ارزیابی تحلیل به خشکی در لاانه گندم

معصومه پوهنیآذر و عبدالملک رضایی

(تاریخ دریافت: ۸/۱۲/۹۳، تاریخ پذیرش: ۸/۵/۹۳)

چکیده
این مطالعه با هدف ارزیابی پتانسیل تحلیل به خشکی در لاانه گندم (مزاره به خشکی) انجام شد. آزمایش در قالب دو طرح بلوک کامل، تصادفی با تکرار در دو سطح آبیاری با (آبیاری بدون آب) انجام شد. تیمار با شاخص‌های محاسباتی و تجزیه شده سهگانه، انرژی و نیروی آرزویی در سال سی و سه و تیم عرفانسر و رزقی به مکانهای اصلی نیز بر اساس آنها انجام شد. شاخص‌های محاسباتی و تجزیه بیانگی عمکردهایی توسط تندیس داشت. شاخص‌های محاسباتی و تجزیه بیانگی عمکردهایی توسط شاخص‌های محاسباتی و تجزیه بیانگی عمکردهایی توسط شاخص‌های محاسباتی و تجزیه بیانگی عمکردهایی توسط شاخص‌های محاسباتی و تجزیه بیانگی عمکردهایی توسط

واژه‌های کلیدی: شاخص‌های محاسباتی و تجزیه‌بندی، مکانهای اصلی، همبستگی صفات

مقدمه
تشخیص محاسباتی اقلیمی رایح در طبیعت می‌باشد و محدود کنندهٔ رشد تأمین گیا‌های است و کمتر گاهی به‌طور کامل از آن اجتناب می‌کنند (۲). اکثر محصولات زراعی در مراحل مختلف رشد و نمو با نوع تشخیص ایجاد می‌شود و تغییرات روزانه در وضعیت داخلی آب خورا را حس می‌کنند و شرایط آبیاری معمول نیز نشان می‌دهند (۲). کوکلوک و همکاران (۲۰) در حضور ۶۵ درصد کاهش در عملکرد گندم را اثربه یگاه دانشجوی سالی کارشناسی ارشد و استاد زراعت و آموزش نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

ام.резایی@cc.iut.ac.ir

1. ب. تربیت دانشجوی سالی کارشناسی ارشد و استاد زراعت و آموزش نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

* مسئول مکاتبات، پست الکترونیکی: am.rezai@cc.iut.ac.ir

۱۱۳
خاک بیندز (۲۶) حیث در شرایط آب و هوایی مطابق، توزیع نامنظم بانگ‌گونی منجر به محیط‌های شدن آب قابل دسترس و در نتیجه کاهش رشد گیاه‌های گل‌پوش (۱۱). گزارش نمودند که در گیاه‌های مه‌زمانی در شرایط نشک و غیرنوعی رشد ارزیابی زننده‌های با عملکرد بازرس در هر گیاهی می‌شود. بنابراین بررسی صفات مختلف و از جمله عملکرد نسبی زننده‌های برای شرایط نشک و غیرنشک به‌عبارت بکنده شروع برای شناخت فردان قابل تحلیل به خشکی و انتخاب زننده‌های عالی اصل در محیط‌های خشک است (۴).

الف) و مور (۲۰) اظهار داشتند که عملکرد بالای دارای شرایط تنش. پیاده‌نامی از مکانیسم فشار از خشکی است که منجر از سازگاری رقم معیارهای خاص در شرایط تنش است که در این تحقیق می‌شود. بنابراین معیاری را بر اساس عملکرد و نتایج برای ارزیابی زننده‌ها از محیط‌های مطابق غیرنوعی داشته و این امر حاکی از این خاصیت از داخلی و برافرازیده کردن این معیار بعنوان شاخص (Stress Susceptibility Index، SSI) بر می‌باشد عملکدهای محیط نشک و غیرنشور محیط، محور شد. پین این شاخص و عملکرد در شرایط بی رابطه با رطوبت با هم‌بستگی منفی وجود دارد.

روزا و همکاران (۳۲) از شاخص‌های توانسته به نشان داده شد که در حیث فشار تنش و مور (۲۰) در جزء استفاده کردند. آنها زننده‌ها را در محیط‌های مختلف برای عملکرد از بزرگ به کوچک مرتب و مشاهده کردند که همگی زننده‌ها برای این دو محیط عملکرد کاهی و پایین داشتند. هم‌چنین آنها به تعبیر پراکنش زننده‌ها بر اساس شاخص حساسیت به تنش در برابر عملکرد نسبی در محیط م fecha به نشان داد که این هشته تنش برتر در ناحیه قرار گرفتند که حساسیت کمتر ولی عملکرد نسبی مهاجر در شرایط تنش بالا داشتند.

ب) و سه‌ها (۸) با مطالعه گونه‌های مختلف گل‌پوش گزارش نمودند که شاخص حساسیت به شرایط فشار و مور (۲۶) در یک رقم گنبد نان از این ارقام کمتر و در حدود ۱۳۷۳ باود. در حالی که بیشترین میزان آن یک گنبد بزرگ‌تر دو و نیمه‌ی گنبد.
ارزیابی تحمل به شکستی در لایه‌های گندم کیلومتری جنوب غربی اصفهان انجام شد. منطقه آزمایشی دارای اقلیم خشک و بی‌گرم است. خاک مزروعه دارای یافته‌های ثابت بررسی یافته‌ها گزارش می‌شود و به‌طور معمول در سطح خشک و سرما دارای مقاومت برای شرایط تنش و ضرخ‌نشن می‌شود. در این بخش، شاخص به‌صورت تجهیزه‌ای (TOL) به‌طور مستمر مورد نظر شد.

شیاطین دیگری به نام شاخص تحمل به تنش (Strss Tolerance Index, STI) با یکدیگر نفوذ می‌کنند. این شاخص شدت تنش (Stress Intensity, SI) از یکدیگر تفکیک می‌شود. تنش یکی و مقدار عنصر در دو مقدار نظر می‌گیرد و می‌تواند زنوتیپ‌های گروه‌های A و B از سایر زنوتیپ‌ها تفکیک نماید. این شاخص‌ها دارای سه کلاس (A, B, و C) گروه‌های تمیزی شده تنش مورد نظر انجام شد.

مقدار بالای STI و GMP مورد نظر است. این مطالعه به مقدار مقاومه شاخص‌های مختلفی محاسبه می‌شود و حساسیت به شکستی از همین گروپ‌هایی زنوتیپ‌ها بر اساس این شاخص‌ها طرح‌ریزی شد.

مواد و روش‌ها

این پژوهش در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان در ۴۰
2- شاخص میانگین تولید (MP) روزیل و هامبین (14):

\[
MP = \frac{Y_p + Y_s}{2}
\]

3- شاخص حساسیت به خشکی (SSI) فیشر و مورر (12):

\[
SSI = 1 - \frac{1 - \frac{Y_s}{Y_p}}{\frac{Y_p}{Y_s}}
\]

4- میانگین هندسی عملکرد همه زنوتیپ‌ها در شرایط نش و غیرنش داده (GMP):

\[
GMP = \sqrt{Y_p \times Y_s}
\]

5- شاخص تحمیل به نش (STI) (فرانندز 11):

\[
STI = \frac{Y_p \times Y_s}{Y_p + Y_s}
\]

6- میانگین هارمونیک عملکرد در دو محسوب (Harmonic Mean, HM)

\[
HM = \frac{2 \times Y_p \times Y_s}{Y_p + Y_s}
\]

زنوتیپ‌های مورد بررسی براساس روش فرانندز (11) از نظر پتانسیل عملکرد و تحمیل در چهار گروه A, B, C, D و طبقه‌بندی شده. این چهار گروه، در نمونه‌گیری سه‌بعدی برحس عملکرد در شرایط نش (Yp), عملکرد در شرایط بی‌نش (Ys) و شاخص تحمل به نش (STI) تعیین گردید. بر اساس زنوتیپ‌ها در این نمونه‌برداری کمک نرم‌افزار Sigma Plot (SPW) تعیین شد.

نتایج و بحث

زنوتیپ‌های شماره 2 و 5 دارای بیشترین میزان شاخص تحمیل جداسازی زنوتیپ‌های با عملکرد بالا و متحمل به نش رطوبی است. زنوتیپ‌های شماره 2, 4, 11, 12 و 14 عملکرد بالایی در شرایط نش داشتند و از نظر شاخص‌های SSI و TOL میانگین حساسیت کم بودند. این زنوتیپ‌ها از نظر سایر شاخص‌ها نیز برتری نشان دادند.

فراستندز (11) اظهار داشت که شاخص حساسیت به خشکی (SSI) و حساسیت به سیستم‌های استرس (TOL) را در برابر زنوتیپ‌ها بر اساس میانگین عملکرد کمتری نسبت به معنی‌داری داشت. این نتایج نشان می‌دهد که عملکرد زنوتیپ‌ها در این نمونه‌برداری کمک نرم‌افزار Sigma Plot (SPW) به زنوتیپ‌های مورد بررسی براساس روش فراستندز (11) از نظر پتانسیل عملکرد و تحمیل در چهار گروه A, B, C, D و طبقه‌بندی شده. این چهار گروه، در نمونه‌گیری سه‌بعدی برحس عملکرد در شرایط نش (Yp), عملکرد در شرایط بی‌نش (Ys) و شاخص تحمل به نش (STI) تعیین گردید. بر اساس زنوتیپ‌ها در این نمونه‌برداری کمک نرم‌افزار Sigma Plot (SPW) تعیین شد.

نتایج و بحث

زنوتیپ‌های شماره 2 و 5 دارای بیشترین میزان شاخص تحمیل جداسازی زنوتیپ‌های با عملکرد بالا و متحمل به نش رطوبی است. زنوتیپ‌های شماره 2, 4, 11, 12 و 14 عملکرد بالایی در شرایط نش داشتند و از نظر شاخص‌های SSI و TOL میانگین حساسیت کم بودند. این زنوتیپ‌ها از نظر سایر شاخص‌ها نیز برتری نشان دادند.

فراستندز (11) اظهار داشت که شاخص حساسیت به خشکی (SSI) و حساسیت به سیستم‌های استرس (TOL) را در برابر زنوتیپ‌ها بر اساس میانگین عملکرد کمتری نسبت به معنی‌داری داشت. این نتایج نشان می‌دهد که عملکرد زنوتیپ‌ها در این نمونه‌برداری کمک نرم‌افزار Sigma Plot (SPW) به زنوتیپ‌های مورد بررسی براساس روش فراستندز (11) از نظر پتانسیل عملکرد و تحمیل در چهار گروه A, B, C, D و طبقه‌بندی شده. این چهار گروه، در نمونه‌گیری سه‌بعدی برحس عملکرد در شرایط نش (Yp), عملکرد در شرایط بی‌نش (Ys) و شاخص تحمل به نش (STI) تعیین گردید. بر اساس زنوتیپ‌ها در این نمونه‌برداری کمک نرم‌افزار Sigma Plot (SPW) تعیین شد.

نتایج و بحث

زنوتیپ‌های شماره 2 و 5 دارای بیشترین میزان شاخص تحمیل جداسازی زنوتیپ‌های با عملکرد بالا و متحمل به نش رطوبی است. زنوتیپ‌های شماره 2, 4, 11, 12 و 14 عملکرد بالایی در شرایط نش داشتند و از نظر شاخص‌های SSI و TOL میانگین حساسیت کم بودند. این زنوتیپ‌ها از نظر سایر شاخص‌ها نیز برتری نشان دادند.
جدول 1. رتبه و مقایسه میانگین‌های عملکرد در شرایط تنش رطوبتی (Y_r) و بدون تنش (Y) و شاخص‌های تحمل به خشکی در 23 لاين گندم

<table>
<thead>
<tr>
<th>HM</th>
<th>STI</th>
<th>SSI</th>
<th>GMP</th>
<th>MP</th>
<th>TOL</th>
<th>Y_r (kg/h)</th>
<th>Y (kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2710 a,b (17)</td>
<td>0/6 a,b (17)</td>
<td>0/6 a,b (17)</td>
<td>6143 a,b (17)</td>
<td>310 a,b (17)</td>
<td>260 a,b (17)</td>
<td>260 a,b (17)</td>
<td>0/6 a,b (17)</td>
</tr>
<tr>
<td>3334 a,b (9)</td>
<td>0/7 a,b (2)</td>
<td>1/7 a,b (2)</td>
<td>3444 a,b (2)</td>
<td>2198 a,b (2)</td>
<td>2774 a,b (2)</td>
<td>2774 a,b (2)</td>
<td>0/7 a,b (2)</td>
</tr>
<tr>
<td>3213 a,b (6)</td>
<td>0/5 a,b (6)</td>
<td>1/2 a,b (6)</td>
<td>3444 a,b (6)</td>
<td>2198 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>0/5 a,b (6)</td>
</tr>
<tr>
<td>2774 a,b (1)</td>
<td>0/7 a,b (1)</td>
<td>0/9 a,b (1)</td>
<td>3444 a,b (1)</td>
<td>2198 a,b (1)</td>
<td>2774 a,b (1)</td>
<td>2774 a,b (1)</td>
<td>0/7 a,b (1)</td>
</tr>
<tr>
<td>2692 b,c (5)</td>
<td>0/7 a,b (5)</td>
<td>0/7 a,b (5)</td>
<td>3444 a,b (5)</td>
<td>2198 a,b (5)</td>
<td>2774 a,b (5)</td>
<td>2774 a,b (5)</td>
<td>0/7 a,b (5)</td>
</tr>
<tr>
<td>2692 b,c (9)</td>
<td>0/7 a,b (9)</td>
<td>0/9 a,b (9)</td>
<td>3444 a,b (9)</td>
<td>2198 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>0/7 a,b (9)</td>
</tr>
<tr>
<td>2971 b,c (6)</td>
<td>0/7 a,b (6)</td>
<td>0/7 a,b (6)</td>
<td>3444 a,b (6)</td>
<td>2198 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>0/7 a,b (6)</td>
</tr>
<tr>
<td>2692 b,c (9)</td>
<td>0/7 a,b (9)</td>
<td>0/9 a,b (9)</td>
<td>3444 a,b (9)</td>
<td>2198 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>0/7 a,b (9)</td>
</tr>
<tr>
<td>3213 b,c (6)</td>
<td>0/7 a,b (6)</td>
<td>0/7 a,b (6)</td>
<td>3444 a,b (6)</td>
<td>2198 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>0/7 a,b (6)</td>
</tr>
<tr>
<td>3213 b,c (9)</td>
<td>0/7 a,b (9)</td>
<td>0/9 a,b (9)</td>
<td>3444 a,b (9)</td>
<td>2198 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>0/7 a,b (9)</td>
</tr>
<tr>
<td>3213 b,c (6)</td>
<td>0/7 a,b (6)</td>
<td>0/7 a,b (6)</td>
<td>3444 a,b (6)</td>
<td>2198 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>2774 a,b (6)</td>
<td>0/7 a,b (6)</td>
</tr>
<tr>
<td>3213 b,c (9)</td>
<td>0/7 a,b (9)</td>
<td>0/9 a,b (9)</td>
<td>3444 a,b (9)</td>
<td>2198 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>2774 a,b (9)</td>
<td>0/7 a,b (9)</td>
</tr>
</tbody>
</table>

*: اعداد داخل پرانتز مربوط به رتبه زننیتی‌ها می‌باشد.
(STI)

1. پراکنده‌ی زنوتیپ‌ها بر اساس عملکرد در محیط تنش خشکی (Ys) و بدون تنش (Yp) و شاخص تحلل به تن (STI)

از تحلل به تن بالاتری برخوردار بود و به‌طوری‌که زنوتیپ‌ها مانند

D

تولید (MP) زنوتیپ شماره 3 از جزو سه زنوتیپ برتر معرفی کرده است. در حالی که این زنوتیپ عملکرد بالایی را در شرایط

سن و TOL نشان دادند و از نظر شاخص‌های نیز جزو زنوتیپ‌های حساس محسوب می‌شوند. فرانتز (A) شاخص

متوسط تولید بر جزو‌ها شاخص‌های با کارایی پایین معرفی می‌شود. زیرا این شاخص نمی‌تواند زنوتیپ‌های متحمل و با

عملکرد را به‌طور هم‌زمان در محیط‌های تنش رطوبتی و

غیرتنشی امتیاز سازند. همچنین این باعث کرده که شاخص

میانگین هندسی عملکرد کمتر تحت اثره‌ای صفات است و می‌تواند زنوتیپ‌های گروه A را از بقیه

زنوتیپ‌ها تابعی کند.

**همانطور که در جدول 1 مشاهده می‌شود، شاخص متوسط

تولید (MP) زنوتیپ شماره 3 از جزو سه زنوتیپ برتر معرفی

کرده است. در حالی که این زنوتیپ عملکرد بالایی را در شرایط

سن و TOL نشان دادند و از نظر شاخص‌های نیز جزو

زنوتیپ‌های حساس محسوب می‌شوند. فرانتز (A) شاخص

متوسط تولید بر جزو‌ها شاخص‌های با کارایی پایین معرفی

می‌شود. زیرا این شاخص نمی‌تواند زنوتیپ‌های متحمل و با

عملکرد را به‌طور هم‌زمان در محیط‌های تنش رطوبتی و

غیرتنشی امتیاز سازند. همچنین این باعث کرده که شاخص

میانگین هندسی عملکرد کمتر تحت اثره‌ای صفات است و می‌تواند

زنوتیپ‌ها تابعی کند.**

همان‌طور که در جدول 1 مشاهده می‌شود، شاخص متوسط

تولید (MP) زنوتیپ شماره 3 از جزو سه زنوتیپ برتر معرفی

کرده است. در حالی که این زنوتیپ عملکرد بالایی را در شرایط

سن و TOL نشان دادند و از نظر شاخص‌های نیز جزو

زنوتیپ‌های حساس محسوب می‌شوند. فرانتز (A) شاخص

متوسط تولید بر جزو‌ها شاخص‌های با کارایی پایین معرفی

می‌شود. زیرا این شاخص نمی‌تواند زنوتیپ‌های متحمل و با

عملکرد را به‌طور هم‌زمان در محیط‌های تنش رطوبتی و

غیرتنشی امتیاز سازند. همچنین این باعث کرده که شاخص

میانگین هندسی عملکرد کمتر تحت اثره‌ای صفات است و می‌تواند

زنوتیپ‌ها تابعی کند.
<table>
<thead>
<tr>
<th>شاخص</th>
<th>TOL</th>
<th>MP</th>
<th>GMP</th>
<th>SSI</th>
<th>STI</th>
<th>HM</th>
<th>Y_{p}</th>
<th>Y_{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-/3</td>
<td>-/3</td>
</tr>
<tr>
<td>MP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0/5</td>
<td>-/8.2</td>
</tr>
<tr>
<td>GMP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-/8.2</td>
<td>-/8.2</td>
</tr>
<tr>
<td>SSI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-/8.2</td>
<td>-/8.2</td>
</tr>
<tr>
<td>STI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-/8.2</td>
<td>-/8.2</td>
</tr>
<tr>
<td>HM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-/8.2</td>
<td>-/8.2</td>
</tr>
<tr>
<td>Y_{p}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-/8.2</td>
<td>-/8.2</td>
</tr>
<tr>
<td>Y_{s}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-/8.2</td>
<td>-/8.2</td>
</tr>
</tbody>
</table>

جدول ۲- همبستگی بین شاخص‌های ارزیابی تحلیل و حسابی به نش خشکی

ضرایب همبستگی با دقت مطلوب بیش از ۰/۴۱ در سطح احتمال ۰/۰۵ و بیشتر از ۰/۳۳ در سطح احتمال ۰/۱ معنی‌دار می‌باشد.

* تحلیل به‌طور متوسط تولید.

شایع خشکی

| همبستگی جهت بیان مشخصاتی اصلی (جدول ۲) در مولفه اول بیشترین دصر تغییرات داده‌ها (9/۶۳ درصد) را توجه کرده‌اند و همبستگی مثبت و با همبستگی مثبت در هر دو محیط نش و بدون نش و سایر شاخص‌ها همبستگی مثبت داشت. استوا دو تغییرات کل داده‌ها را توجه کرده (جدول ۲). این مولفه نیز با شاخص‌های همبستگی منفی داشت و همبستگی آن با عامل‌در شرایط نش مست و بیماران ایمن را بین

در شرایط نش مست بود، بیمارانی با فشاران و بیماران دار TOL و SSI در مطالعه‌ای روی نخود همبستگی تمام شاخصها را با عامل‌در شرایط غیرنامت مثبت و می‌آید و TOL با عامل‌در شرایط نامت منفی و غیرنامت شاخص K. تولید، میانگین هنگام عامل‌در، حسابی به نش، شاخص Y_{p} مثبت و منفی و بیمارانی با تولید، طیب‌رسی و SSI با عامل‌در شرایط نامت و بدون نش داشته‌اند.

همبستگی شاخص‌های Y_{s} با عامل‌در شرایط نامت منفی به مخفی افزایش عامل‌در در شرایط نامت میزان این دو شاخص کاهش می‌یابد.

* فشاری و همکاران (4) در مطالعه‌ای روی نخود همبستگی تمام شاخصها را با عامل‌در در شرایط غیرنامت مثبت و منفی دار TOL و SSI با عامل‌در در شرایط نامت منفی و غیرنامت شاخص K. تولید، میانگین هنگام عامل‌در، حسابی به نش، شاخص Y_{p} مثبت و منفی و بیمارانی با تولید، طیب‌رسی و SSI با عامل‌در شرایط نامت و بدون نش داشته‌اند.

همبستگی شاخص‌های Y_{s} با عامل‌در شرایط نامت منفی به مخفی افزایش عامل‌در در شرایط نامت میزان این دو شاخص کاهش می‌یابد.
جدول 3. مقادیر وزن و بردارهای وزنه مؤلفه‌های اول و دوم برای 8 شاخص تحمل و حساسیت به خشکی.

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>HM</th>
<th>STI</th>
<th>SSI</th>
<th>GMP</th>
<th>MP</th>
<th>TOL</th>
<th>YN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/44</td>
<td>0/445</td>
<td>0/415</td>
<td>0/47</td>
<td>0/39</td>
<td>0/39</td>
<td>4/76</td>
</tr>
<tr>
<td>2</td>
<td>0/10</td>
<td>0/015</td>
<td>0/015</td>
<td>0/015</td>
<td>0/015</td>
<td>0/015</td>
<td>1/02</td>
</tr>
</tbody>
</table>

عملکرد در شرایط بدن تنفسی Y ن، عملکرد در شرایط بدن تنفسی TOL تحمل به تنفسی STI، شاخص حساسیت به تنفسی SSI، شاخص تحمل به تنفسی STI، شاخص حساسیت به میانگین وزنی می‌باشد.

شکل 2. نمايش بای پلات 33 زئوتیپ گند بر اساس اولین و دومین مؤلفه اصلی (PC) حاصل از 8 شاخص تحمل و حساسیت به خشکی

عملکرد باید به مقدار بالای هر دو مؤلفه یعنی ناحیه سمت راست و بالای نمودر بای پلای توجه کرده (شکل 2). در این ناحیه زئوتیپ‌های شماره 4، 17، 14، 11 و 22 قرار دارند. این زئوتیپ‌ها از نظر عملکرد در شرایط بدن تنفسی جزو زئوتیپ‌های برتر بودند.

جدول 3. با توجه به میانگین منفی مؤلفه دوم با عملکرد در شرایط غیرتنفسی میزان پایین این مؤلفه و میزان بالایی مؤلفه اول زئوتیپ شماره 2 را به عنوان کمتر متحمل معرفی کرد. در حالتی که این زئوتیپ از نظر شاخص‌های SSI و TOL به عنوان زئوتیپ متحمل خصوصی استفاده

منابع مورد استفاده

1. اساسیل زاده، م. 1383. تجزیه و تحلیل زئوتیپ براز تحمل به خشکی و صفات مربوط با آن در چند رقم گندم نان. پایان‌نامه
2. دکتری اصلاح نیمات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
ارزیابی تحميل به خشکي در لاينهای گندم

2. رحیمیان، ح. و م. باتانی. ۱۳۷۷. مباحث فيزيولوژيکي اصلاح نباتات (ترجمه). انتشارات جهاد دانشگاهي مشهد.
3. شفازاده، م. و ر. بارزيک. ۱۳۸۳. بررسی تحميل به خشکي فصل در زنوتيبهای آمديبخش گندم زمستاني و بنيان با استفاده از شاخص‌های حساسيت و محاسبه نسبت مراجعه نهال و بذر ۱:۷۱.
4. فرشادفر، ع. و م. زمانی. ۱۳۸۵. انتخاب برای مقاومت به خشکي در زراعت مجدد. مجله علوم كشاورزي ايران ۳۲:۶۵-۷۸.
5. كافي، م. و زند، ب. كامکار، ح. شرفی فر و م. كلاندي. ۱۳۷۹. فيزيولوژي كيماي جلد دوم. انتشارات جهاد دانشگاهي مشهد.