نقش سترون شده توسط پرتو گاما در مدیریت تلفیقی کنترل زبهره بزرگ موم

[Galleria mellonella L. (Lep., Pyralidae)]

رهیم عبادی، رضا جعفری، فرآمرز مجد، خلامحسین طهماسبی، حمیدرضا زوالقاری‌های

چکیده
کنترل زبهره بزرگ موم توسط روش نرسیونی با استفاده از پرتو گاما، روش سیمیکاپ بریسی و مافیسی گردید. به منظور تعیین دوره مناسب پرتو گاما در سترون نمره‌های تریپ‌های نر شیمیایی بزرگ سروم، آزمایشی در چارچوب طرح کامل تصادفی با پنج تریپ (۴۶، ۴۰، ۳۶، ۳۲ و ۲۸ گریف) در سه تکرار انجام شد. بررسی تأثیر مشخص نمود که بهترین دور سترون نکند، دور ۳۲ گریف پرتو گاما می‌باشد.
پایا مشخص نمودند نسبت راهاسایی نرخی شده در برابر تعداد مساوی از حشرات ماده طبیعی، آزمایشی در چارچوب طرح کامل تصادفی با پنج تریپ (۴۶، ۴۰، ۳۶، ۳۲ و ۲۸ گریف) در سه تکرار انجام گرفت. نتایج به دست آمده نشان داد چنانکه نسبت راهاسایی نرخی شده در جمعیت‌های سالم ۱:۱ باشد، رقیب مطلوب حاصل می‌گردد. به منظور بررسی امکان کردن‌یابی این حشره، طرح آزمایشی کامل تصادفی با دو تریپ (ماده سالم و ماده سالم تریپ‌گیری نموده) در سه تکرار انجام شد. نتایج نشان داد که حشره ماده سالم ۱:۱ کردن‌یابی کردن‌یابی ندارد.
پایا مقایسه عملکرد روش کنترل نرسیونی با روش شیمیایی، آزمایشی با سه تریپ و سه تکرار در انبارهای موم به ابعاد ۷۱×۶۵×۱۳۴ سانتی‌متر که هر تکرار حاوی ۲۰ شان سایگا رگ در یک کندوی دوپیشه و هر رگ از هرگونه دوپیسه بود، انجام گردید. تیمارهای آزمایشی شامل کنترل نرسیونی، شیمیایی و بدون کنترل بود. پایا کنترل شیمیایی، به ازای هر متر مکعب ضمایم یده‌ای قرص سگمی فستوسیکین ۰.۵٪، و پایا تیمار نرسیونی به نسبت راهاسایی (۱:۱) در هر ایال ۱۳۴ نرسیون، ۳۳ تریپ و ۳۲ ماده سالم استفاده شد.
پس از یک هفته میزان کنترل در روش‌های مختلف، مشخص شد که به احتمال ۹۵٪ بین کنترل شیمیایی و کنترل زنتیکی (نرسیون) این آن‌ها مشابه می‌باشد.

واژه‌های کلیدی: شیمیایی بزرگ موم، نرسیونی، کنترل تلفیقی

۱. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد حشره‌شناسی، دانشگاه شهید بهشتی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۲. به ترتیب دانشیار اصلاح نباتات و کارشناس مرکز تحقيقات کشاورزی و یزدی، سازمان انتی‌امی ایران، کرج
۳. استادیار بخش زنبور عسل مؤسسه تحقیقات علوم زنبور عسل، کرج
توجه به اهمیت انتصاب زیان واردات توسط این آفت، کنترل آن از اهمیت بیشتری برخوردار است. یک تمرین روزانه کنترل این آفت در پیش از کمک از تکنیک‌های استفاده از تکنیک‌های شیمیایی است. این روش دارای مزایایی مانند افزایش سوم در میان، و مقاومت ضد حشره به سوسیس می‌باشد (5). کنترل شیمیایی بزرگ موم با توجه به بی‌دردmphی یکی از اصلی‌ترین نیازهای پزشکان و استادان این زمینه، بی‌دردmphی مصرف شیمیایی آنتی‌بیوتیکی هسته‌ای سازمان از نظر ایمنی در مطالعات بررسی شده و به شرح زیر انجام شد:

1. Galleria mellonella L. 2. Langstroth hive

مقدمه
یکی از فعالیت‌های زنبور عسل موم است. این موم به دلیل کیفیت و مراقبت‌هایی که در آن انجام داده شده، به طور اختصاصی در صنعت زنبورداری و صنایع گوناگون دیگر، مانند داروسازی، دندان سازی، آرایشی، آدامس‌سازی و غیره مصرف می‌شود. زنبور عسل برا ی تولید یک کیلوگرم موم حدود 8/5 کیلوگرم عسل مصرف می‌کند (2).

زنبور عسل موم را فعالیات کیفیت، حفظ آنتی‌بیوتیک، قرار در تحقیقات و در ساختمان حشره‌ها برای راه‌برد نوزادان و نیز دیگر حشرات و گرده گل از آنها به کار می‌برد. شاگردهای ملازات پس از پایان فصل فعالیت زنبور به‌دست ایبی‌گه‌های قوی شده، یا دوربین در فصول مختلف بعده بیشتر استفاده دارد. موم به دلیل دارا بودن مواد غذایی و تکنیک‌های دیگر مهیج دانه‌ای گرده و عسل در زبان‌های مختلف قرار می‌گیرد. یکی از این آفت حشره‌ای است که نام شبته بزرگ موم که به آستورین (3) زبان وارد می‌شود. این حشره در محله لازموی را حدود بررسی در می‌گردد.

مواد و روش‌ها
نمونه‌های موم آلوه به مراحل مختلف شدید شیب‌های موم خورزگ از این اهداف موم در اطلاع از امکان جمع آوری و برای بروز و زنبورستان پوستک درشت کنترل بهبودی ویژه زیست‌شناسی کنند. شاگرد موم آلوه درون کنندوی چرخش‌سنجی لیزری 6 در اگه‌های تاریک و زیر کیفیت این شکاف (رطوبت نسبی 20 درصد و دمای 30 درجه سانتی‌گراد) قرار داده شد. هنگامی که آفت در محله شفایکی رسید شفایکی نه و ماده توسیع روش اسپیت (8) جداسازی شدند. شفایکی نه در جمعه پالساتیکی به ابعاد 98224 میلی‌متر قرار داده شد، و به منظور پرتوئایی یا اشعه‌ها با مرکز تعادل‌ها یکی از مدل‌های متفاوت بود. بررسی این آفت در چهار مرحله به شرح زیر انجام شد:

1. Galleria mellonella L. 2. Langstroth hive

192
نتیجه تأثیر دوره‌های مختلف پرتو وام با بیولوژی شیمیایی و بازگی در یک دوره است. همان‌طور که نتایج نشان می‌دهد، بیشترین تجارب در یک دوره شیمیایی و بازگی با چندین دوره است.
جدول 1. تأثیر دوزه‌های مختلف پرتو‌گاما بر میانگین شمار تخم‌گذاری دندان، شده، شمار تخم تغذیه‌شده و لاور شیره‌شده کربن کشور مور میانگین شمار تخم‌گذاری دندان

<table>
<thead>
<tr>
<th>دوز پرتو‌گاما</th>
<th>شده تخم‌گذاری (گری)</th>
<th>شده تخم تغذیه‌شده</th>
<th>لاور شیره‌شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>64.3 ± 0.9</td>
<td>327.3 ± 0.9</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>144.3 ± 0.9</td>
<td>449.3 ± 0.9</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>214.3 ± 0.9</td>
<td>418.3 ± 0.9</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>314.3 ± 0.9</td>
<td>327.3 ± 0.9</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Spermatocytes
تاریخ نر سترن شده توسط پرتو گاما در مداری تلفیقی کنترل شبب‌های...
جدول 2. تأثیر نسبت‌های مختلف رهاسازی‌های سروون به سرو و ماده‌های سالمن در شمار تخم، تفریخ تخم و شمار شیشه‌های تشکیل شده در بزرگ‌موم

<table>
<thead>
<tr>
<th>میانگین شمار تخم‌گذارشده شده</th>
<th>میانگین شمار تخم‌گذارشده شده</th>
<th>میانگین لازم شفیره شده</th>
<th>نسبت رهاسازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>259/8±6/0/1</td>
<td>338/8±12/5</td>
<td>382/8±12/5</td>
<td>1:1:1:1</td>
</tr>
<tr>
<td>222/8±21/5</td>
<td>330/8±25/1</td>
<td>359/8±28/1</td>
<td>1:1:1:2</td>
</tr>
<tr>
<td>250/8±32/1</td>
<td>323/8±39/1</td>
<td>389/8±32/1</td>
<td>1:1:1:3</td>
</tr>
<tr>
<td>b</td>
<td>159/6±17/1</td>
<td>393/8±37/1</td>
<td>1:1:1:4</td>
</tr>
<tr>
<td>b</td>
<td>169/6±13/1</td>
<td>360/6±34/1</td>
<td>1:1:1:5</td>
</tr>
</tbody>
</table>

---

جدول 3. مقایسه شمار تخم و تفریخ تخم در حشرات ماده جفتگی‌کرده و ماده باکره شب‌پره بزرگ‌موم

<table>
<thead>
<tr>
<th>حشرات ماده</th>
<th>میانگین شمار تخم‌گذارشده شده توسط نسبت شب‌پره ماده</th>
<th>میانگین شمار تخم‌گذارشده شده، جفتگی‌کرده (ب‌کارگرده)</th>
<th>میانگین شمار تخم‌گذارشده شده (ب‌کارگرده)</th>
</tr>
</thead>
<tbody>
<tr>
<td>337/8±6/0/1</td>
<td>366/8±4/1/5</td>
<td>26/8±4/1/5</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

جدول 4. مقایسه دو روش کنترل شیمیایی و ضزیتیکی (نرسورینی) در جمعیت شب‌پره بزرگ‌موم

<table>
<thead>
<tr>
<th>شمار نخستین شفیره‌های رها شده</th>
<th>روش کنترل</th>
<th>شمار شفیره‌های جدا شده در نسل بعد</th>
</tr>
</thead>
<tbody>
<tr>
<td>265/1</td>
<td>شاهد</td>
<td>600</td>
</tr>
<tr>
<td>b</td>
<td>شیمیایی</td>
<td>600</td>
</tr>
<tr>
<td>b</td>
<td>نرسورینی</td>
<td>600</td>
</tr>
</tbody>
</table>

---

1. میانگین های با حروف مشابه در سطح 0.01 دارای تفاوت معنی‌دار دارند (P<0.05).

2. 3 میانگین های نرسورین با حروف مشابه از نظر آماری بهترین در سطح 0.01 و 0.05 دارای تفاوت معنی‌دار دارند (P<0.01 و P<0.05) (P).

3. همان‌گونه که در جدول 4 آوردید شده است، پس از آن که شفیره‌ها به حرارت کامل تبدیل شدند و نسل بعد را ایجاد نمودند، شمار شفیره‌های نسل بعد ملاک موفقیت در هر روش محاسبه می‌شود. با این میزان، در روش کنترل اعمال شده در غير این صورت حشرات ماده بدون جفتگی‌گری به نرسورین فرود آمدند. نسخه‌های نرسورینی برای کنترل شیشه‌پر بزرگ موم در جدول 4 اثرات شده است. همان‌گونه که در جدول 4 آوردید شده است، پس از آن که شفیره‌ها به حرارت کامل تبدیل شدند و نسل بعد را ایجاد نمودند، شمار شفیره‌های نسل بعد ملاک موفقیت در هر روش محاسبه می‌شود. با این میزان، در روش کنترل اعمال شده در
سطح 5/1 تفاوت معنی‌دار ناشان دادند. به سخن دیگر،

چنان‌چه به‌همگی و کارتن‌های مربی نتیجه‌گیری کردند، آفت به رشد خود ادامه داده و آسیب وارد می‌نماید. در حالی که در روشنی

شیمیایی و روشن نورکاهی، برخی از شکرها با حشره کامل

برای نشان دادن بعد تبدیل نمی‌شوند. افزون بر آن حشرات

کامل تولید شده در نسل بعد نیز به علت سترون بودن، با تأیید

سم، تعداد کمی تخم گذشته، و چرا نیز معمولاً به مرحله

شکرگی نمی‌رسند.

سپاسگزاری

بدرن ویسه‌سیا ناشاگاه صنعتی اصفهان، معاونت آموزش و

تحقیقات وزارت جهاد سازندگی سلیق، مؤسسه تحقیقات علمی

دامی کشور و سازمان انتزاع انجمن ایران، که امکانات لازم برای

انجام این پژوهش را در اختیار نمودند، نشكر و قدردانی می‌گردد.

با توجه به نتایج فوق، می‌توان پیشنهاد نمود که مبارزه

تلقیفی با این آفت می‌تواند روش مناسبی باشد. با کاربرد سرموم

تدریجی می‌توان جمعیت آفت را در انبار کاهش داده، سپس با

روش نوری سترون جمعیت‌ها تحت کنترل درآورد. به‌عده کار

بردن روش تلقیفی، به علت استفاده از سرموم شیمیایی در آغاز

فصل، و فقط برای یک بار، میزان پیچیدگی سرموم در موم کاهش

منابع مورد استفاده

1. نیما، م. و. اکبرزاده. ۱۳۶۹. روش‌های مختلف برای پاکسازی جنگلهای شیمیایی. انتشارات دفتر نشر خوک‌کفا. ۲. عباسی، ر. و. احمدی. ۱۳۶۹. روش‌بندی بررسی‌های روشنی. انتشارات راه‌نمای اصفهان.

3. گلدان‌دشت، س. ح. ۱۳۷۱. پروتئین‌های هورمون موم‌های موجود در شیمیایی، کاروپرورشی، پایان‌نامه کارشناسی ارشد

حشره‌شناسی کشاورزی. دانشگاه، کشاورزی و منابع طبیعی، دانشگاه تربیت مدرس.


