با استفاده از (Bunium persicum (Boiss.) B. Fedtsch.) ریزمانه محور جنبی

محمود ورزیده، عباس صفرزاده، قربانعلی نعمت‌زاده و سید کمال کاظمی‌تبار

(تاریخ دریافت: 85/11/24؛ تاریخ پذیرش: 85/11/24)

چکیده

زیره پارسی به عنوان یکی از اصلی‌ترین گیاهان دارویی بوده و ارزش‌های اقتصادی بالایی دارد. تاکنون گزارش‌هایی در مورد استفاده ریزمانه محور جنبی یکی ازگیاهان دارویی مهم بوده و به‌طور گسترده در صنایع دارویی و آرایشی به‌کار رفته و درآیار ارلن‌های نیز می‌باشد. خاک‌های موجود در بزرگر بیش از...

مقدمه

زیره پارسی به عنوان یکی از اصلی‌ترین گیاهان دارویی مهم بوده و به‌طور گسترده در صنایع دارویی و آرایشی به‌کار رفته و درآیار ارلن‌های نیز می‌باشد. خاک‌های موجود در بزرگر بیش از...

1. به ترتیب دانشگاه سالک کانادا، ارشد، دانش‌پژوهان، و استاد اردن، و اساتید، و علمی‌های، و دانشگاه‌ها، و دانشگاه‌های، و...
سیب‌های زیره‌پارسی جمع‌آوری شده از منطقه کلات واقع در

به‌طور جدی‌تر در کشت بافت زیره پارسی استفاده می‌گردد. این نتایج نشان داد که کالوس‌های فشرده‌کننده و ژل‌سازی‌کننده باعث افزایش کیفیت سیب‌های زیره پارسی می‌شوند. B5 حاوی میلی‌گرم، 2 لیتر MS در میحتی‌های فشرده‌کننده و ژل‌سازی‌کننده استفاده می‌گردد. تولید کالوس‌های فشرده‌کننده باعث افزایش کیفیت سیب‌های زیره پارسی می‌شود.

져یره‌برداری نویز و روش‌ها

به‌طور کلی اطلاعات محدودی در ارتباط با کشت این ژیره‌برداری وجود دارد.
بازیابی زیره پارسی

با استفاده از...

Bunium persicum (Boiss.) B. Fedtsch.

انالک با سطح احتمال ۵ درصد انجام شد.

نتایج

اولین کالوس‌ها یک هفته پس از انتقال ریزیمنونه به محيط کشت مشاهده شدند و ۲۰ روز بعد از بازیابی رخ داد (شکل‌های ۱-۱ و ۱-۲). به طور کلی مقدار کالوس در تیمارها با ترکیب هومورونکین اکسین و سیتوکینین نسبت به تیمارها فاقد سیتوکینین بیشتر بود. همان‌طور که در جدول ۱ مشاهده می‌شود، بیشترین تعداد ریزیمنونه تولید کننده کالوس مربوط به ترکیب هومورونکین/اکسین/سیتوکینین در لیتر NAA و ۲,۴-D، به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D بود. بیشترین مقدار بازیابی، هم از نظر گیاهی بهترین نتایج در هرم ریزیمنونه و هم از لحاظ ماینگین تعداد بازیابی به معنی بی‌chiedی بین ترکیب هومورونکین/اکسین/سیتوکینین در لیتر NAA و ۲,۴-D، به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D بود. همان‌طور که در جدول ۱ مشاهده می‌شود، ریشه رایز ایفای اغلب در تیمارهای NAA درای هومورونکین رخ داده است و در تیمارهای دارای هومورونکین/اکسین/سیتوکینین، ریشه رایز به‌طور مؤثر ترای گاز کالوس و پاسیو ایفای اغلب ریشه رایز به‌طور مؤثر تری در ناحیه نیوزش. به‌طور کلی تیمار برای الاغ کالوس و بازیابی ریشه رایز به‌طور مؤثر تری در ناحیه نیوزش، در منطقه آزمایشی به‌طور مؤثر تری ثبت شده است. همچنین با افزایش غلظت هومورونکین در NAA در لیتر ۲ یا ۴ میلی‌گرم در لیتر ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه نیوزش نسبت به NAA و ۲,۴-D به میزان گرم در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار ناحیه NAA و ۲,۴-D در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار NAA و ۲,۴-D در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار NAA و ۲,۴-D در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به ناشی از میزان بسیار NAA و ۲,۴-D در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به NAA و ۲,۴-D در لیتر Kin و ۲ و ۴ میلی‌گرم در لیتر NAA و ۲,۴-D به NAA و ۲,۴-D در لیتر Kin و میزان گرم در لیتر NAA و ۲,۴-D به میزان گرم در L...
شکل 1. اثر تیمارهای هورمونی بر فراوانی افراز کالوس. ساقه، ریشه، جین سوماتیکی و میانگین تعداد ساقه و ریشه.

جدول 1. اثر تیمارهای هورمونی بر فراوانی افراز کالوس. ساقه، ریشه، جین سوماتیکی و میانگین تعداد ساقه و ریشه.

<table>
<thead>
<tr>
<th>فراوانی افراز کالوس</th>
<th>فراوانی افراز ساقه</th>
<th>فراوانی افراز ریشه</th>
<th>میانگین تعداد ساقه</th>
<th>میانگین تعداد ریشه</th>
<th>تیمار هورمونی (ملی گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14 ab</td>
<td>1/17 ab</td>
<td>1/17 ab</td>
<td>1/17 ab</td>
<td>1/17 ab</td>
<td>0/1 NAA</td>
</tr>
<tr>
<td>1/15 bc</td>
<td>1/17 b</td>
<td>1/17 b</td>
<td>1/17 b</td>
<td>1/17 b</td>
<td>0/1 NAA+0 Kin</td>
</tr>
<tr>
<td>1/10 abc</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
<td>1 NAA</td>
</tr>
<tr>
<td>1/10 abc</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
<td>0/1 NAA+0 Kin</td>
</tr>
<tr>
<td>1/10 abc</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
<td>1 NAA+0 Kin</td>
</tr>
<tr>
<td>1/11 c</td>
<td>1/17 ab</td>
<td>1/17 ab</td>
<td>1/17 ab</td>
<td>1/17 ab</td>
<td>0/1 2,4-D</td>
</tr>
<tr>
<td>1/12 bc</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>0/1 2,4-D+0 Kin</td>
</tr>
<tr>
<td>1/12 bc</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>1/17</td>
<td>0/1 2,4-D+1 Kin</td>
</tr>
<tr>
<td>1/13 abc</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+2 Kin</td>
</tr>
<tr>
<td>1/14 ab</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+3 Kin</td>
</tr>
<tr>
<td>1/15 bc</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+4 Kin</td>
</tr>
<tr>
<td>1/14 ab</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+5 Kin</td>
</tr>
<tr>
<td>1/14 ab</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+6 Kin</td>
</tr>
<tr>
<td>1/15 bc</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+7 Kin</td>
</tr>
<tr>
<td>1/16 bc</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+8 Kin</td>
</tr>
<tr>
<td>1/17 bc</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+9 Kin</td>
</tr>
<tr>
<td>1/18 bc</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>0/1 2,4-D+10 Kin</td>
</tr>
</tbody>
</table>
جدول ۲. نتایج تجزیه واریانس مشاهدات مربوط به فراوانی القای کالوس، ساقه، ریشه، جنین سوماتیکی و میانگین تعداد ریشه و ریشه

<table>
<thead>
<tr>
<th>میانگین مرعبات</th>
<th>فراوانی القای کالوس</th>
<th>جنین سوماتیکی</th>
<th>میانگین تعداد</th>
<th>درجات تغییر</th>
<th>تعداد تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساقه</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۲/۷۳</td>
<td>۰/۱۹۵</td>
<td>۲۹</td>
</tr>
<tr>
<td>ریشه</td>
<td>۰/۹۱</td>
<td>۰/۱۱</td>
<td>۸/۵۶</td>
<td>۰/۲۸۰</td>
<td>۲۸۷</td>
</tr>
</tbody>
</table>

بحث

تشکیل جنین سوماتیکی در مرحله القای کالوس در تعدادی از گیاهان خانواده چترینان از جمله رازیانه و هیویچ، معمول می‌باشد. (۸) مکمل NAA و ۲-۴-D به تهیه یا همراه با برای نمونه كالوس مورد نیاز است و کاهش آنها باعث افزایش اندورامی و تولید جنین‌های ناپایه در زیر پارسی می‌گردد. وضع بان زیراژ در تعدادی از زیرگونه‌های گیاهان ماشین بان زیراژ، اصلی و کلیه نیاز دارد که برای بان زیراژ بان زیراژ پارسی گونه‌ها و گونه‌های خانواده چترینان (هیویچ، رازیانه و گریتس) وجود هرمون سیتوکینین‌های مختلف در هر یک از این گونه‌ها وجود دارد. در تحقیق فوق اهمیت نوع ريزونیون تأثیر زیادی داشت. کشت جنین باعث پیکستن ریزبی‌سفیدی در زیتون و ریز نیز تأثیر اسفناج فراوانی دارد (Cuminum setifolium). (۹) از این روش می‌توان در مورد سایر گیاهان دارویی از جمله زیره سفید استفاده کرد.

اهنام طور که قبل از اشاره شد به دلیل وجود مشکلاتی از جمله خشکسالی و بهبودی واقعی کشت و تولید زیره پارسی دچار محدودیت تعدادی می‌باشد که با استفاده از تکنیک
کشت یافته و اندازه‌گیری مقاومت به بیماری و آفات، می‌توان تعداد زیادی از گیاهان عاری از بیماری در مدت کوتاهی تولید نمود.

متایب مورد استفاده

1. بیانیه پویر، ع. 1374. بررسی افزایش جنگی زیره سیاه و سیب و انگلیس پیش در زیره سیب. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه شیراز.
2. پوراسمالیل، م. و م. شریفی. 1381. شکستن خواب بذر زیره سیاه توسط تنظیم کننده‌های رشد گیاهی ویژه و استریپینگاسیون.
3. جهاد دانشگاهی دانشگاه تهران.
4. سازمان پژوهش‌های علمی و صنعتی ایران، مرکز خراسان.