تأثير رژیم غذایی و مدت ذخیره سازی بر طول عمر و کارایی زنبور پارازیت‌وید

Encarsia formosa Gahan

پیژن حاتمی و حسن قهاری

چکیده

با توجه به اهمیت و نوآوری زنبور پارازیت‌وید Encarsia formosa Gahan (Hymenoptera: Aphelinidae) بر کنترل مکس تأثیر رژیم غذایی غذای گیاهی گوناگون، و نیز ذخیره سازی پارازیت‌وید فوق در دما و طول عمر و کارایی آن بررسی گردید. اختلاف میانگین طول عمر پارازیت‌وید میان تیمارهای محیط 15% آب و سال، محیط 15% آب و عمل، محیط 15% اکساز و عمل مکس سفید گلخانه‌ای از یک سوی با تیمارهای آب مقطر و شاهد (بدون آب و ماده غذایی) از سوی دیگر، در سطح 1% معنی‌دار بود. تغییر در حالت محیط هر آب و عمل به میزان 5% رایگی در طول عمر پارازیت‌وید ناشی می‌شد. نتایج اختلاف معنی‌دار میانگین تیمارهای عمل و سکارز 15% احتمالاً به خاطر تغییر نسبی در دما از نظر ارزش غذایی است.

ذخیره سازی پوره‌های پارازیت‌وید مکس سفید گلخانه‌ای حاوی شفه‌های 1–2 روزه پارازیت‌وید در دما 1±8 درجه سانتی‌گراد بر کاهش خروج و کارایی پارازیت‌وید حاصل تأثیر داشت. چهار تیمار شامل شفه‌های 1–2 روزه و 1–2 روز ذخیره شده در دما 1±8 درجه سانتی‌گراد برای مدت 5، 15 و 30 روز داشتند. تیمار شاهد شامل شفه‌های 1–2 روزه که در دمای معمول اتاق (24±2 درجه سانتی‌گراد) را در زمان خروج حشرات کامل پارازیت‌وید نگهداری می‌کرد. پوره‌های میزان نوسان حشرات کامل پارازیت‌وید حاصل از تمام تیمارهای پارازیت‌وید شدن مرتبه دار داشتند میانگین کاهش پوره‌های پارازیت‌وید در دما 1–2 روز و 15 روز و شاهد، در سطح امرازی 1% اختلاف معنی‌دار نشان داد.

واژه‌های کلیدی: پارازیت‌وید، رژیم غذایی، ذخیره سازی، کارایی

مقدمه

Encarsia formosa Gahan (Hymenoptera: Aphelinidae) زنبور پارازیت‌وید مکس‌های سفید (Homoptera: Aleyrodoidea) است. این پارازیت‌وید انتشار جهانی داشته و کاربرد اقتصادی و طبی در سال 1885 به طوری که افزایش استفاده آن از سطح معادل ۲۴۰۰ هکتار در سال به پیش از ۷۰۰ هکتار در سال ۱۹۹۰، بیانگر توانایی چشمگیر آن بود. به ترتیب استدلال و دانشجوی سابق کارشناسی ارشد حشرشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان 1380
کپیت و کارایی آنها در پایان دوره ذخیره‌سازی است. در کسترل مگس‌های سفید، به ویژه گونه‌های Trisalurodes و Zephorus جنس Encarsia مانند دیگر گونه‌های خانواده Aphelinidae، پس از خروج از زیر نیاز به تغذیه از شهد، عسلک و گیاهی دارند که از آن نیشابوریپیدهای سیاه و سایر انواع مNullOrوب می‌شوند. این‌گونه موجب می‌شود تا در آن‌ها شکر از ماده غذایی ضروری از طریق گونه‌های مختلف گرفته شود. در این‌صورت، نیازهای شرکت کامل به عوامل اکولوژیکی به ویژه اینچه و درجه دما و بیانسی این‌گونه ممکن است. در مورد گونه‌های Zephorus، تعداد زیادی از ماده‌های غذایی کافی و مناسب طول عمر آنها افزایش می‌یابد. از نظر اقتصادی، این‌گونه در حال حاضر در قبیض و روش‌های مختلف فعالیت داشته‌اند. در موارد چونی زنبور خارج از گونه‌های Trisalurodes و Zephorus، به محیط زیست و هیجان‌آوری می‌باشد.

مود و روش‌ها

تغییر رژیم‌های غذا و گوناگون بر طول عمر زنبور پارازیت‌ای E. formosa

سی و شش زنبور ماده تا آغاز خارج شده با کرک E. formosa در یک گروه، خاصیت لاسیکی در یک درب به قطع 9 به ارتقای 7/17 سانتی‌متر تا انکی والا به دامای 28 درجه سانتی‌گراد، رطوبت نسبی درصد، ۴/۵۵۴ درصد و ۱۵ سعی بستگی دارد. در شرایط نامرد، به منظور یکسان شدن طول عمر از طریق نمودار شرایط داخل تغییر و پیوستگی آن‌ها بوده، با کمک کاهش در بیانسی و خصوصی در هنگام کمبود هوا در محیط، و نیز جدول آنها به نموداری که احتمال افزایش جمعیت آنها می‌باشد. در مقابل آن، درصدی در آنها به سه‌ستگی دارد.

نخستین کمکه نمای نیاز خلاف امکان می‌باشد به سال 1981 ویژه‌ای می‌شود که لارو‌های کشش‌درزی Adalia bipunctata L. پرورش داده شد. به این‌نواز خارجی نمایندگی آن‌ها و افزایش زنبور در نیازهای اقتصادی استفاده از مصرف به عنوان E. formosa می‌باشد. میدان غذا و موجب گونه‌های طول عمر پارازیت‌ای این پارازیت‌های زنبوری E. formosa می‌باشد (16).

1. Synovegenic
و زنبور، مخل شکافه‌ای با پیشکاملاً مسدود گردید.
این آزمایش در چارچوب یک طرح کاملاً تصادفی با شش تیمار در شش تکرار انجام شد. تیمارها شامل محلول 10 زرد آب و عسل (شریت عسل)، محلول 15 دصرت آب و عسل، محلول 15 دصرت ساکارز، عسلک تولید شده توسط مگس سفید قلم‌خانه، آب م鹼 و شاهد (بدون آب و ماده غذایی) بودند.

تعیین درصد خروج حشرات کامل زنبور پارازیتیودی E. Formosa

در گل‌خانه‌ای با اندازه‌های 32×32 متر، ده قفس چوبی به ابعاد 50×50×70 سنتری متری که از شش طرف با پارچه تشریفات مس مسند بودند، روزی سقوطی فلزی قرار داده شد. درون هر قفس یک گلدانی از جنس ییعقیس به طور دهانه 18 و عمق 12 گیلبرگ شاهین درخت قرار گرفت. یک صد ماده جفت‌گیری می‌کرد. مگس سفید قلم‌خانه داخل هر قفس رها و 24 ساعت بعد خارج شدند.

آزمایش در چارچوب طرح یکباره کاملاً تصادفی با پنج تیمار، در چهار تکرار هر در تکرار در یک زمان و به اصله 72 ساعت (اندازه‌گیری شد) تیمار شاهان مدل زنبورهای ماده بایک، که در 15، 25 و 35 روز از دوره تولیدی خود را E. Formosa در دو مدل 98 درجه سانتی‌گراد گذارانده، و یکی در تیمار نیز به عنوان شاهد (زنبورهای معمولی) که شفافیت آنها در دمای طبیعی اطاق 24 درجه سانتی‌گراد قرار داشتند (بود.

آزمایش به گونه‌ای تنظیم گردید که روز پانزده پس از تخم گذاری مگس سفید، آغاز از یک سیستم پیشرفته روز سه بهار پوری مگس سفید ویپ‌هی، با تولید قلم‌خانه دختره، بر اساس آمده به شدت به پوری سه بهار از سیستم مگس سفید قلم‌خانه، 100 گلخانه در از ویپ‌هی منطقه، و به‌طور عاملی نظریه حذف گردیده. زنبور ماده باکره E. Formosa، قفس رها و 28 ساعت بعد خارج شدند. زنبورها پیش از رها می‌کردند. به مقدار 10 گلخانه، به مدت 15 نیم آب و عسل تغذیه شدند، و سپس به منظور استفاده از آزمایش پنک آزمایش، پنک آزمایش نیم آب و عسل تغذیه شدند، و سپس به منظور استفاده از آزمایش پنک آزمایش، پنک آزمایش نیم آب و عسل تغذیه شدند.
عنوان منبع غذای مطلوب برای زنبور، منبع تنگه‌سازی می‌باشد. در اینجا شمار افراد پاژنتیم شده و در موقعیت‌های مختلف آنتی‌ژن می‌باشد. در حالت قبلاً بخش گردشی برای انتقال ناپذیری این شمار برای افراد پاژنتیم شده و در rumours داشته باشد، بدین شکل:

1. Host feeding
2. Oogenesis

Classical release method.

Dribble release method.
تأثیر رژیم غذایی و مدت ذخیره‌سازی بر طول عمر کاراپی زنبور پارازیتوئید

جدول ۱. تجزیه و ارایاس تأثیر رژیم‌های غذایی گوناگون بر طول عمر زنبور

<table>
<thead>
<tr>
<th>گونه غذایی</th>
<th>میانگین موجودات (MS)</th>
<th>درجه آزادی (df)</th>
<th>مجموع موجودات (SS)</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. formosa</td>
<td>۲۰۴/۰۱</td>
<td>۲۳۷/۱۵۴</td>
<td>۱۶۳۵/۷۷۲۶</td>
<td>تیمار (T)</td>
</tr>
<tr>
<td></td>
<td>۲۳۹/۵۱</td>
<td>۱۵۲/۷۲۶</td>
<td>۱۸۷۲۴/۷۴۷۸</td>
<td>اشباع (E)</td>
</tr>
<tr>
<td></td>
<td>۴۵/۵۱</td>
<td></td>
<td></td>
<td>کل (G)</td>
</tr>
</tbody>
</table>

CV=√(SS/df)

نگاره ۱. تاثیر گونه‌های غذایی گوناگون بر طول عمر زنبور پارازیتوئید

Encarsia formosa

موفقیت کمتری برجا‌گذار است. مگر این که یک مختلف غذایی مناسب به طور مصنوعی تهیه و در اختیار پارازیتوئیدها قرار داده شود، تا احتمال تلف شدن پارازیتوئیدها خارج شده‌اند. شرایط در اثر عدم تسریع به غذا، در مدتی کوتاه به وجود نیاورد. این امر مستلزم صرف هزینه پیشرفت در مقایسه با روش کلاسیک می‌باشد.

طول عمر زنبور با توجه به این که میانگین طول عمر زنبور E. formosa در این پروپسی ۲۸/۷۰/۸۸ بر اساس وارد، به ویژه دردما نیز سی باشد. در این پروپسی حداکثر طول عمر زنبور E. formosa در دامنه ۴۸/۷۴ درجه سانتیگراد حدود ۲۶/۵۰ روز به دست آمد. در آزمایش‌های پژوهشگران دیگر، از جمله هولد و همکاران (۶) طول عمر این پارازیتوئید در دامنه ۵۰ به دست آمد. سانتی‌گراد حداکثر ۵۰ روز انتظار گردید.

۱. Inoculative release
درختنی‌ها دکته تیم‌های‌های 15 و 10 روز خطره‌شده، در E. formosa
سطح 1% اختلاف معنی‌داری با شاهد نداشتند. از سوی دیگر،
بر پایه نتایج به دست آمده در این برسایسه، می‌توان این
پازارتیپتیک را در مرحله شفاف‌گیری به دست 25 روز در دمای
85.1 درجه سانتی‌گراد ذخیره نمود، به چون زمانی که در آن به دست
37.1 درجه سانتی‌گراد 716 درصد از حشرات کامل از
پوره‌های پازارتیپتیک ده خشک و شده (جدول 2 و نگاره 2). نتایج
این پژوهش با گزارش فرعی (1)، می‌شود بر خروج 62% از
حرثات کامل از E. formosa 10 روز خطره‌شده در
11 درجه سانتی‌گراد، همگی خونه‌های نسبتی دارد.

پژوهشگران دیگر توجه به شرایط محیطی گوناگون به ترتیب
متفاوتی در یافتند. از جمله هویسی و اسکوپس(7) شفافی
رژه می‌گویند، سپس با انتقال به دمای 22 درجه سانتی‌گراد،
68 آنها به حشره کامل تبدیل شدند. هم چنین، با گزارش
پیاپی و همکاران (10)، 0.5-0.6 درصد از شفاف‌های
E. formosa که به دست 40 درصد در دمای 12-13 درجه
سانتی‌گراد قرار داشتند، با انتقال به دمای 25 درجه
سانتی‌گراد به حشره کامل تبدیل شدند. اختلاف در دمای، طول
دوره ذخیره سازی، پژوهش زنبور و مگس سفید گلخانه، نوع
و مرحله زنبق مگس سفید میزان، که پازارتیپتیک در دو
موما در آن سه دوره داشت، از همه مهم‌تر مرحله زنبق
پازارتیپتیک ذخیره می‌شود، دلایل تفاوت‌های موجود میان
نتایج این پژوهش با گزارش پژوهشگران دیگر می‌باشد.

در پژوهش حاضر از شفاف‌های 2-1 روز زنبرکه در پوره
سنگ‌چهار میزان قرار داشتند، استفاده شد. ذخیره سازی
لازمه سنین اول دو و سوم پازارتیپتیک، مبر و میوه
خارج نشدن زنبره کامل را همراه داشت، هم چنین با ذخیره
سازی پوره‌های پازارتیپتیک شده سنین اندازه سوم مگس سفید
غلخانه، که حاوی محلول گوناگون زنبق پوره، پوتاسیوم، شمار
بسیار تایپیژی پازارتیپتیک ذخیره شد. این نتایج، ذخیره
شفاف‌های می‌تواند از روز پازارتیپتیک موجب خروج

حال، دلیل هیپسیگن میان طول دوره ذخیره
سازی و درصد خروج پازارتیپتیک، احتمالاً اثر سوی دمای کم
بر زنبق می‌باشد. از سوی دیگر، خارج نشدن تمامی
زنبق‌ها از تیمار شاهد بیانگر این نکته است که زنبق
در شرایط ملایم نیز را در مرغ و میوه طبیعی
است. این نتایج با گزارش شاهی و پیاپی (14)، می‌تواند بر
به به خودی این پازارتیپتیک، همگونی دارد. این نتایج با بد
تویل پیدا کردن پازارتیپتیک، فوق منظم فارگرت.

نتایج آزمایش برپایه مقایسه کارایی شفاف‌های حاصل از
شفاف‌های ذخیره سازی، می‌باشد که به توجه سوی
شمار پوره‌های پازارتیپتیک شده، نشان می‌دهد که با افزایش طول
دوره ذخیره سازی، میزان پوره‌های پازارتیپتیک شده توسط زنبر
کاهش می‌یابد. بنابراین، می‌توان گفت که کارایی
E. formosa با طول مدت ذخیره سازی
15 و 10 روز پازارتیپتیک دارد. در این پژوهش، کارایی زنبق
5 و 15 روز ذخیره شده در سطح امکان 1% اختلاف معنی‌داری با
شاهد نداشته بود. بقیه دیگر، می‌توان این پازارتیپتیک را به مدت
15 روز در دمای 85.1 درجه سانتی‌گراد ذخیره نمود، بدین
که کارایی آن کاهش یابد (جدول 3 و نگاره 4). نتایج این پژوهش
با گزارش لاسی و همکاران (8)، می‌توان بر این که ذخیره سازی

1280
علوم و فنون کشاورزی و منابع طبیعی/جلد پنجم/شماره سوم/بایزیس
تاثیر رژیم غذایی و مدت ذخیره‌سازی بر طول عمر و کارایی زنبور پارازیتوید

جدول ۲. تجزیه و اریانس درصد خروج حشرات کامل از پوره‌های پارازیتوید شده مگس سفید گلخانه

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربعات (MS)</th>
<th>درجه آزادی (df)</th>
<th>مجموع مربعات (SS)</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>۱۱۵/۸۰</td>
<td>۶</td>
<td></td>
<td>(T)</td>
</tr>
<tr>
<td>اشباه</td>
<td>۱۱/۱۶۶</td>
<td>۲۰</td>
<td></td>
<td>(E)</td>
</tr>
<tr>
<td>کل</td>
<td>۱۳۶/۹۶۶</td>
<td>۲۹</td>
<td></td>
<td>(G)</td>
</tr>
</tbody>
</table>

CV=۸/۸۳۴۹

** در سطح آماری ۱% درصد میان تیمارها اختلاف معنی‌دار وجود دارد. (ضریب تغییرات)

جدول ۳. تجزیه و اریانس میانگین شمار پوره‌های پارازیتوید شده توسط زنبور E. formosa

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربعات (MS)</th>
<th>درجه آزادی (df)</th>
<th>مجموع مربعات (SS)</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>۲۵۷/۵۵</td>
<td>۴</td>
<td></td>
<td>(T)</td>
</tr>
<tr>
<td>تکرار</td>
<td>۹۱/۷۵</td>
<td>۳</td>
<td></td>
<td>(R)</td>
</tr>
<tr>
<td>اشباه</td>
<td>۸۴/۵۰</td>
<td>۱۲</td>
<td></td>
<td>(E)</td>
</tr>
<tr>
<td>کل</td>
<td>۱۱۱۸/۷۵۰</td>
<td>۱۹</td>
<td></td>
<td>(G)</td>
</tr>
</tbody>
</table>

CV=۱۰/۳۷۷۴

** در سطح آماری ۱% میان تکرارها اختلاف معنی‌دار وجود دارد.

** در سطح آماری ۵% میان تیمارها اختلاف معنی‌دار وجود دارد.

نگاره ۲. تاثیر طول مدت ذخیره‌سازی برندخوی حشرات کامل زنبور پارازیتوید E. formosa

هم‌بستگی منفی میان طول دوره ذخیره‌سازی و کارایی پارازیتوید، هم‌خوانی دارد. آستانه حرارتی حداکثر برای تخم‌بندی و رشد مراحل نابالغ زنبور E. formosa در دماهای کمتر از آستانه حرارتی حداقلی به مدت بیش از ۱۰ روز کارایی آن تأثیر منفی می‌گذارد و تا زمان گزارش پاییز و همکاران (۱۱)، مثبت بر
نقشه ۳. تأثیر طول مدت ذخیره سازی بر کارایی زنبور یازبان‌پیوسته

نتایج نشان داد که طول مدت ذخیره سازی بر کارایی زنبور یازبان‌پیوسته مثبتی برای ذخیره سازی مجاری گوناگون این زنبور یازبان‌پیوسته داشته است. به همین دلیل می‌توانستیم منفی میانگین طول مدت ذخیره سازی و کارایی این زنبور یازبان‌پیوسته بیان کنیم. نتایج مشابهی از آستانه حاویتری حداقل ذخیره‌سازی ادامه‌ی کشوری تولید مثلی، به ویژه شمار لوهلایی تخم ۱ باشد که این وضوح دریافت گذرایی با پایه‌نگاره از دیگر دریافت‌های حامل از شرایط ذخیره شده، با سرما دیده، در دامنه‌ای از دوره تکاملی خود شرایط نامناسب محسوب را نشان دهنده‌اند. این احتمال نیز وجود دارد که حشرات کامل حاصل از این شفاهی‌های ذخیره شده، از نظر برخی ویژگی‌ها، مانند طول عمر، به خصوص رفتار جستجوگری و توان پراکنگی، با زنبورنوی حاصل از شفاهی‌های معمولی تفاوت‌هایی چشمگیری داشته باشند. به همین دلیل، در پاسخ به این پرسش که چرا کارایی میانگین شمار پرو یازبانی شده این یازبان‌پیوسته با افزایش طول دوره ذخیره سازی کاهش یافت.

1. Ovarioles

۱۲/۷ درجه سانتی‌گراد می‌باشد (۱۵).

به رغم گزارش‌های بی‌سپار در مورد دامنه‌های حرارتی متفاوت برای ذخیره سازی مجاری گوناگون این زنبور یازبان‌پیوسته، تأثیر این آزمایش با آغاز شای و همکاران (۱۰ و اسکوسپ و همکاران (۱۲)، مثبت بر این که ذخیره سازی در دامنه‌های کمتر از آستانه حاویتری حداقل به مدت بیش از ۱۵ روز کارایی زنبور E. formosa را تحت تأثیر قرار می‌دهد، هم‌هانگی ندارد.

در هر حال، امروزه یکی از مشکلات مهم در تولید بیوفارمیک دسته‌های طبیعی ذخیره سازی آنها در شرایط مطلوب است، تا با حفظ کارایی آنها در مواقع ضروری بتوان آنها را توزیع نمود. تلاش عمده در این زمینه، ایجاد تکنیک‌های اندازه‌گیری طول دوره ذخیره سازی است که با حفظ کارایی مطلوب نیز همراه باشد.

تقدیر بیش‌تری در ذخیره سازی دسته‌های طبیعی، بررسی کیفیت و کارایی آنها پس از ذخیره سازی است. برای این منظور می‌توان شاخص‌های مانند عرض کسول سر، میزان ظهور حشرات کامل، میزان مرگ و میر، طول عمر، میزان تخم‌زی، طول مدت ذخیره‌سازی (روز)
E. formosa Gahan (Hym.: Encarsia inaron Walker) روی آلود گلخانه تیره رودخانه‌ای (Aphelinidae) هشت‌شانسی، دانشگاه تهران.

