کنترل بیولوژیکی بیماری پرمرده‌گی آوندی میخک با عامل
بی‌سیالوس سودوموناس جدا شده از فراریش میخک

ابراهیم کرمی، حمید روحانی، دوست مراد، ظفری، غلام خداکرمانی و میثم نی‌نام

چکیده
چهت کنترل بیولوژیکی بیماری پرمرده‌گی آوندی میخک، ناشر از فراریش Fusarium oxysporum f.sp. dianthi
 جدا شده از فراریش (بیو‌فسیرو) میخک علیه فراریش بیمارگر به روش کشت متقلب مورد بررسی قرار گرفت. از این بررسی، 16 استرین دارای
خاصیت آنتی‌ویروسی بودند که 7 استرین با بیشترین هاله بازدارنده به روش آزمون‌های به‌کار بردن به‌کار بردن استرین‌های Borrelia subtilis,
Pseudomonas aeruginosa و Bacillus cereus. استرین‌های E57 و E58 به عوامل Pseudomonas fluorescens bv. III و Bacillus subtilis به عوامل
شناسایی شدند. در آزمون‌های آزمایشگاهی تمامی استرین‌ها نتیجه به‌همراه با
تولید منابع‌های از فرار و منابع‌های خارج سلولی از رشد سیستمی بیمارگر جلوگیری کرده. این بدین‌طور همراه با یک‌پیار منابع
ارزویلیتی میخک در هم‌باشیده، گردید. منابع‌های استخراجی این استرین‌ها نیز با هم‌آمیزی مورد استفاده در اکسنتون و غیرانتزیت، اثر استرین‌های بکتری‌ای به
روش آزمون‌های خاک و آزمون‌های آزمایشگاهی به‌کار برده. در اکسنتون و گروه‌های کنترل خاک و آزمون‌های آزمایشگاهی به‌کار برده.

واژه‌های کلیدی: Fusarium oxysporum, Pseudomonas fluorescens, Bacillus subtilis, Bacillus cereus

Fusarium oxysporum Schlechtend: Fr. f. sp. dianthi

مقدمه
نارسی از

میخک (Dianthus caryophyllus L.) است
که از جمله مهم‌ترین آنها می‌باشد. پیوست

1. به ترتیب دانشجوی سایه کارشناسی‌ارش دانشیار و استادیار بیماری‌شناسی‌گیاهی دانشگاه کشاورزی، دانشگاه بلوط سیا، همدان

2. استادیار بیماری‌شناسی‌گیاهی دانشگاه کشاورزی، دانشگاه تهران، کرج

3. مرکز بیماری‌شناسی‌گیاهی دانشگاه علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

1386
2. چادسازی استریل‌ها با بکتری‌های آتیک‌گونتیسمی از خاک فرایشی

فاکتور اطراف رشد گیاهان سالم از گلخانه‌های مختلف بی‌خک‌کاری مخلوط جمع آوری و به‌آمایش‌گاه انقلال داده شدن. سپس خاک مخلوط شده در 9 میلی‌لیتر آب مقطور سترون ریخته و گرمگی در محلول یک درصد بیوتین تهیه گردید. سپس رفت 10 و 20 روز مقطوع کردن یک میخ آکاریال (PA) کشت گردید. پس از 24 ساعت نگهداری در دمای 25° C 50 نک پرگن‌هایی رشد یافتند. براساس تفاوت در رنگ، شکل، اندازه و حساسیت پرگن‌های مختلف، خاک میخ کشت به روش مقطوع کردن خاک‌سازی شدند. جداسازی سودوموناس‌های فلوسنت تیم با استفاده از محيط انتخابی (7) (S) انجام شد. پس از خاک‌سازی استریل‌ها به آب مقطوع دوبار سترون انقلال و در دمای 40° C 144 ساعت شدند (18).

3. غربال استریل‌های آتیک‌گونتیسمی با بکتری‌های

141 استریل به دست آمده از فرایشی بی‌خک‌کار، به روش کشت متقابل استریل‌های بکتری‌ای با قارچ بیماری‌گر در محیط کشت تحت دمای 25°C 144 ساعت. پس از این مدت استریل‌هایی که در تقابل با بیمارگر، همه بازدارنده‌ی آبادند که در برای مراحل بعدی انتخاب شدند. پس از آن حاصل دوبار طرح کاملاً تصادفی 3 تکار مورد بررسی قرار گرفت. میزان بازدارنده استریل‌ها از رشد میکرو‌بیمارگر نسبت به شاهد تصحیح و محاسبه شد.

4. بررسی تولید محیط‌های بی‌کوری میکرو‌بیمارگر در خاک آتیک‌گونتیسمی

آزمون تولید پروتئین با توجه به نقش پروتئین گیاه به عنوان یکی از مکانیسم‌های بی‌کوری،
کنترل بیولوژیکی یکی از پیشرفته‌ترین نیازهای تحقیقاتی، اپتی و هر سیستم پاتوژنیک است. سپس یک حلقه از کشت قارچ بیمارگر در روندهای معکوس PDA ناقص شد. در شرایط استریت، درب کشت‌های کشت‌ها که کشت‌های پاتوژنیک را مشاهده می‌نماید و یا نشان‌دهند. شکل‌های پاتوژنیک در اطراف پاتوژنیک از این فاصله تولید می‌شود. سپس تشخیص نوع بیمارگر در طول این مدت نشان می‌دهد که استریت‌ها می‌باشد.

2.4. آزمون تولید سیلنده چروک‌زوزن (HCN)

قطعاتی از کاغذ صافی به ابعاد 81×13 سانتی‌متر در محلول معرف هی‌کن (5 میلی‌گرم در هر میلی‌لیتر (N-متیل-پیپتال) و 5 میلی‌گرم در هی‌کن) گرفته شد. سپس قطور در زمان‌های مختلف در کشت‌های مختلفی قرار گرفته و به سوخته شدن در نسبت‌های 18°C و 28°C تغییر می‌کردند. نرگ سبز کاغذ صافی به رنگ آبی، پس از ۱۸ ساعت نشان تولید سیلنده چروک‌زوزن می‌باشد (۴).

2.3. آزمون تولید منابه‌تی‌های باکتری‌های زیست‌پزشکی سلول‌های قابل نفوذ در آگار

این آزمون بر اساس روش کراس و لوئن (۱۱) با اندکی تغییر انجام شد. ابتدا استریت‌های باکتری‌ای با غلظت ۱۰۰ بانکری در هر میلی‌لیتر به قدری بیمارگر، که در مسیر قرار داده شد. سپس بر پرکه باکتری‌ها از سطح مایع کشت شسته شده و به سروتون آن‌گاهش به کلروفم، درون نشان‌دهنده صورت می‌فرستند. پس از ۶۰ دقیقه، یک حلقه از اکسیژن نشان‌دهنده کشت قارچ بیمارگر در روندهای معکوس پاک شد. سپس از ۳۰ روز در دمای ۲۵°C در سطح آگار گروه داده شد. سپس بیمارگر ماحاسبه شد.

5. آزمون تأثیر منابه‌تی‌های باکتری‌های میکرو‌سازی

5.1. اثر منابه‌تی‌های باکتری‌های پاتوژنیک با میکروور

این آزمون بر اساس روش برک و همکاران (۳) با اندکی تغییر انجام گردید. برای یک کار به میزان 100 میلی‌لیتر از محلول قارچی کشت مایع (PDB) را در ارتفاع ۲۵ در اکسیژن (دمای ۲۲°C و فشار ۱۰۵ اتمسفر به مدت ۱۵ دقیقه) درون شد. پس از آن که هر قارچی که در هر لایه از کشت ۲۴ ساعت استریت‌های باکتری‌ای اضافه شد. سپس ارلن‌ها در اکسیژن به کشت در دمای ۲۳°C و ۱۰۰ دقیقه به مدت یک هفته قرار داده شد. سپس محلویکی کشت از کاغذ

...
مناسب برای آنها مشخص شد به نحوی که پس از افزودن یک بسته به مقدار آب از یک گلگان به دست خارج شود.

4. بررسی تأثیر استرس‌های باکتریایی آنتاگونیست
در این بررسی تأثیر استرس‌هایی که شدت طبیعی در دانه‌های سالم و ارگانیسم رشدی به دو روش آزمایش‌های خاکی به باکتری و آشامیت سازی ریشه به باکتریبه کمک صیفی اکر در دو حالت خاک سرزمینی و غيرسرزمینی مورد ارزیابی قرار گرفت. جهت بررسی تأثیر استرس‌های روز شدت طبیعی در دانه‌های سالم، تیمارها به صورت مایه تلقیح قارچ‌پره‌ها به همراه استرس‌های باکتریایی به همراه نشان می‌داد. این تحقیق در نظر گرفته شد. برای بررسی تأثیر استرس‌های روز فاکتورهای رشدی، تیمار‌ها به صورت مایه تلقیح قارچ‌پره‌ها و فقط با استرس‌های باکتریایی به همراه نشان می‌داد. آزمون به صورت آزمایش‌های اکسترنال دو عامل روش باکتریایی و عامل دوم روش بر کارگیری استرس‌های روز مورد استفاده قرار گرفت. در قابل طرح کارآمدی تحقیق بی‌تکرار به انجام رسیده. داده‌برداری‌ها پس از شش هفته انجام شد و در هر گروه تیمارها با استفاده از آزمون چند دامنه‌ای دانکن در سطح یک درصد (0/01) P< اختصاص یافت.

نتایج
در مطالعه آزمون به منظور بررسی اثر موثر در کاهش بیماری باکتریایی شرکت گرفت. در تحقیق یکی از این مطالعات بر سر کاهش بیماری باکتریایی و یکی از این مطالعات بر سر کاهش بیماری باکتریایی گزارش شد. تحقیق باکتریایی شرکت گرفت. در تحقیق باکتریایی دو تیمار به همراه یک برک، تأثیر آزمون به منظور بررسی اثر موثر در کاهش بیماری باکتریایی گزارش شد. تحقیق باکتریایی دو تیمار به همراه یک برک، تأثیر آزمون به منظور بررسی اثر موثر در کاهش بیماری باکتریایی گزارش شد. تحقیق باکتریایی دو تیمار به همراه یک برک، تأثیر آزمون به منظور بررسی اثر موثر در کاهش بیماری باکتریایی گزارش شد.

6. بررسی‌های گلخانه‌ای
6.1. تهیه مایه تلقیح قارچ بیمارگر و استرس‌های باکتریایی آنتاگونیست
جهت آزمایش‌های خاک که گزارش این به قارچ، مایه تلقیح آن به روش ایک و لورب (2) روی داده‌های گند یک تیتر 6. محیط تهیه شد. با توجه به این که برای هر گرم خاک تعداد 100000 گرد به بکری استفاده می‌گردد، به‌طور ابتدا بر اساس وزن خاک جمع‌آوری مورد نیاز باکتریایی را به دست آورد و سپس بر اساس حجم و وضعیت رطوبتی گلدان‌ها، مقادیر آب

312
Fusarium oxysporum f.sp. dianthi

Treatments of Fusarium oxysporum f.sp. dianthi were performed in the greenhouse with several bacterial species, including Pseudomonas fluorescens, Bacillus subtilis, and Bacillus licheniformis. The results showed that Pseudomonas fluorescens was the most effective in controlling the disease.

In another study, a combination of Pseudomonas fluorescens and Bacillus subtilis was used to control Fusarium oxysporum f.sp. dianthi. The results indicated that the combination of these two bacteria was more effective than using them individually.

In a further study, a new strain of Pseudomonas fluorescens was developed and tested against Fusarium oxysporum f.sp. dianthi. The new strain showed a significant increase in efficacy compared to the previous strains.

Overall, the use of bacterial biocontrol agents is a promising strategy for controlling Fusarium oxysporum f.sp. dianthi and other fungal diseases.
جدول ۱. اثر متابولیتهای مترشته استریسم های باکتریایی آنتی‌گونیست روی رشد میکولوژی Fusarium oxysporum f. sp. dianthi

<table>
<thead>
<tr>
<th>استریسم باکتریایی</th>
<th>متابولیته‌های مترشته</th>
<th>قطر پرگنه درصد باردارنده (mm)</th>
<th>قطر پرگنه درصد باردارنده (mm)</th>
<th>قطر پرگنه درصد باردارنده (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus E31</td>
<td>A</td>
<td>۵۵/۸</td>
<td>۵۵/۸</td>
<td>۶/۸</td>
</tr>
<tr>
<td>Bacillus cereus E57</td>
<td>B</td>
<td>۳۴/۹</td>
<td>۷۵/۴</td>
<td>۱۹/۶</td>
</tr>
<tr>
<td>Bacillus subtilis E76</td>
<td>C</td>
<td>۴۰/۳</td>
<td>۴۰/۳</td>
<td>۲۷/۶</td>
</tr>
<tr>
<td>Bacillus subtilis E93</td>
<td>D</td>
<td>۴۴/۹</td>
<td>۴۴/۹</td>
<td>۱۹/۹</td>
</tr>
<tr>
<td>Bacillus subtilis E102</td>
<td>E</td>
<td>۴۴/۹</td>
<td>۴۴/۹</td>
<td>۱۹/۸</td>
</tr>
<tr>
<td>Bacillus subtilis E121</td>
<td>F</td>
<td>۴۴/۹</td>
<td>۴۴/۹</td>
<td>۱۹/۷</td>
</tr>
<tr>
<td>P. fluorescens E130</td>
<td>G</td>
<td>۵۰/۵</td>
<td>۵۰/۵</td>
<td>۱۹/۳</td>
</tr>
</tbody>
</table>

* : اعداد جدول میانگین سه تکرار است. ** : تیمارهایی که دارای دارای اختلاف معنی‌دار ندارند.

جدول ۲. اثر غلظت‌های مختلف عصاره کشت حاوی متابولیته‌های مایع خارج سلولی استریسم باکتریایی آنتی‌گونیست سترون شده با میکور و اتوکل و روی رشد میکولوژی Fusarium oxysporum f. sp. dianthi

<table>
<thead>
<tr>
<th>استریسم باکتریایی</th>
<th>متابولیته‌های مختلف عصاره</th>
<th>قطر پرگنه درصد باردارنده (mm)</th>
<th>قطر پرگنه درصد باردارنده (mm)</th>
<th>قطر پرگنه درصد باردارنده (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus E31</td>
<td>A</td>
<td>۵۵/۸</td>
<td>۵۵/۸</td>
<td>۶/۸</td>
</tr>
<tr>
<td>Bacillus cereus E57</td>
<td>B</td>
<td>۳۴/۹</td>
<td>۷۵/۴</td>
<td>۱۹/۶</td>
</tr>
<tr>
<td>Bacillus subtilis E76</td>
<td>C</td>
<td>۴۰/۳</td>
<td>۴۰/۳</td>
<td>۲۷/۶</td>
</tr>
<tr>
<td>Bacillus subtilis E93</td>
<td>D</td>
<td>۴۴/۹</td>
<td>۴۴/۹</td>
<td>۱۹/۹</td>
</tr>
<tr>
<td>Bacillus subtilis E102</td>
<td>E</td>
<td>۴۴/۹</td>
<td>۴۴/۹</td>
<td>۱۹/۸</td>
</tr>
<tr>
<td>Bacillus subtilis E121</td>
<td>F</td>
<td>۴۴/۹</td>
<td>۴۴/۹</td>
<td>۱۹/۷</td>
</tr>
<tr>
<td>P. fluorescens E130</td>
<td>G</td>
<td>۵۰/۵</td>
<td>۵۰/۵</td>
<td>۱۹/۳</td>
</tr>
</tbody>
</table>

* : اعداد جدول میانگین سه تکرار است. ** : تیمارهایی که دارای دارای اختلاف معنی‌دار ندارند.

* : اعداد جدول میانگین سه تکرار است. ** : تیمارهایی که دارای دارای اختلاف معنی‌دار ندارند.
جدول ۳: آثار غلظت‌های مختلف عصاره کشت حاوی متابولیت‌های مайл خارج سلولی استری‌ها با گونه‌های چندانگونه استرس شده با میکوریپور و اوتکلاو روی فیلیت کیتیدومزایی

<table>
<thead>
<tr>
<th>سطح غلظت عصاره</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 50</td>
<td>m</td>
<td>n</td>
<td>e</td>
<td>j</td>
<td>i</td>
<td>p</td>
</tr>
<tr>
<td>% 50</td>
<td>h</td>
<td>j</td>
<td>k</td>
<td>m</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>% 50</td>
<td>f</td>
<td>e</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>% 50</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>f</td>
<td>k</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>استری‌ها</th>
<th>باکتریاین</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus E31</td>
<td>Bacillus cereus E57</td>
</tr>
<tr>
<td>Bacillus subtilis E76</td>
<td>Bacillus subtilis E93</td>
</tr>
<tr>
<td>Bacillus subtilis E102</td>
<td>Bacillus subtilis E121</td>
</tr>
<tr>
<td>P.fluorescens E130</td>
<td>P.fluorescens E130</td>
</tr>
</tbody>
</table>

--

جدول ۴: آثار غلظت‌های مختلف عصاره کشت حاوی متابولیت‌های مайл خارج سلولی استری‌ها با گونه‌های چندانگونه استرس شده با میکوریپور و اوتکلاو روی درصد جوانزنی کیتیدومزایی

<table>
<thead>
<tr>
<th>سطح غلظت عصاره</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
<th>Besanclot</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 50</td>
<td>k</td>
<td>g</td>
<td>f</td>
<td>h</td>
<td>i</td>
<td>l</td>
</tr>
<tr>
<td>% 50</td>
<td>p</td>
<td>g</td>
<td>d</td>
<td>l</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>% 50</td>
<td>p</td>
<td>g</td>
<td>d</td>
<td>l</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>% 50</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>f</td>
<td>k</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>استری‌ها</th>
<th>باکتریاین</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus E31</td>
<td>Bacillus cereus E57</td>
</tr>
<tr>
<td>Bacillus subtilis E76</td>
<td>Bacillus subtilis E93</td>
</tr>
<tr>
<td>Bacillus subtilis E102</td>
<td>Bacillus subtilis E121</td>
</tr>
<tr>
<td>P.fluorescens E130</td>
<td>P.fluorescens E130</td>
</tr>
</tbody>
</table>

--

--

توجه: در این جدول میانگین سه تکرار است. **توجه:** تیمارهایی که دارای تفاوت ۴ درصدی یا بیشتری با میانگین مقیاس دارند، در سطح یک درصد (p<0.01) با یکدیگر اختلاف معنادار دارند.
جدول 8. تأثیر استرین‌های بیکتریایی آتانگونیست و روش به کارگیری آنها روی شدت بیماری و درصد گیاهان سالم در نیمار با Fusarium oxysporum f. sp. dianthi

<table>
<thead>
<tr>
<th>استرین بیکتریایی</th>
<th>شدت بیماری</th>
<th>درصد گیاهان سالم</th>
<th>خاک سترون</th>
<th>خاک غیرسترون</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus E31</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bacillus cereus E57</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bacillus subtilis E76</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bacillus subtilis E93</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bacillus subtilis E102</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bacillus subtilis E121</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>P. fluorescens E130</td>
<td>3</td>
<td>b</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

* : اعداد جدول میانگین سه تکرار است. **: تیمارهایی که دارای حروف مشترک می‌باشند در سطح یک ذیل درصد (10%) با یکدیگر اختلاف معنی‌دار ندارند.

جدول 6. تأثیر استرین‌های بیکتریایی آتانگونیست و روش به کارگیری آنها روی وزن خشک کل گیاه‌های میخک در نیمار با Fusarium oxysporum f. sp. dianthi

<table>
<thead>
<tr>
<th>استرین بیکتریایی</th>
<th>خاک غیرسترون</th>
<th>خاک سترون</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus E31</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>Bacillus cereus E57</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>Bacillus subtilis E76</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>Bacillus subtilis E93</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>Bacillus subtilis E102</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>Bacillus subtilis E121</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>P. fluorescens E130</td>
<td>3</td>
<td>b</td>
</tr>
</tbody>
</table>

* : اعداد جدول میانگین سه تکرار است. **: تیمارهایی که دارای حروف مشترک می‌باشند در سطح یک ذیل درصد (10%) با یکدیگر اختلاف معنی‌دار ندارند.
کنترل بیولوژیکی یکی از پرداختگاه‌های اصلی در مدیریت بیولوژیکی در کشت‌های باغ Xu et al. 2021 می‌باشد که با استفاده از بیماری‌های مایع می‌تواند به‌جنس بیماری‌های مایع نظیر Bacillus subtilis باعث بیماری می‌گردد.

در این تحقیق بررسی گردید که آیا از بیماری‌های مایع می‌تواند به‌جنس بیماری‌های مایع نظیر Bacillus subtilis باعث بیماری می‌گردد. در این تحقیق بررسی گردید که آیا از بیماری‌های مایع می‌تواند به‌جنس بیماری‌های مایع نظیر Bacillus subtilis باعث بیماری می‌گردد.

منابع مورد استفاده

1. اعیبیان، ج. 1375. بیماری پزمرده‌گی فوزیورومی آوندی میخک در وراکی. بیماری‌های گیاهی 22: 232-263.

میکروفولوژ و همچنین بستر خاک کمک شایانی در پیوکتول نماید. استفاده از علی پیونکتولوزی نیز در راستای اصلاح کاستی‌ها و بهبود انباشته‌های عوامل پیوکتولیKI جهت استفاده آنها در شرایط طبیعی و همچنین بررسی فرمولاسیون‌های مختلف سازگاری با محیط عوامل پیوکتولیKI و میزبان می‌تواند چشم اندلس از گونه پیوکتولیKI عوامل بیماری‌زا گیاهی در پیش روي قرار دهد.

فیتوسیستم‌ها، سیستم‌های ایمنی و اکتیویتی کشف یا سیستم‌های میکروژنیشن اگزیتوسیستم‌ها و بیماری‌های گیاهی. در نهایت، باعث افزایش عدد و گیاهی می‌گردد (4 و 46). در استریاتونیا باکتریایی مورد بررسی این پژوهش افزایش وزن خشک شامه انگش در تیمار با این استریاتونیا نشان از دخالت تولید حقیقی نتایج در افزایش وزن خشک دارد. به نظر می رسد مطالعه و بررسی بیوتکولوزی و پایگاه‌های باکتریایی گذشته در قابلیت آنتی‌کوکت‌بی‌این عوامل، به‌همکنش‌های موجود در میان این عوامل با میزبان، بیمارگر و

Fusarium oxysporum f.sp. dianthi: