۸</td>
<td>۱۴۱</td>
<td>۱۳۹</td>
</tr>
<tr>
<td>استان ۹</td>
<td>۱۴۰</td>
<td>۱۳۸</td>
</tr>
<tr>
<td>استان ۱۰</td>
<td>۱۳۹</td>
<td>۱۳۷</td>
</tr>
</tbody>
</table>

توجه: نتایج آزمون‌های کنکور بر اساس استان به‌منظور مقایسه آماری در نتایج آزمون‌های کنکور استفاده شده است.
مباحث مورد استفاده

2. پارسیانی، م. 1382. تاثیر انواع های انگلیسی در برخی مقاومت به سرما در دو گونه فستوکا پایان نامه کارشناسی ارشد اصلاح بناهنر.

3. نابایی، وا. هاشمی مشکوی و. 1377. تاثیر تاریخ کاشت و زننده بر سرما و علائم عاملکرد دانه جو. علوم کشاورزی و منابع طبیعی (2): 59-64.

4. سیزولیانی، م. و آ. ف. مدلوفی. 1383. نقش انواع های انگلیسی در مقاومت به سرما علائم فستوکا پایان دانشگاه ایران. (Festuca pratensis) و چکیده مقالات هشت میلیون علوم زراعت و اصلاح بناهنر ایران، 5 شهروورد، دانشگاه کیان.

5. فتحی، ق. و. ک. و. رضایی، مقدم. 1379. تجزیه علائم عاملکرد و اجزا عاملکرد دانه در برخی ارقام جو در منطقه اهواز. مجله علوم و صنایع کشاورزی (114): 69-80.

6. محمدی، ر. و. آ. ف. مدلوفی. 1382. تاثیر انواع های انگلیسی در بهبود و یزیکی های فستوکا فسپکویی بلند و مرتعی بومی ایران.

