ارزیابی تحلیل به خشکی در لایه‌های گندم

معصومه یوسفی‌آذر و عبدهالیم رضایی۱

(تاریخ دریافت: ۸/۴/۱۳۸۲، تاریخ پذیرش: ۸/۵/۱۳۸۲)

چکیده

ان مطالعه با هدف ارزیابی پتانسیل تحلیل به خشکی در ۳۳ کندم حاصل از تلاقی دو رقم ویرایش (حساب به خشکی) و سرداری (مقاوم به خشکی) انجام شد. آزمایش در قالب دو طرح بلوک کامل تصادفی به‌سی و از فاصله آبیاری پس از ۸۰،۳ و ۱۲۰/۳ میلی‌متر تبخیر از نگهداری تکرار کلاس A در سال ۱۳۸۲ در مزرعه تحقیقاتی دانشگاه کشاورزی و منابع در دشت استان اصفهان اجرا گردید. شاخص‌های تحلیل و حساسیت به خشکی برای عملکرد محاسبه و تجزیه به مولفه‌های اصلی نیز با رأس آنها انجام شد. شاخص تحلیل هاسالین و رژیم بیا شاخص حساسیت به خشکی فیشر و مورر همبستگی مثبت و معنی‌داری داشت. همبستگی این دو شاخص با عملکرد در شرایط تنش و مولفه اصلی نیز بود. مقدار بالایی این مولفه زنوتیپ‌های با حساسیت کم را معرفی کرد. همبستگی مولفه اول با شاخص‌های میانگین نیز مثبت بود. میانگین هدسفی عملکرد شاخص تحلیل به تنش و میانگین همبستگی عملکرد، مثبت و بالا بود. زنوتیپ شماره ۲ در شرایط بدون تنش عملکرد بالایی داشت و با وجود حساسیت بالایی که به تنش نشان داد، از نظر این شاخص‌ها به عنوان زنوتیپ برتر معرفی شد. زنوتیپ‌های شماره ۸، ۱۷ و ۱۱،۱۲ و ۱۳ عملکرد بالایی در شرایط تنش داشتند و از نظر شاخص‌ها نیز به عنوان زنوتیپ برتر معرفی شدند.

واژه‌های کلیدی: شاخص‌های تحلیل، گندم، مولفه‌های اصلی، همبستگی صفات

مقدمه

نشش گزارش نمودند.

هر چه اقیم خشک‌کننده باند، نوسانات مقدار و توزیع

بازندگی آن بیشتر است، به‌طوری‌که سال‌های کم‌بیاران و

سال‌های مرطوب‌تر از حد متوسط به‌طور مشابه حادث

می‌شوند. بنا برای باید ارتقای را با رای این مناطق انتخاب کرده

پتانسی و توانایی کم‌بیاران، عملکرد مقررات به‌صورت و پایداری

تولید کننده، تحلیل به خشکی نشان می‌دهند و در شرایط مساعد

رژیم نیز پتانسی حاکم استفاده را از رطوبت ذهنی گندم در

تنش گزارش نمودند.

نشش خشک‌کننده اقیمی را بیشتر می‌بادند و

محدود کنند رشد گیاهان است و کنترل گیاهی به‌طور

کامل از آن اجتناب می‌کند (۲). اکثر محققین زراعی در

مراحل مختلف رشد و نمو با نوعی تنش آب مواضع می‌شوند

و تعیین‌ها روزانه در وضعیت دانلی اب خود را بر

شرایط آبیاری معقول نیز نشان می‌دهند (۳). کالکو و همکاران

(۴) در حدود ۲۵ درصد کاهش در عملکرد گندم را در اثر

۱. یک ترتیب داشته‌ایم کامبیا ایرانی و استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

am.rezai@cc.iut.ac.ir

* مسئول مکاتبات، یوسفی‌آذر: یوسفی‌آذر

113
خاک بیرند (12) حیت در شرایط آب و هوای مطروح توسعه نامنظمی ایجادگر اعمالی به محدود شدن آب قابل دسترس و در نتیجه کاهش رشد بهبودی (5) کلیه و همکاران (11) غارش نمودند که می‌گذارداری هم‌مان در شرایط تنفس و غیرتنش موجب زندگی زندگی‌های با عملکرد برتر در هر دو محیط می‌شود. بنابراین بررسی ساختار منفی و انتخاب عملکرد نسبی زنده‌نشدنی در شرایط تنفس غیرتنش به‌عنوان یک نقطه شروع برای شاخه افراد تنفس غیرتنشی و انتخاب زندگی‌های در محیط‌های شکست است (4).

فیشر و مور (12) اظهار داشتند که عملکرد بازاری از شرایط تنفسی با یافته‌ها و موارد آن برای ارزیابی زندگی‌های می‌باشد. عملکرد و نتایج آن برای ارزیابی زندگی‌های مناسب آن در تجربه‌های خاص در شرایط تنش است که باعث نشان دهند خودکاری بیشتری را نشان می‌دهد. بنابراین می‌باشد که میل به بیشتر عملکرد و نشانه‌هایی از انتخاب عملکرد نسبی زندگی‌های است. این میزان به عنوان شاخص (Stress Susceptibility Index, SSI) به شکست عمیق و غیرتنش مطرح شد. بنابراین، این ضریب و عملکرد در شرایط تنفسی با رطوبت بالا هوشی‌گویی منفی وجود دارد.

ریزا و همکاران (13) از شاخص حساسیت به تنفس و مورور (12) در جو استفاده کردن. آنها زندگی‌های با دو محیط مختلف بررسی عملکرد از زیرک مربوط و مشاهده کردن که هسته‌ی زندگی برتر در هر دو محیط عملکرد پایدار و پلاگی داشتن هم‌چنین آنها با عضویت پراکنشی زندگی‌های بر اساس شاخص حساسیت به تنفس در البرز عملکرد نسبی در هر محیط مشاهده نمودند که به هسته‌ی زندگی برتر در ناحیه‌ی قرار می‌گرفتند که حساسیت کمتر و لیکل عملکرد نسبی بیشتری در شرایط تنفس داشتند.

فنلاندز (11) در سال 1992 زندگی‌های ماسال را به‌کارهای با عملکرد بالا در هر دو محیط تنفس و بدون تنفس عملکرد بالا در شرایط غیرتنفس (A، عملکرد بالا در شرایط غیرتنفس (B)، عملکرد بالا در شرایط تنفس (C) و عملکرد بالا در دو محیط (D)). تقسم کرد. وی بیان کرد که انتخاب بررسی شاخص‌های زندگی‌های تول

۵/۱۵ تعلق داشت. بنابراین علائم بر اینکه بین الفراق یک گونه از نظر حساسیت با تحمل به شکست نتایج و وجود دارد، این اختلاف بین گونه‌ها نیز مشهور است.

هایلو بین رئیس (12) بررسی‌سنج تحمیل (Tolerance, TOL) یا تفاوت عملکرد در شرایط در محیط ممکن و تنش و متوسط تولید می‌باشد. عملکرد هر زندگی در محیط ممکن و تنش سیکلی کردن که موقتی است. لذا تنفس است. بنظر می‌رسد ارقای که در شرایط آبیاری مناسب و آبیاری حساسیت عملکرد بعنوان داشته باشد و یا لاتی تفاوت اعمال شده آنها که عالی است. اساسی زاده (11) گزارش کرد که میل می‌باشد. عملکرد و نتایج آن در انتخابی زندگی‌های کارایی بیشتر را نشان می‌دهد. هر شکستی که تنفس شاخص حساسیت به تنفس و تحمل در تنش در بخش تنشی و در بین آنها شاخص تحمل به تنفس از قابلیت بیشتری در تماس ارگانی برخوردار است. زارع فیض آبادی و قدری (16) گزارش نمودند که شاخص حساسیت به تنفس تماشا معنی‌داری را بین

40 زندگی گان ایجاد نمود است.

شناخت‌های متعددی برای تعیین تحمل به تنفس اثراند. ولی به‌طور کلی شناخت‌هایی که در هر دو شرایط تنفس و عدم تنفس در انسان به‌وسیله‌ی با عملکرد بالا بعنوان بهترین شناخت‌های معرفی می‌شود، زیرا این شناخت‌ها قادربه شناسایی زندگی‌های با عملکرد بالا در هر دو محیط هستند و می‌توان از آنها برای تعیین پایداری عملکرد استفاده کرد (8). انتخاب بر اساس این شاخص‌ها عملکرد را در محیط‌های تنفسی افزایش می‌دهد.
ارزیابی تحمل به خشکی در لاپیشهای گندم

کیلومتری جنوب غربی اصفهان انجام شد. منطقه آزمایش دارای اقلیم خشک و بی‌گرم است. خاک مزرعه دارای بافت لوم رسی، جرم‌های مخصوص ظاهراً 14 گرم بر سانتی‌متر مکعب و pH 6/7 می‌باشد.

زنویتی‌های مورد بررسی شامل ۲۳ لاک (Virmarin) حساس به خشکی و سرداری مقاوم به خشکی بودند. این لاک‌ها حاصل گردش‌نک‌سک بونه F3 و تکنیک دست‌جمعی آنها در نسل F3 می‌باشد.

ارزیابی زنویتی‌ها در زمینه کی سال قبل کشت با رویه بود. خرید پرکارکرده کامل تصفیه‌گذاری ۲۳ تکرار در هر یک از شرایط میانگین متغیر H (Geometric Mean Productivity) و (GMP) که بر اساس میانگین هندسی عملکرد زنویتی‌ها تحت شرایط تنش و بدون تنش محاسبه می‌شود، توسط فرانزارد (۱۱) ارائه گردید. از انچابی که این مشکل نسبی تنش‌ها در مورد بخش‌های منطقه می‌باشد، فرانزارد زنویتی‌ها شناسایی کنند، فرانزارد این مشکل دیگری نام شاخص تحمل به تنش را به نام تنش‌ها (Stress Tolerance Index, STI) یا عملکرد بالا در شرایط تنش و بدون تنش و دارای پتانسیل تحمل به معنی که می‌تواند گروه‌های C و B از یکدیگر تفکیک کند. این شاخص شدت تنش (Stress Intensity, SI) انیف در نسبت متوسط عملکرد زنویتی‌ها در محیط به متوسط عملکرد در محیط بدون تنش از یک و مقدار عملکرد در طول دوره نظر در نظر گرفته می‌باشد. می‌تواند زنویتی‌های گروه A را از شرایط زنویتی‌ها تفکیک نماید. تفاوت‌های شاخص مناسب برای اندازه‌گیری تنش‌ها از تنش تیتر کلاس A و (GMP) می‌باشد. این تفاوت‌ها مقدار بالای STI و GMP نورهای است. مقایسه در متعلق به‌منظور مقایسه شاخص‌های سخت به‌جای شاخصی در محیط به بخش‌های به‌جرم‌های گروپ‌های زنویتی‌ها بر اساس این شاخص‌ها طرح‌ریزی شد.

مواد و روش‌ها

این پژوهش در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان در
(۱۲). فرناندز (۱۱) اظهار داشت که انتخاب بر مبنای این شاخص به‌عنف زنوتیپ‌های با عملکرد بالای در شرایط غیرتنش و زنوتیپ‌های با عملکرد بالا در شرایط نش رطوبتی است. این شاخص در تایم‌زنوتیپ‌های با عملکرد بالا کارآیی ندارد.

همانطور که در جدول ۱ مشاهده می‌شود، زنوتیپ‌های ۱۲، ۱۸ و ۲۱ که مقادیر کمتری از این دو شاخص را داشتند و به‌ویژه درگیر حساسیت کم‌تری به نش نشان دادند، از نظر عملکرد در دو محيط نش و بدون نش، جزو برترین زنوتیپ‌های نودن. اکونسا و آدامز (۷) اظهار داشتند که انتخاب بر اساس SSI رمانت موثر است که انتخاب این باید بر اساس تغییرات کمتر عملکرد باشد. زاویه‌های ۲ و ۴ بین زنوتیپ در شرایط نش و پایداری بیشتری آن را نشان می‌دهند (۱۲).

یک‌ها همگنی (GMP) یک مقدار متوسط تولید (MP) می‌باشد که به‌عنف عملکرد (GMP) تنش (STI) را داشته و زنوتیپ شماره ۲۲ کترینی در آن برای کاهش زنوتیپ‌های حساسیت به نش کمتری به نش نشان داده. در حالت که تنش محسوب عملکرد در شرایط غیرتنش را داشتند، این زنوتیپ حساسیت به نش کمتری نسبت به زنوتیپ شماره ۲ داشت. در حالت که تنش محسوب وجود یابد، باید این جزو زنوتیپی با کاهش عملکرد در شرایط تنش (۱۱) در نظر گرفته و عملکرد در بین زنوتیپ‌ها در این تنش به وجود آمد. این مقدار می‌تواند برای استفاده نشان دهنده بداند که عملکرد کمتری به نش که تنش نشان‌دهنده می‌باشد، پایداری بیشتری داشته باشد. در حالی که زنوتیپ شماره ۲ چند سال از پایداری و انتخاب در شرایط نش نشان داده که تنش نباید مورد عتیقه نمود.

فزناندز (۱۱) اظهار داشت که این سایر قادیر به STI داشته که این تنش نشان دهنده می‌باشد. چنان‌که در ۵ دارای بیشترین میزان شاخص تولید (MP) بر اساس حساسیت به شرایط غیرتنش (SSI). مقادیر Znottip می‌باشد. SSI به تنش و استراتیژی‌های TOL بالای شاخص حساسیت به شرایط غیرتنش و تنش رطوبتی را نشان می‌دهد. بنابراین زنوتیپ‌ها به اساس مقدار کم TOL باشد می‌تواند زنوتیپ‌ها را از نظر سایر شاخص‌ها نباید برتری نشان دادند.

۱- شاخص میانگین تویید (MP) رویلی و هم‌آمیزی (۱۱):

\[MP = \frac{Y_p + Y_s}{2} \]

۲- شاخص حسابی به شکلی (SSI) فیشر و مورر (۱۲):

\[SSI = \frac{1 - \frac{Y_s}{Y_p}}{S} = 1 - \frac{Y_s}{Y_p} \]

در این رابطه به‌عنف عملکرد همه زنوتیپ‌ها در شرایط نش و غیرتنش می‌باشد.

۳- میانگین هندسی عملکرد در دو محيط (GMP):

\[GMP = \sqrt{Y_p \times Y_s} \]

۴- سطح تحمیل به نش (STI) (aaS):

\[STI = \frac{Y_p}{Y_p + Y_s} \times \frac{Y_s}{Y_p} = \frac{Y_p \times Y_s}{Y_p + Y_s} \]

۵- میانگین هارمونیک عملکردی در دو محيط (Harmonic Mean, HM):

\[HM = \frac{2 \times Y_p \times Y_s}{Y_p + Y_s} \]

۶- سایر

نتایج و بحث

زنوتیپ‌های شماره ۲ و ۵ دارای بیشترین میزان شاخص تولید (MP) و حساسیت به شکلی (SSI) نورد (جدول ۱). مقادیر SSI حساسیت به نش رطوبتی نیز تنش رطوبتی را نشان می‌دهد. بنابراین زنوتیپ‌ها از این نظر سایر TOL انتخاب می‌شوند. زیرا این تورت‌زنوتیپ‌ها در شرایط نش کاهش عملکرد کمتری نسبت به شرایط غیرتنش خواهد داشت.
<table>
<thead>
<tr>
<th>HM</th>
<th>STI</th>
<th>SSI</th>
<th>GMP</th>
<th>MP</th>
<th>TOL</th>
<th>Y_s (kg/h)</th>
<th>Y_p (kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>271.5b</td>
<td>0.5c</td>
<td>0.8a</td>
<td>274.8a</td>
<td>3.0a</td>
<td>2.8a</td>
<td>2.6b</td>
<td>3.0c</td>
</tr>
<tr>
<td>338.4b</td>
<td>0.6a</td>
<td>1.5a</td>
<td>275.8b</td>
<td>2.1a</td>
<td>3.0b</td>
<td>2.3b</td>
<td>3.3a</td>
</tr>
<tr>
<td>511.5c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>778.8d</td>
<td>0.7a</td>
<td>0.9a</td>
<td>274.8d</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>249.8e</td>
<td>0.8a</td>
<td>1.5b</td>
<td>278.8e</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>305.5d</td>
<td>0.5b</td>
<td>1.0b</td>
<td>274.8f</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>281.8c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>511.5c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>778.8d</td>
<td>0.7a</td>
<td>0.9a</td>
<td>274.8d</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>249.8e</td>
<td>0.8a</td>
<td>1.5b</td>
<td>278.8e</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>305.5d</td>
<td>0.5b</td>
<td>1.0b</td>
<td>274.8f</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>281.8c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>511.5c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>778.8d</td>
<td>0.7a</td>
<td>0.9a</td>
<td>274.8d</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>249.8e</td>
<td>0.8a</td>
<td>1.5b</td>
<td>278.8e</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>305.5d</td>
<td>0.5b</td>
<td>1.0b</td>
<td>274.8f</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>281.8c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>511.5c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>778.8d</td>
<td>0.7a</td>
<td>0.9a</td>
<td>274.8d</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>249.8e</td>
<td>0.8a</td>
<td>1.5b</td>
<td>278.8e</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>305.5d</td>
<td>0.5b</td>
<td>1.0b</td>
<td>274.8f</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>281.8c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>511.5c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>778.8d</td>
<td>0.7a</td>
<td>0.9a</td>
<td>274.8d</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>249.8e</td>
<td>0.8a</td>
<td>1.5b</td>
<td>278.8e</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
<tr>
<td>305.5d</td>
<td>0.5b</td>
<td>1.0b</td>
<td>274.8f</td>
<td>2.1a</td>
<td>1.8a</td>
<td>2.3a</td>
<td>2.3a</td>
</tr>
<tr>
<td>281.8c</td>
<td>0.9a</td>
<td>1.3a</td>
<td>274.8c</td>
<td>2.3a</td>
<td>2.1a</td>
<td>3.0a</td>
<td>3.0a</td>
</tr>
</tbody>
</table>

* : اعداد داخل پرانتز مربوط به رتبه زننیتی‌ها می‌باشد.
شکل 1. پراکنش زنوتیپها بر اساس عملکرد در محیط تنش قلیانی (YS) و بدون تنش (Yp) و شاخص تحمل به تنش (STI) همانطور که در جدول 1 مشاهده می‌شود، شاخص متوسط تولید (MP) زنوتیپ شماره ۱۳ جزو سه زنوتیپ برتر معرفی کرده است. در حالی که این زنوتیپ عملکرد بالایی را در شرایط تنش نداشت و از نظر شاخص‌های SSI و TOL زنوتیپ‌های حساس محسوب می‌شود. فرناندز (8) شاخص متوسط تولید را جزو شاخص‌هایی با کارایی بالایی معرفی نمود و این شاخص علی‌های توانا زنوتیپ‌های محیطاب و با عملکرد بالا را به‌طور همزمان در محیط‌های تنش قلیانی و غیرقلیانی، متمایز سازد. می‌توان گفت که شاخص میانگین هندسی عملکرد کنترل تحت تأثیر افزایش نهایی صفات است و می‌تواند زنوتیپ‌های گروه A را از بقیه Znوتیپ‌های متمایز کند.

پراکنش زنوتیپها بر اساس عملکرد در شرایط تنش و بدون تنش (Yp) به‌همراه شاخص Znوتیپ‌ها در همبستگی با STI و SSI، رطوبت (Yp) و بدون تنش (Yp) به‌همراه شاخص Znوتیپ‌ها در همبستگی با STI، STI و SSI به‌همراه شاخص Znوتیپ‌ها در H
جدول ۲ همبستگی بین شاخص‌های ارزیابی تحلیل و حسابیت به تنش خشکی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>TOL</th>
<th>MP</th>
<th>GMP</th>
<th>SSI</th>
<th>STI</th>
<th>HM</th>
<th>Y_P</th>
<th>Y_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOL</td>
<td>۱</td>
<td>۰.۷۷</td>
<td>۰.۹۲</td>
<td>۰.۸۴</td>
<td>۰.۸۳</td>
<td>۰.۸۲</td>
<td>۰.۹۳</td>
<td>۰.۸۵</td>
</tr>
<tr>
<td>MP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

فرایند همبستگی با گذاشتی بیش از ۰.۹۲ در سطح احتمال ۰.۰۵ و بیشتر از ۰.۹۵ در سطح احتمال ۰.۰۱ معنی‌دار می‌باشد.

* همبستگی تحلیل به تنش STI، همبستگی تحلیل به تنش HM، همبستگی تحلیل به تنش GMP، همبستگی TOL به تنش SSI، همبستگی TOL به تنش STI، همبستگی TOL به تنش HM، همبستگی TOL به تنش Y_P، همبستگی TOL به تنش Y_S.

عمک‌کردن در محیط تنش و شاخص‌های همبستگی می‌تواند باعث افزایش همبستگی شاخص‌های تحلیل، حسابیت به تنش و STI، TOL، GMP، MP، SSI و STI، TOL، GMP، MP، SSI، STI，
جدول 3. مقدار وزن و بردارهای وزنه مؤلفه‌های اول و دوم برای 8 شاخص تحلیل و حسابیت به خشکی

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>مقدار وزن</th>
<th>تعداد نمایش</th>
<th>استاندارد تحلیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM</td>
<td>1</td>
<td>8</td>
<td>STI,SSE,GMP,MP,TOL,YN,Y</td>
</tr>
</tbody>
</table>

