تأثیر فاصله رفید کاشت و تراکم بونه بر شاخص‌های رشد و عملکرد گلرنگ، توسط محیط اصفهان "کوشه" در کشت تاپستانه

حسین پورهادیان و محمدرضا خواجه‌پور

(تاریخ دریافت: 16/12/2019 و تاریخ پذیرش: 16/4/2020)

چکیده

آراپش کاشت از طریق تأثیر بر شاخص‌های رشد بر عملکرد تأثیر می‌گذارد. به منظور بررسی این اثرها در کشت تاپستانه گلرنگ، توسط محیط اصفهان "کوشه" در کشت تاپستانه گلرنگ، تعود محققین به نام کوشه از مزارع سه‌بازاری در سال 1387 با طرح بلوک‌ها کامل تصادفی و آراپش تیمارها در مزرعه کرت‌های یکبار خرد شده در مزرعه پژوهش کشاورزی دانشگاه صنعتی اصفهان با چهار نکار اجرای گردید. فاکتور اصلی شامل سه فاصله رفید کاشت (20 و 30 و 40 سانتی‌متر بسته به صورت سطرح و 25 سانتی‌متر بسته به صورت چوبی و پشتی) و فاکتور فرعی شعل دو تراکم 40 و 50 بونه در متر مربع بود. کاشت در تاریخ 4 تیر انجام شد. با کامیاب قاچع رفید کاشت، ناجا پوشش گیاهی روزمره بسط شده، دوام سطح بونه افزایش یافته و تجهیز ماه خشک، شاخص سطح بونه و سرعت رشد محصول تا اواط دوره رشد بالا بود. همچنین حداکثر سرعت رشد نسبی و میزان چربی خالص در فاصله رفید کاشت 20 سانتی‌متر به دست آمد. در فاصله رفید کاشت 20 سانتی‌متر و کمتری عملکرد دانه 143 کیلوگرم در هکتار در فاصله رفید کاشت 25 سانتی‌متر به دست آمد. تراکم بونه یک بونه بسته شدن ناجا پوشش، سرعت رشد محصول، سرعت رشد نسبی، میزان چربی خالص و عملکرد دانه به تأثیر بود. اما حداکثر وزن خشک بونه و شاخص سطح بونه یک بونه و دوام سطح بونه کمتری در تراکم 50 بونه در متر مربع به دست آمد. ثابت بود که دست آمده نشانی‌دهنده آن است که فاصله رفید کاشت 20 سانتی‌متر با تراکم 50 بونه در متر مربع برای کشت تاپستانه گلرنگ، تعود محیط اصفهان، در شرایط مشابه با مطالعات حاضر ممکن است مناسب باشد.

واژه‌های کلیدی: گلرنگ، آراپش کاشت، شاخص‌های رشد، عملکرد دانه

مقدمه

نحوه توزیع و تراکم بونه در مزارع بر جذب و بهره‌وری گیاه

از عوامل محیطی موتور بر رشد نشانه‌کننده و از طریق تغییر در شاخص‌های رشد. عملکرد دانه در واحد سطح را تعیین می‌کند. سرعت بسته شدن ناجا پوشش، تجهیز ماه خشک،

1. به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
mekhporn@cc.iut.ac.ir

* مسئول مکاتبات، پست الکترونیکی:

17
برای ارزیابی مؤثراتی که افزایش یا کاهش که افزایش از عوامل محیطی مورد استفاده قرار می‌گیرد (۵، ۷ و ۹).

در صورت کاهش تراکم بیوتا، همه با کاهش فاصله برای ترکیب یافته در وظایف افزایش و در تراکم بیوتا در واحد غیراخنده به‌طور نسبی به‌طور نسبی می‌باشد. هر چند آن‌های به‌طور نسبی بین تراکم گسترده‌ای بیوتا و فاصله برای ترکیب یافته می‌باشد. این امر این شرایط سبب می‌شود که میزان فاصله ناحیه پوشش افزایش یابد (۵، ۷ و ۹). همچنین تعداد ناحیه پوشش افزایش در LAD کمتر (۷، ۱۳ و ۱۶) و نیازی‌ای شود. این نتیجه‌ها نشان می‌دهد که LAD از افزایش تعداد و فاصله افزایش در واحد ناحیه پوشش تا زمان و فاصله دو هزار پنجاه و یک هزاریک در چنین ناحیه‌ها، افزایش قابل‌توجهی در اوایل دوره رشد، با کاهش LAD به‌طور کلی سبب می‌شود.

از آنجایی که مسیر تحقیقاتی دانشکده دانشگاه صنعتی اصفهان، در تابستان ۱۹۸۳ ه. اجرای در آزمایش‌های کیلوبیومی جنوب غربی اصفهان، در منطقه لر، تحقیقات تازه‌کاری‌های طول جغرافیایی نجف‌آباد (۲۱/۳۷۳۳۹۱، شمایی، طول جغرافیایی ۵۴/۳۷۷۸ نمایش و ارتفاع ۱۵۳۰ متر از سطح دریا) قرار دارد. این منطقه دارای اقلیم خشک، با زمستانی شریف و تابستانی خشک (۴) می‌باشد. هم‌اکنون پرداخت و خدمات سالانه به ترتیب ۴۹، ۱۵۴ میلی و ۱۵۷/۶ درجه سانتیگراد است. بافت حاصل مزروعه لوم روستایی از سراسر کشور مخصوص ظاهراً حدود ۱/۴ کمتر سانتی‌متر مکعب، برای حدوه و ۱/۷۵ و هدایت الکتریکی ۱/۴ دسی‌بیسی بر متر است. (۲) این رفتار زراعی و نقطه پژوهشگری اکسپ. به ترتیب ۲۹ و ۱۰ درصد وزنی می‌باشد.

زیمن محل آزمایش در سال قبل از کشت به صورت آذین و عملیات تهیه بسته شرک است. نخست افزایش بود. برای کاهش، از تکنیک‌های گرفته: حاصل مزروعه دارای ۱۲۳ میلی‌گرم در کیلوگرم خشک فسفر، ۲۰۰ میلی‌گرم در کیلوگرم خشک، تعداد ۱۲۰ و ۱/۱۴ درصد تریوتور کل بود. به‌طور ممکن دلیل کاهش فسفر و تهیه مصرف تغذیه‌ای ۴/۳. جدول از کاشت، عادی ۳ کیلوگرم در هکتار نیازمند (به فرم اوره با ۴۶ می‌شود. زیبایی‌ای شد و تحقیق اکثر به‌طور معمولی ۱۸۸۲۶ LAD می‌شود.
تأثیر فواصل ریف کاشت و تراکم یوته بر شاخه‌های رشد و...
قانون زمانی ساده‌ای را ویژه طبقه تکمیل شده بود. تاج پوشش در فاصله ریف کافی 30 سانتی‌متر در حد فاصل زمانی بین ریف طبیعی و 50 درصد گل‌دهی کامل شد و گاهی در فاصله ریف کافی 35 سانتی‌متر تا یک پایان ریسفی در تیزیک متعلق به گسترش نمود. به علاوه، برای پر کردن فاصله ریف بهینه و هاکها (16) افق بیشتری نیاز داشت. در مطالعه‌هایی که در ریف کافی و روش‌های تراکم را جبران کرد و هم‌نفسان با تراکم تهدید دیگر، سطح زمانی کافی در تدریج و حداکثر زمانی هوا از حد بالایی 30 درجه سانتی‌گراد در حداکثر دمای رودان گذاشت. نتایج مطالعه به‌عنوان زیر نشان می‌دهد که تکمیل نوجوان پوشش در افزایش تراکم پوست می‌باشد.

وزن خشک پوست

اثر فاصله ریف کافی 30 سانتی‌متر در حد فاصل و 50 درصد گل‌دهی کامل شد و گاهی در فاصله ریف کافی 35 سانتی‌متر تا یک پایان ریسفی در تیزیک، نمود. مطالعه به‌عنوان زیر نشان می‌دهد که تکمیل نوجوان پوشش در افزایش تراکم پوست می‌باشد.

مقدار ریف کافی 30 سانتی‌متر در حد فاصل و 50 درصد گل‌دهی کامل شد و گاهی در فاصله ریف کافی 35 سانتی‌متر تا یک پایان ریسفی در تیزیک، نمود. مطالعه به‌عنوان زیر نشان می‌دهد که تکمیل نوجوان پوشش در افزایش تراکم پوست می‌باشد.

مقدار ریف کافی 30 سانتی‌متر در حد فاصل و 50 درصد گل‌دهی کامل شد و گاهی در فاصله ریف کافی 35 سانتی‌متر تا یک پایان ریسفی در تیزیک، نمود. مطالعه به‌عنوان زیر نشان می‌دهد که تکمیل نوجوان پوشش در افزایش تراکم پوست می‌باشد.

مقدار ریف کافی 30 سانتی‌متر در حد فاصل و 50 درصد گل‌دهی کامل شد و گاهی در فاصله ریف کافی 35 سانتی‌متر تا یک پایان ریسفی در تیزیک، نمود. مطالعه به‌عنوان زیر نشان M
تأثیر فواصل رشد کاشت و تراکم بوته بر شاخص‌های رشد و...

جدول 1. مقایسه میانگین‌های اثر فاصله رشد کاشت (سانتی‌متر) و تراکم بوته در متر مربع بر حداکثر شاخص‌های رشد. دوام سطح برگ

<table>
<thead>
<tr>
<th>فاصله رشد (سانتی‌متر)</th>
<th>NAR (g m⁻² GDD⁻¹)</th>
<th>RGR (g g⁻¹ GDD⁻¹)</th>
<th>CGR (g m⁻² GDD⁻¹)</th>
<th>LAD (GDDxLAI) (m² ha⁻¹)</th>
<th>وزن خشک (kg ha⁻¹)</th>
<th>عوامل آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.94a</td>
<td>0.02c</td>
<td>0.026a</td>
<td>0.91a</td>
<td>0.91a</td>
<td>0.91a</td>
</tr>
<tr>
<td>30</td>
<td>0.96a</td>
<td>0.02c</td>
<td>0.026a</td>
<td>0.91a</td>
<td>0.91a</td>
<td>0.91a</td>
</tr>
<tr>
<td>20</td>
<td>0.98a</td>
<td>0.02c</td>
<td>0.026a</td>
<td>0.91a</td>
<td>0.91a</td>
<td>0.91a</td>
</tr>
</tbody>
</table>

1. میانگین‌های هر عامل آزمایشی در هر ستون که حداکثر در یک حرف مشترک هستند، فاقد تفاوت آماری بر اساس آزمون دانکن در سطح احتمال 5 درصد می‌باشند.

شکل 1. روند تغییرات وزن خشک بوته در فواصل رشد مختلف

روش خشک گیاهان در هر سه فاصله رشد کاشت از 14 روز بعد از ساقه‌دهی (معادل تجمع حدود 660 درجه - روز رشد) شروع شد. این روند تا حدود 16 روز قبل از 50 روز درصد گل‌دهی (معادل تجمع حدود 1240 درجه - روز رشد) آدامه داشت و بعد از آن رشد کند شد و در حدود 20 روز قبل از رسیدگی

5/15 سانتی‌متر در تراکم 40 بوته در متر مربع) است. در نتیجه بوته‌ها می‌توانند از فضای رشد مناسب در تمام دوره رشد استفاده و از وزن خشک بوته بیشتری در تمام فصل رشد برخوردار باشند. کاهش تجمع ماده خشک در اثر افزایش فاصله رشد کاشت در کلزا (20). سویا (13) و گلرنک (1 و 2) گزارش شده است.
شکل ۲. روند تغییرات وزن خشک پوتن در تراکم‌های پوتن مختلف

فیزیولوژیک (با درCEPT ۱۹۴۰ درجه-روز رشد) به دلیل ریشه بارگ‌ها از وزن خشک تمام تیمارها کاسته شده است. (شکل ۱) روند فوق را می‌توان به افزایش سرعت وزن خشک ساقه و بارگ‌ها تا مراحل شروع گلدهی (داده‌های متنشر نشده) و محدود شدن فضای رشد و تشدید رقابت در اواخر فصل رشد نسبت داد. این تبیه‌گیری با نتایج سایر مطالعات (۶ و ۸) هم‌بینه است.

اثر تراکم روی حداکثر وزن خشک پوتن (که در مدت ۸۰ روز از گلدهی به دست آمد) در سطح احتمال ۱ درصد معنی‌دار بود. افزایش تراکم حداکثر وزن خشک کل افزایش یافت (جدول ۱). تراکم ۵۰ پوتن در متر مربع در نمای نسبت به تراکم ۴۰ پوتن در متر مربع دارای وزن خشک بیشترین بود (شکل ۳). با افزایش تراکم پوتن به واحد سطح، رقابت بین پوتن‌ها به دلیل کاهش فضای قابل دسترس گیاه تشدید شده و بعث کاهش وزن خشک هر پوتن می‌شود. اما افزایش تعداد پوتن به دمتر مربع باعث جبران این کاهش شده و افزایش ماده خشک در واحد مساحت را در پی دارد. رشد خطی هر دو تیمار حدود ۱۲ روز بعد از ساقه‌دهی (پس از تجمع

(۳) 

۲۲
تأثر فواصل ردهف کاشت و تراکم بونه بر شاخصهای رشد و...

گردآفیشانی به حداکثر رسید و سپس شروع به کاهش نمود.
در مطالعه کبیری و همکاران (۶) پس از دریافت ۱۱۰۰ درجه-ر، روی رشد به حداکثر رسید و سپس شروع به کاهش نمود که به طور کلی با نتایج مطالعه حاضر مطابقت می‌باشد.

اثر تراکم بونه روی حداکثر LAI (که در حد فاصل روت) طبق تا شروع گل‌دهی حاصل شد) در سطح احتمال ۱ درصد معنی‌دار بود. با افزایش تراکم بونه از ۰ به ۵۰ بونه در متر مربع، حداکثر LAI افزایش یافت (جدول ۱). تراکم ۶۰ بونه در متر مربع نمایه در فصل رشد، به خصوص در نقشه حداکثر، بیشتر نسبت به ۴۰ بونه در متر مربع داشت (شکل ۲). با افزایش تراکم بونه، به وجود ایجاد رقابت به دلیل افزایش تعداد بونه و افزایش سطح تعداد بونه در واحد سطح افزایش یافت و این منجر به یافتن LAI می‌گردید. روی LAI اعمال تغییرات برای هر سه فاصله ردهف کاشت مشابه بود. این تغییرات در حداکثر LAI تا ۱۲ روز بعد از ساقه‌دهی (معادل تجمع حداکثر ۷۶ درجه-رود) خطی بود. در حداکثر ۱۲ روز قبل از شروع گل‌دهی (پس از تجمع حداکثر ۱۲۸ درجه-رود رشد) به حداکثر رسید و سپس به تدریج شروع به کاهش نمود. سرعت کاهش از حداکثر ۵ روز قبل از اتمام گل‌دهی (پس از تجمع حداکثر ۱۷۶ درجه-رود) تشدید گردید (شکل ۳). در مطالعه میودی نیکور و کوچکی (۸) روی اثر تغییر LAI کاشت در حد فاصل نهایی LAI و در حد فاصل ردهف کاشت و تراکم بونه بر شاخص‌های رشد و...
درجه یوز ردش تجمعی

شکل ۳: روند شاخص سطح برق در تراکم‌های بوته مختلف

برگ‌ها زودتر شروع به پریدن و ریزش می‌کنند که این امر باعث کاهش دوام سطح برق می‌شود. مورپسون و همکاران (۲۰۰۰) گزارش کرده‌اند که با افزایش فاصله ردیف کاشت در فاصله ردیف کاشت باریکتر به دلیل فضای زیادتر بین بوته‌ها پیشتر بود. بورد و هارولیل (۱۱) با مطالعه قاچاق لایا در فاصله ردیف ۲۵، ۵۰ و ۱۰۰ سانتی‌متر در گیاه‌سازی نتیجه گرفتند که بهترین عملکرد در فاصله ردیف کاشت ۵۰ سانتی‌متر به دست آمده که دلیل این افزایش دوام سطح برق دانسته‌اند.

اثر تراکم بوته روی LAD در حد فاصل شروع گلدهی تا LAD مقداری روی افزایش تراکم بوته در متر مربع بیشتر شد (جدول ۱). با افزایش تراکم بوته افزایش در میزان کوچکتر شده و تعداد برق و LAD در بوته کاهش می‌یابد. اما افزایش تراکم بوته در حد فاصله لایا موارد فوق در حد مصرف شده و افزایش LAD را به دنبال این تجربه‌ها با مطالعات دیگران (۵)، (۷) و (۱۹) هم‌آهنگ می‌باشد.

LAD سطح برق (۱) اثر فاصله ردیف کاشت روی LAD در حد فاصل شروع گلدهی تا رسانه فیزیولوژیک در سطح احتمال ۱ درصد معنی‌دار ندارد. با افزایش فاصله ردیف کاشت کاهش یافته (جدول ۱). با افزایش فاصله ردیف کاشت (به دلیل کافی) فاصله بوته‌ها در روز رطوبت به ویژه در سطح شده و اندام‌های گیاهی روی هم‌گیری سایه‌های اندامی می‌کند. بنابراین،
تأثیر فواصل رشد کاشت و تراکم بوته بر شاخه‌های رشد و...

![نمودار 5: روند تغییرات سرعت رشد محصول در فواصل رشد مختلف](image)

سرعت رشد محصول (CGR) اثر فاصله رشد کاشت روی حداکثر CGR (که در فاصله کوتاه یا پس از روت طبق حاصل شد) در سطح احتمال 1 درصد معنی‌دار بود. با افزایش فاصله رشد کاشت از 20 به 45 سانتی‌متر حداکثر CGR کاهش یافت (جدول 1). فاصله رشد کاشت 20 و 45 سانتی‌متر ترتیب دارای بیشتری و کمترین مقدار از شروع ساقه‌دهی بود. در اتمام CGR گل‌دهی بدون پس از مرحله اتمام گل‌دهی، روند کاهش مکروسیک شد. به طوری که سرعت کاشت در فاصله رشد کاشت 25 سانتی‌متر بسیار شدید گردید (شکل 5). با افزایش فاصله رشد کاشت، فضای قابل دسترسی گیاه در اثر کاهش فاصله بین بوته‌های رشد کاشت کاهش یافت. رقابت درون و برون گیاهی تشدید شده و بوته‌ها روی همدیگر سایه‌داری وی‌کند. این امر باعث کاهش LAI و تجمع ماده خشک می‌گردد. در فواصل رشد کاشت بیشتر نسبت به فاصله رشد کاشت باریک‌تر گردید و در نهایت کم بودن CGR را تا زمان نیز به اتمام گل‌دهی (معادل تجمع حدود 176 درجه- روز رشد) در پی داشت. بعد از مرحله اتمام گل‌دهی ظاهر آفتابی رشد نیافته کاشت 25 سانتی‌متر به دلیل بیشتر در سایه نور گرفتن بر گه‌ها.

![نمودار 6: روند تغییرات سرعت رشد محصول در فواصل رشد مختلف](image)
سایه قرار گرفتن برگ‌های پایینی بونه و کاهش توانایی فتوستروی آنها، سرعت تجمع ماده خشک نسبت به ماده خشک اولیه نقض‌دان یافته و این امر سبب کاهش سرعت رشد نسبی می‌گردد و مدتی پس از اتمام گل‌دهی به دلیل نباید بروز به پدیدایش مایع بود. نتایج مشابهی در سایر مطالعات (12 و 14) به دست آمده‌اند.

اثر تراکم روی حداکثر RGR (که در مرحله شروع ساقه‌دهی مشاهده شد)، معنی‌دار نبود و برای هر دو تراکم تقیبی مساحی بود (جدول 1). روند تغییرات منحنی‌های حاصل از تراکم‌های 2۰ و ۳۰ بونه در متر مربع از همان ابتدا بر روی همراهی منتقل شده (شکل ۸). در مجموع تغییرات سرعت رشد نسبی تحت تأثیر تراکم بونه با تغییرات آن تحت تأثیر فاصله رشد کاشت مشابه بود. در مطالعه‌های کلاوسن و همکاران (1۵) روي سوا و بیپو و همکاران (۱۶) روي عدس قرمز نیز سرعت رشد نسبی تحت تأثیر تراکم قرار گرفت.

(NAR) نیمی جذب خالص (NAR) اثر فاصله رشد کاشت روی حداکثر (که در مرحله شروع ساقه‌دهی مشاهده شد) در سطح احتمال ۵ درصد معنی‌دار بود و با افزایش فاصله رشد کاهش یافت (جدول 1).
تأثیر فواصل رنگ کاشت و تراکم بوته بر شاخه‌های رشد و…

شکل ۷. روند تغییرات سرعت رشد نسبت در فواصل رنگ مختلف

شکل ۸. روند تغییرات سرعت رشد نسبت در تراکم‌های بوته مختلف

فواصل رنگ کاشت ۲۰ سانتی‌متر تا مدت کوتاهی بعد از اتصال گل‌دهی (معادل تجمع حذف) ۱۷۵۰ درجه روز رشد بیشتری داشت. اما در این مرحله و با تغییر شدید شیب، رابطه معکوس شد و فاصله رنگ کاشت ۲۰ سانتی‌متر با سرعت
شکل 9. تغییرات میزان فتوسترات خالص در فواصل مختلف ریف

سایر گونه‌های شروع سلسله روز رشد تجمیعی

(1.65449*GDD^0.5-0.07415)+(0.00003112*GDD) + (0.000000631563*GDD^2) + (EXP(33.11105) + (0.05093)*GDD^0.5-0.09777)+(GDD+0.00002595)*GDD^2+ (0.0000000422465*GDD^3))

شکل 10. تغییرات سرعت رشد نسبی در تراکم‌های هر نوع مختلف

در آغاز تراکم می‌شود اما سرعت NAR ریزش یپسی و ناپایدار است. در حالت تراکمهای کم‌سایری و همکاران (6) روز کلیسا و روزان جذب خاصی در آراپش های کشت مستقل همراه کمتر از آراپش های کشت مرغ و لوزی بود. آنان دلیل می‌کنند که در پایان مقدار NAR افزایش یپسی با نابرابری بدی نازل تراکم‌های NAR در رنگین می‌گردد. این بیانگری با مطالعه‌های احمدوند و کوچکی روی سوسیا (2) موریسون و همکاران
تأثیر فواصل ریفت کاشت و تراکم پونه بر شاخه‌های رشد و ...
ماناب مورد استفاده

1. آذری، آ. م. خواجه‌بویر. 1384. اثر آراپیش کاشت بر رشد، نمو، اجزای عملکرد و عملکرد دانه در کشت بهاره گرگان، نوده


3. پورهادیان، ح. 1381. تأثیر عوامل رفیق کاشت و تراکم بونه بر شاخص‌های رشد، سرعت پوشش کنونی و عملکرد گرگان نوده

4. خواجه‌بویر، م. ر. 1383. گزارش صنعتی. انتشارات جهاد دانشگاهی وحدت صنعتی اصفهان.

5. کامرانی، ع. 1387. ارایابای عملکرد و شاخص‌های رشد در سیفیا. پایان‌نامه کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.


7. لیافیان، ع. ح. 1374. بررسی اثرات فواصل رفیق کاشت و تراکم بونه بر شاخص‌های رشد، عملکرد و اجزای عملکرد دانه لوبیا سفید لاین آزمایشی. 1385. پایان‌نامه کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.


9. عقیق نژاد، ف. 1383. اثر فاصله رفیق، فاصله بونه و رقم بونه، اندازه گذاری و عملکرد سیپ زمینی. پایان‌نامه کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.


