تأثیر خشکسالی‌های شیمایی قبل از برداشت بر زمان برداشت و کیفیت دانه برنج

میج مداری مشهور، مسعود اصفهانی ۱ و مجید نحوی ۲

تاریخ دریافت: ۸۵/۵/۲۵ تاریخ پذیرش: ۸۵/۱۱/۲۴)

چکیده

به منظور کاهش خسارت ناشی از باران‌های نخورده در زمان برداشت محصول برنج از طریق کاهش سرعت رطوبیت گیاه با استفاده از محول پاشی خشکسالی‌های شیمایی کلران سدیم و بروصورتی تأثیر آن بر عملکرد دانه و صفات کیفی آن مشخص کرد. کارایی نیکیل بذری برنج می‌باشد. درصد و سرعت جوانه‌پری بذری، بزرگی بذری، قطعات آمونیاک، ماده رژیتین سدن و میزان قلوه زمین آزمایشی در سال ۱۳۸۳ در ناحیه طرح بلوکی شامل تصادفی با ۵ تیمار و ۳ تکرار روز برنج رزم درک در مؤسسه تحقیقات برنج کشور (رشت) به اجرا گذاشته شد. تیمارها شامل دو دسته مختلف رطوبیت دانه جهت تعیین زمان مناسب محصول پاشی برنج. درصد رطوبیت برای تیمارهای آزمایشی به ترتیب ۲۴ تا ۲۸ درصد محول پاشی که در آن محیط گونه محصول پاشی صورت گرفته و زمان برداشت به صورت متوالی انجام شد نتایج نشان داد که اثر تیمارهای رطوبیت دانه و رطوبیت اندام‌های هوایی گیاه می‌تواند تأثیر را در کاهش رطوبیت گیاه داشته باشد. به طوری که در تیمار M4 به شاهد به طور معنی‌داری کاهش دانه و تیمارهای M3 و M1 را تؤییب به شاهد به طور معنی‌داری کاهش دانه و تیمارهای M3 و M1 تخمین تا کاهش رطوبیت گیاه داشته‌باشد. به طوری که در تیمار M4 به دلیل رطوبیت بالاتر دانه‌ها و عدم همزمانی در رشدی‌گی محصول پنج‌ساله مختلف یک بوده، نتیجه ثبوتی از خشک شدن و برخی از صفات مطلوب خشک را در دست داده و در تیمار M3 برداشت محصول فقط ۲ روز زودتر از شاهد انجام گرفته. چنین جهتی برای انجام برنج در مورد آزمون‌های موجود برای شاهد نداشته‌باشد. بنابراین به نظر می‌رسد که با مصرف داده خشکسالی‌ها کلران سدیم می‌توان محصول برنج را با اطمینان از عدم کمیت و کیفیت آن زودتر برداشت مومی و از خشک‌سالی‌های ناشی از باران‌های نخورده انجام پذیرفته.

واژه‌های کلیدی: برنج، خشکسالی‌های شیمایی، کیفیت دانه

مقدمه

برداشت برنج مومی و سیلیکا دست‌بیایی دست‌بیایی شیمایی کلران سدیم و دست‌بیایی برنج به شیمایی‌های قلمی‌کیک‌های تا دو روز روی کاهش ناحیه شما در زمان برداشت محصول برنج از اواست مرداد ماه شروع شده و تا اواست مهر ادامه دارد. زمان معمول برداشت برنج در استان‌های گیلان و مازندران شهریور ماه بوده و حدود ۸۰ درصد برداشت محصول در این زمان انجام می‌شود. عملیات

1. به ترتیب دانشجوی سابقاً کارشناسی ارشد و استاداری زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه کیلان.

2. عضو هیئت علمی مؤسسه تحقیقات برنج کشور، رشت

mesfahan@yahoo.com

* : مسئول مکاتبات، پست الکترونیکی:
رفتن رطوبت نسبی محیط و مرطوب شدن گیاه‌ها به تعویق خواهد افتاد و همچنین بونه‌های درو شده‌های که هنوز از زمین خارج نشده‌اند نیز دچار خشکسالی فراوانی مانند ریزش دانه‌ها و شیوع قارچ‌های سایروپتی می‌شوند و در نهایت کمیت و کیفیت محصول افت می‌کند. محصول برداشت شده جهت ایثار کردن و خرمکوبی باید در ارتفاع رطوبت مناسبی باشد. اگر مرطوبیت دانه‌ها بالا باشد (به‌طوری که ۲۲ درصد) و یا به خاطر رطوبت افزایش یافته در روز به روز هم افتاده شود، در کیفیت زیبای و فاسدانه خروش شده، با این حال در حداقل هنگام ایثار کرد. رطوبت دانه‌ها نیازی بیش از ۱۲ درصد ندارد (با‌کردن). آزمایش‌ها نشان داده است که کاهش بیش از حدود ۱۲ درصد دانه‌ها به دلیل تأخیر در زمان برداشت و زیاد شدن اعیان به پایین‌ترین میزان (در حدود ۱۸ درصد) محصولات زراعی بهتر از برداشت از موانع خشکسالی استفاده می‌شود و استفاده از آنها به‌طور کامل منافع است. از این فکر به‌وجود آمدن در ۱۴ تا ۲۴ درصد باشد بطوری که بقیه دانه‌ها به دست می‌آیند (۲۰).

از موانع خشکسالی در سیاسی کسب‌های زراعی به نیاز استفاده

در بیان کارولینای شمالی آمریکا در انتخاب مختلفی از محصولات زراعی بهتر از برداشت از موانع خشکسالی استفاده می‌شود و استفاده از آنها به‌طور کامل منافع استفاده می‌شود که این عمل را ۱۰ تا ۲۰ روز به نسبت دلیل خشکسالی استفاده می‌شود. همچنین از پراکنده‌ترین زیر بسیار خشکسالی بونه‌های زمانی، گوجه فرنگی و لویا استفاده می‌شود. برای کاهش فرقه و این‌دسته در زراعت بسیار زیر استفاده می‌شود که این عمل ۱۷ تا ۱۴ روز قبل از برداشت صورت می‌گیرد (۱۸).

از دیگر مواد شیماپیکی که قبل از برداشت محصول در برخی کشورهای کاربرد دارد ماده بَرگ ریز یعنی (Defoliants) DEF که در زراعت به‌صورت فیزیو موی یا مواد گیاهی به‌کار می‌رود و در مناطق بیشتر کاری مانند دشت گرگان که ریز بارش در اولین و پایان‌های اولین زوده‌گری شروع شده و از این ماده که در موج خشک شدن و چربیه برگ‌ها می‌شود، استفاده می‌گردد (۱۹).

کل‌آلاین (NaClO₃) جزء عفون کُش‌کن گیاه‌های غیر آلی بوده و ماده‌ای است جامد و کرپستاله، سفید و بدون بو که در آب قابل نفت رطوبت نسبی محیط و مرطوب شدن گیاه‌ها به تعویق خواهد افتاد و همچنین بونه‌های درو شده‌های که هنوز از زمین خارج نشده‌اند نیز دچار خشکسالی فراوانی مانند ریزش دانه‌ها و شیوع قارچ‌های سایروپتی می‌شوند و در نهایت کمیت و کیفیت محصول افت می‌کند. محصول برداشت شده جهت ایثار کردن و خرمکوبی باید در ارتفاع رطوبت مناسبی باشد. اگر مرطوبیت دانه‌ها بالا باشد (به‌طوری که ۲۲ درصد) و یا به خاطر رطوبت افزایش یافته در روز به روز هم افتاده شود، در کیفیت زیبای و فاسدانه خروش شده، با این حال در حداقل هنگام ایثار کرد. رطوبت دانه‌ها نیازی بیش از ۱۲ درصد ندارد (با‌کردن). آزمایش‌ها نشان داده است که کاهش بیش از حدود ۱۲ درصد دانه‌ها به دلیل تأخیر در زمان برداشت و زیاد شدن اعیان به پایین‌ترین میزان (در حدود ۱۸ درصد) محصولات زراعی بهتر از برداشت از موانع خشکسالی استفاده می‌شود و استفاده از آنها به‌طور کامل منافع استفاده می‌شود که این عمل را ۱۰ تا ۲۰ روز به نسبت دلیل خشکسالی استفاده می‌شود. همچنین از پراکنده‌ترین زیر بسیار خشکسالی بونه‌های زمانی، گوجه فرنگی و لویا استفاده می‌شود. برای کاهش فرقه و این‌دسته در زراعت بسیار زیر استفاده می‌شود که این عمل ۱۷ تا ۱۴ روز قبل از برداشت صورت می‌گیرد (۱۸).

از دیگر مواد شیماپیکی که قبل از برداشت محصول در برخی کشورهای کاربرد دارد ماده بَرگ ریز یعنی (Defoliants) DEF که در زراعت به‌صورت فیزیو موی یا مواد گیاهی به‌کار می‌رود و در مناطق بیشتر کاری مانند دشت گرگان که ریز بارش در اولین و پایان‌های اولین زوده‌گری شروع شده و از این ماده که در موج خشک شدن و چربیه برگ‌ها می‌شود، استفاده می‌گردد (۱۹).

کل‌آلاین (NaClO₃) جزء عفون کُش‌کن گیاه‌های غیر آلی بوده و ماده‌ای است جامد و کرپستاله، سفید و بدون بو که در آب قابل
تأثیر خشکسالی‌های شیمیایی قبل از برداشت بر زمان برداشت و کیفیت دانه برنج

حل است و یک اسباباتان قوی است. این ماده یک علف کشاورزی غیر انتخابی بوده که از آن برای از بین بردن علف‌های مورد دشوار استفاده می‌شود. مدل محلول پاشی کارتن سبیم روزانه، بر ورق گیاهان، این ماده سریع توسط گیاه جذب می‌شود و یونه‌های آن کربنیک گر در شب و شب موج مصرف سر عود می‌شود. از این ماده به صورت پودر نیز در خاک استفاده می‌شود که توسط ریشه‌ها جذب و از طریق انرژی گیاهی به اندام‌های مختلف ترانس یافته، پایه‌های افزایش میزان تولید انجام می‌گیرد.

به‌طور کلی، این بررسی نشان داد که در اندازه‌گیری‌های مختلف مصرف ماده خشکسالی‌های شیمیایی کارتن سبیم و تعبیه، زمان برش پاشا شدن قبل از برداشت محصول برنج در استان گیلان محدود و افزایش میزان زودتر و محلول آثار این ماده بر کیفیت دانه برنج نیز افزایش یابد.

مواد و روش‌ها

این آزمایش در سال‌های ۱۳۸۸ و ۱۳۸۹ در قالب طرح پژوهشی کامل تفصیلی با نام تکرار و نپ در تیمار و ۲۳ نمونه و در هر کرت در موسسه تحقیقات برنج کشور (رشت) به اجرا گذاشته شد. تیمارها شامل درصد‌های مختلف رطوبت دانه بوده که در رطوبت مورد نظر عملیات پاشا ماده خشک کننده کارتن سبیم برداشت گرفته و درصد‌های رطوبت دانه برای محلول پاشی به شرح زیر بودند:

۲۸ تا ۳۲ درصد: M₁
۲۲ تا ۲۴ درصد: M₂
۲۰ تا ۲۴ درصد: M₃
۱۸ تا ۲۰ درصد: M₄

شاهر چگونه محلول پاشی رطوبت‌ها و برداشت M₁ به صورت مداوم در رطوبت دانه ۱۸ تا ۲۰ درصد انجام شد.

۸۳
آزمایش‌های کیفی (Milling)
1. پوست کنی و سفیدکنی (KiyaSeisakufho, JAPAN , KETT 147D)
این آزمایش شامل بررسی درصد رطوبت دانه‌های تیمار متفاوت با دستگاه بردن زنین میزای (NaOH) می‌باشد. برای نمونه‌های تیمار به طور مداوم و براساس مشخصات ظاهری انجام می‌شود. برداشت با حذف ریف‌های اول و دوم انجام و میزان عملکرد با توجه به سطح برداشت شده در نظر گرفته شد. برخی‌های برنج از برداشت با استفاده از دستگاه اسکینکرتومتر در طول‌های متفاوت اندازه‌گیری شدند.

2. آزمایش‌های میزان آمیلوز (Amylose Content)
برای اندازه‌گیری میزان آمیلوز از روش جولیانو استفاده شد. ۱۰۰ میلی‌گرم آرد برنج نوزین و به ترتیب این دو میلی‌لیتر (NaOH) به مدت ۹۵ دقیقه به یک از نمونه‌ها اضافه شده و پس از ۵ دقیقه به همراه استatham (برسپ میلی‌متر) اندازه‌گیری شدند.

3. اندازه‌گیری درجه حرارت تنایی شدن (Gelatinization Temperature)
برای اندازه‌گیری درجه حرارت تنایی شدن از روش لیتل و همکاران استفاده گردید. تعداد ۱۲ عهد نان برای سفید سالام (M.c. Gill. Miller) (سپس از رساندن رطوبت دانه‌ها به ۱۵ تا ۲۴ دقیقه با دستگاه پوست کن آزمایشگاهی ساخته‌شده به برنج فوهای تیبدیل شدند. برنج فوهای حاصله (SATAKE) به برنج فوهای تیبدیل شدند. برنج فوهای حاصله به برنج سفیدی تیبدیل شد. برنج سفیدی (Head Rice Yield) (نسبت وزنی دانه‌های برنج سفیدی به شلوک) تیبدیل شد و محاسبه شد (۵ و ۱۱).

4. اندازه‌گیری قوام زل (Gel Consistency)
برای اندازه‌گیری قوام زل از روش کاگامانگ و همکاران استفاده گردید. ۱۰۰ میلی‌گرم آرد برنج نوزین شده و در داخل لوله‌ای به قطر ۱۳ میلی‌متر و ارتفاع ۱۰۰ میلی‌متر (GC) برینه شده و به آن مخلوط هیدروکسی‌پتاس ۱۸ میلی‌متر تیمیکار (۲۰/۲۰ نرمال اضافه شده) نمونه‌ها به سوی دو سیلیکا با سرعت ۲۰ میلی‌متر مایع در هر دقیقه یا به طور افقی قرار داده شده و میزان حرکت آن از یک‌ساعت (برسپ میلی‌متر) اندازه‌گیری شد.

5. درصد ترک در دانه‌ها
برای اندازه‌گیری میزان آمیلوز از روش جولیانو استفاده شد. ۱۰۰ میلی‌گرم آرد برنج نوزین و به ترتیب این دو میلی‌لیتر (NaOH) به مدت ۹۵ دقیقه به یک از نمونه‌ها اضافه شده و پس از ۱۵ تا ۲۴ دقیقه به همراه استatham (برسپ میلی‌متر) اندازه‌گیری شدند.

6. اندازه‌گیری درجه حرارت تنایی شدن (Gelatinization)
۳۰ دقیقه پیشینه شد. پس از خنک شدن، حجم محلول با آب مکثر به ۱۰۰ میلی‌لیتر رسانده شده و به مدت ۲۴ ساعت در دمای ۳۰ درجه سانتی‌گراد به فرآیند متغیر شده و به آن یک میلی‌لیتر استبک و ۲ میلی‌لیتر افزوده شده و دوباره به حجم ۱۰۰ میلی‌لیتر رسانده شد و بعد از کمی زنیان آمیلوز در نمونه با استفاده از دستگاه اسکینکرتومتر در طول موج ۵۰ نانوسکوپ اندازه‌گیری شد (۱۵).

7. اندازه‌گیری درجه حرارت باعث نام‌نویس است (Gel Consistency)
برای اندازه‌گیری درجه حرارت تنایی شدن از روش لیتل و همکاران استفاده گردید. تعداد ۱۲ عهد نان برای سفید سالام (M.c. Gill. Miller) (سپس از رساندن رطوبت دانه‌ها به ۱۵ تا ۲۴ دقیقه با دستگاه پوست کن آزمایشگاهی ساخته‌شده به برنج فوهای تیبدیل شدند. برنج فوهای حاصله (SATAKE) به برنج فوهای تیبدیل شدند. برنج سفیدی (Head Rice Yield) (نسبت وزنی دانه‌های برنج سفیدی به شلوک) تیبدیل شد و محاسبه شد (۵ و ۱۱).
تأثیر خشکانه‌سازی بادی‌های قبل از برداشت بر زمان برداشت و کیفیت دانه برنج

جدول 1. با استفاده از دستگاه ترک بین و به کمک یک عدسی دانه‌های برنج سالم و ترک دار از دانه‌های پوست کنده شده (ترک فوق شمارش و جدای شدن) دستگاه ترک بین مشکلی از یک صفحه مشابه شتاب و یک منبع نور فلزی در زیر آن است که برای تفکیک دانه‌های سالم و ترک دار به کار می‌رود.

6 آزمون سختی سنجی

تعداد 20 عدد دانه برنج قهوه ای سالم از هر نمونه جدا و با استفاده از دستگاه سختی سنجی میزان فشار لازم برای شکست آنها تعیین شد. بنابراین دارای یک مغزی فلزی که به طور متوسطی روزانه 0.5 درصد رطوبت از دست می‌دهد که این حالت در مورد تیمار شاهد صدف می‌کرد (13). البته کاهش رطوبت در کلیه تیمارها بسیار به عوامل جوی بستگی دارد و رطوبت محیط دارد به توجه به نمودار بیک که در آن سرعت کاهش رطوبت در تیمارهای مختلف (M1a، b و c) در تیمارهای نیز در تیمارها کاهش دارد می‌توان سرعت کاهش رطوبت نیز در تیمارها کاهش دارد در نمودار (b) می‌توانست این تیمار (M1a) و تیمار (M1b) تیرا از لحاظ مشابهت آنها به تخمین‌گیری با نتایج استنی تیرا مطابقت دارد و باید به توجه شد که در مقدار (1) نیز در آزمایش هم به شانه در می‌آید. با این حال، در بررسی میدان خشکانه‌ای دما محیط بالار در اثر سرعت و در حدود 0.5 درجه سانتی‌گراد در مدت 28 ساعت داخل آن در دمای 24 درجه سانتی‌گراد قرار داده شدند تا خواب احتمالی آنها شکسته شود (2). سپس بذرها در داخل ظروف بی‌پری کافی خامی و قرار داده‌شده و بعد از ایستادن اقیانوسی متفاوت در دمای 20 درجه سانتی‌گراد در زمین‌نمونه‌های قرار داشته. تعداد بذرها جوانه زنی داده یا به شکسته شده و سرعت جوانه زنی آنها در تیمارهای مختلف محیط شکستند. برای محاسبه سرعت جوانه زنی یک از رابطه شماره یک استفاده شد (7) در پایان روز هفتم تعداد نهایی بذرها جوانه زده داخل ظرف پنجره شمارش و یک منبع نور فلزی در زیر آن است. از دانه‌های سالم محیط وجود می‌توانست به در سرعت جوانه زنی پس از تبدیل به آن به Arc Sin حساب کدام تصادف مورد تجربه و تحلیل آماری قرار گرفتند.

برای تجزیه آماری و آنتی‌دار از نرم‌افزار EXCEL برنج ترک تهیه نمودارها از محیط استفاده گردید.

$$R = \frac{n}{\sum DN} = \frac{\text{سرعت جوانه زنی}}{\text{مجموع بردار مورد نظر}}$$
جدول 1. میزان رطوبت خشخاش و اندام هوایی در تیمار با استفاده از آزمون T
3 روز پس از محصول پاشی با ماده خشکانده کلر سدیم

<table>
<thead>
<tr>
<th>محصول پاشی</th>
<th>اندام هوایی</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M1)</td>
<td>23/48**</td>
<td>22/15**</td>
</tr>
<tr>
<td>(M2)</td>
<td>22/15*</td>
<td>15/47**</td>
</tr>
<tr>
<td>(M3)</td>
<td>15/47**</td>
<td>11/42**</td>
</tr>
<tr>
<td>(M4)</td>
<td>11/42**</td>
<td>10/25 ns</td>
</tr>
<tr>
<td>(M5)</td>
<td>10/25 ns</td>
<td>8/35</td>
</tr>
</tbody>
</table>

* و ns: به ترتیب غیر معنی دار از نظر آماری و معنی دار در سطح احتمال 0.05 و 0.1 درصد

جدول 2. مقایسه میانگین درصد رطوبت خشخاش و اندام هوایی بوته‌های برنج محلول پاشی شده و شاهد بر پنای

<table>
<thead>
<tr>
<th>محصول پاشی</th>
<th>درصد رطوبت خشخاش</th>
<th>درصد رطوبت اندام هوایی</th>
<th>درصد رطوبت خشخاش</th>
<th>محصول پاشی</th>
<th>درصد رطوبت اندام هوایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M1)</td>
<td>23/48**</td>
<td>22/15*</td>
<td>15/47**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M2)</td>
<td>22/15*</td>
<td>15/47**</td>
<td>11/42**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M3)</td>
<td>15/47**</td>
<td>11/42**</td>
<td>10/25 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M4)</td>
<td>11/42**</td>
<td>10/25 ns</td>
<td>8/35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M5)</td>
<td>10/25 ns</td>
<td>8/35</td>
<td>7/32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اختلاف بین میانگین هایی که دارای حروف مشترک هستند در سطح 1% معنی دار نیست.

نمودار 1. روند کاهش سرعت رطوبت خشخاش در تیمارهای M2 و M1 با تغییرات دمای محیط
تأثیر خشکاندن شیمیایی قبل از برداشت بر زمان برداشت و کیفیت دانه برنج

نمودار 2: روند کاهش رطوبت خشکش‌های برنج 3 روز پس از محلول پاشی با ماده خشکانده کلرید مسیم تیمربندی به شاهد (بدون محلول پاشی)

میزان رطوبت اولیه خشکش (قبل از محلول پاشی) مربوط به تیمارهای M1 و M2 بوده است. این تفاوت در تأخیر دانش که در روند برداشت تیمربند در تیمار M1 نسبت به Tیمار M1 برداشت در تیمار M1 گرفت، لذا با توجه به بالاتر بودن دانش هوا (24 درجه سانتی‌گراد) و میزان رطوبت گیاه (رطوبت خشکش‌های 287 درصد) در زمان برداشت تیمربند، تیمار M1 در مقایسه با Tیمارهای M1 و M2 (دومارهای 21 درجه سانتی‌گراد و رطوبت خشکش به ترتیب 19/88 و 17/2 درصد)، کاهش رطوبت دانش‌ها در تیمار M1 بیشتر برخوردار بوده است. همچنین در مقایسه مرحله مربوط به خشکش روند کاهش رطوبت بین تیمارها مشاهده گردید که تیمار M1 در مقایسه با Tیمارهای دومارهای 4 و 5 (بدون خشکانده) به سبب تغییرات دمایی دانش‌ها و خشکش‌های مربوط به صفات با شده در جدول 3 اثرات شد است.

تجزیه و تحلیل انتخابی بر اساس آمار صندوق بین محصولات کشاورزی، از کل سطح زیر بخش بینه زراعت برنج استان گیلان در سال زراعی 1383-1385 (16 هکتار) می‌باشد. مقدار متوسط 675 هکتار آن به دلیل فعل و یا نیروهای باین انسان در حال خشکش برداشت خسارت دیده که میزان خسارت بین 100 تا 200 درصد برآورد شد.

در صورت بهره برداری از نتایج این آزمایش در هر هکتار این وضعیت برای آنکه برندانهای هواپیمایی تیمارها مشاهده گردید که تیمار شاهد همواره از میزان
نمودار ۳ مقایسه میزان رطوبت خوش‌های پررنگ در تیمارهای مختلف محلول پاشی در زمان‌های پس از محلول پاشی نسبت به شاهد (بدون محلول پاشی)

نمودار ۴ روند کاهش رطوبت اندازه‌های هواپیمای پررنگ ۳ روز پس از محلول پاشی با ماده خشک‌کننده کلریت سدیم نسبت به شاهد (بدون محلول پاشی)

نمودار ۵ مقایسه میزان رطوبت اندام هواپیمای پررنگ در تیمارهای مختلف محلول پاشی در زمان‌های پس از محلول پاشی نسبت به شاهد (بدون محلول پاشی)
شالیزار جهت خشکانه‌کردن برنج احتمال با 5 کیلوگرم کرات سدیم بوده و قیمت آن در دو مصرف برای هر کیلوگرم 1400000 ریال می‌باشد که هزینه خشکانه‌کردن برنج به وسیله کلارس سدیم در یک هکتار رقم معادل 783078 می‌شود. تقلید هزینه کل خشکانه‌بردایش شده در سال 38 به اراضی خسارت دیده رقم معادل 16943277 ریال در هر هکتار می‌باشد که مقایسه این برای هزینه مصرف خشکانه‌بردن با کرات سدیم با گرامت برداشتی از سوی صندوق بیمه تجویز مناسبی در کاهش بار مالی دولت خواهد بود. با توجه به این که مساحت کل اراضی شالیکاری در استان 1320000 هکتار می‌باشد، سالانه رقم معادل 4510000000 ریال هزینه مصرف کلارس سدیم در سطح اراضی شالیکاری استان خواهد بود که این رقم کمی بیش از رقم پرداختی گزارده در سطح 3868 هکتار اراضی خسارت دیده می‌باشد. ولی باید به آن نکته توجه کرد که گرامت برداشتی در سال 38 به زارعین فقط جبران خسارت وارد به کشاورزان و کمک مالی به آنان در سطح 6800 هکتار بوده، در حالی که دلته مجدد موجود خواهد شد که باید جایگزین برنج از دست رفته مقایسه هزینه صرف واردات برنج از خارج نماید که این خود با موضع مالی بر دوی دولت خواهد گذارد.

نتیجه‌گیری

با توجه به اینکه درهمه صفات مورد ارزیابی اختلاف معنی‌داری بین تیمارها مشاهده می‌گردد و با توجه به اثر مشتاق و معنی‌دار کاهش رطوبت توسط کلات سدیم در دانه و اندازه‌های هموایی
اصلاح بذر آن مؤسسه که در تامین امکانات لازم برای اجرای این تحقیق مساعدت نمودند تشریح و قدردانی می‌شود.

سپاسگزاری

منابع مورد استفاده

2. اسحاقی، م. 1377. مقدمهای برکلوراتی و فیزیولوژی برنج. انتشارات دانشگاه گیلان.
3. خدادنیه، ن. 1376. غلات. انتشارات دانشگاه تهران.
4. خرمی وفا، م. 1378. بررسی اثر تشک کم‌آبی به تعدادی از صفات فیزیولوژیک، مورفولوژیک و اجزای عملکرد گندم. پایان‌نامه کارشناسی ارشد زراعت، دانشگاه گیلان.
6. صالحی، م. 1386. روش‌های آزمایشگاهی تعیین کیفیت بخت. سازمان تحقیقات کشاورزی و منابع طبیعی استان گیلان.
7. کریمی، م. 1357. کیفیت ترابیات دانشگاه تهران.
8. فرخزاد، ف. 1375. کیفیت بخت و مصرف برنج یک ضرورت غیر قابل اکثار. مجموعه مقالات گاهنامه، سال نخست، شماره 2.

انشاینران سازمان برنامه و پرورش استان گیلان.