تجزیه به عامل‌ها برای صفات کمی و بررسی ضرایب مسیر برای عملکرد دانه در گندم

بهرام حیدری، قدیر الله سعیدی و بهرادگلین ابراهیم سید طباطبائی

(تاریخ دریافت: ۱۶/۸/۳۸۹۰)

چکیده
در این مطالعه تجزیه به عامل‌ها و تعیین آنها در ایجاد تغییر صفات کمی و همچنین آثار مستقیم و غیر مستقیم اجزای عملکرد بر عملکرد دانه گندم بوسر بررسی گردید. در این آزمایش ۱۵۷ لاین دایل هایلایند گندم (Triticum aestivum L.) در قالب طرح بلوک‌های کاملاً تصادفی با سه تکرار در ساعه‌های زراعی ۱۸۳ و ۱۳۸۳ و از لحاظ صفات مختلف زراعی و مرور ورودی آزمایش‌شده. نتایج تجزیه به عامل‌ها به روش حداکثر درستنمایی پنج عامل پهناوی را در هر گزارش‌های نمود که این پنج عامل جمعاً به ترتیب ۲۳/۳ وزن دانه، ۲۳/۳ وزن دانه، ۱۳ وزن دانه، ۱۲ وزن دانه و ۱۰ وزن دانه، سوم در سال اول به ترتیب شامل ارتقای بوته و عملکرد دانه و در سال دوم افزایش گل‌بار و افزایش عامل دردک‌بی‌درنگین به ترتیب در سال دوم نیز به ترتیب با رشد به سبب تغییرات در ساعه‌های زراعی و ورود ورودی افزایش عملکرد دانه داشت. به دلیل آثار مستقیم زیاد و غیر مستقیم تعادل دانه در ساعه‌های زراعی و وزن هزار دانه عامل افزایش عملکرد دانه و زیادی که دانه در ساعه‌های زراعی و ساعه‌های بوته و افزایش به عامل، تغییرات می‌تواند باعث افزایش عملکرد دانه شود. به بزرگی و بهبود چهارم به عامل لایه‌ای افزایش جدید صفات اجزاء عملکرد باعث افزایش عملکرد دانه نیز می‌شود. دانه به عناوین شاخص انتخاب در مرحله‌های بخشنده و به ملاحظه یکسانی عملکرد دانه می‌تواند به بهبود عملکرد دانه و دردک‌بی‌درنگین باشد.

واژه‌های کلیدی: گندم، دایل هایلایند، تجزیه به عامل‌ها، ضرایب مسیر

مقدمه
عملکرد دانه در گندم نان (Triticum aestivum L.) مهندسین

۱. به ترتیب دانشجوی ساین دکتری و دانشگاه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۲. دانشیار بیوتکنولوژی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
gsaeidi@cc.iut.ac.ir

* مسئول مطالعات، پست الکترونیکی:

۱۳۵
اصلاح گند. تولید ارقباً است که دارای ظرفیت تولید بیشتری باشد (۱۳). عملکرد دانه یک صفت کمی است که توسط تعادل زیادی درون و بین اکرمک، کرمل می‌شود و به‌صورت تحت تأثیر عوامل محیطی قرار می‌گیرد. ظرفیت عملکرد دانه به‌طور زن و منابعی به‌طور ممکن است. عواملی مانند تاریکی، درخت و دیگر محیط‌های ابزاری به‌طور ممکن است. عواملی مانند تاریکی، درخت و دیگر محیط‌های ابزاری به‌طور ممکن است. عواملی مانند تاریکی، درخت و دیگر محیط‌های ابزاری به‌طور ممکن است. عواملی مانند تاریکی، درخت و دیگر محیط‌های ابزاری به‌طور ممکن است. عواملی مانند تاریکی، درخت و دیگر محیط‌های ابزاری به‌طور ممکن است.
تجزیه به عامل‌ها برای صفات کمی و بررسی ضرایب مسر برای...

حدود یک سوم کود اوره به هر میلیون کروماتوگرامی هسته‌ای آمیزه قابل از کاشت در خاک داده شد و یافته آن در دو نویت در زمان پنج‌دهی و ساخته‌ای به صورت سرک مصرف گردید. صفات مانند عامل‌های اغازی عامل‌کردن ارتفاع بانه و صفات فنولوژیک در هر آزمایشی به روش انتخاب آخری حساسیت مورد ارزیابی قرار گرفتند. تعداد روز که ۵۰ درصد سنبه‌دهی بر حسب ظهر (۷۵) در ساله بگر پرچم در (۱۲) همان‌چنین با عناية به اهتمام عوامل پنهانی در شکل‌گیری صفات و تأثیر آنها بر عامل‌کردن دانه و لزوم تعیین میزان‌های بهره‌مندی اجزاء عامل‌کردن بر عامل‌کردن دانه جهت بهبود آن در پرورش‌های اصلاحی بایستفاده به منظور شناسایی عوامل پنهانی در توجیه و شناخت روابط داخلی بین صفات و تعیین مهترین صفات مرتبط با عملکرد دانه در پژوهشی دایه‌ای های‌پلینویژنیک تعداد دانه.

مواد و روش‌ها

آزمایش در سال‌های زراعی ۱۳۸۲ و ۱۳۸۳ در مزرعه تحقیقاتی دانشکده کشاورزی، دانشگاه صنعتی اصفهان انجام گردید. طبق طبقه‌بندی کوغن، منطقه آزمایش دارای اقلیم خشک، سیب‌گرم با تابستان‌های گرم و بهارک است. (۵) در این تحقیق، ۱۵۷ چربی از آزمایشی که به منظور تولید لاین خالص و افزایش توان‌بخشی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی جهت استفاده در نیازهای گذشته از تلاقی بین روش Oligo-culm و Fukuho-kumogی.
جدول1: برآوردهای دوران پائین، واریانس های نسبی در تجزیه به عامل‌ها برای صفات مرولوزیک

<table>
<thead>
<tr>
<th>مولفه</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>عامل پنجم</td>
<td>عامل چهارم</td>
</tr>
<tr>
<td>عامل دانه در متر مربع (گرم)</td>
<td>1/24</td>
</tr>
<tr>
<td>شاخص برداشت (درصد)</td>
<td>0/7</td>
</tr>
<tr>
<td>عامل دانه در متر مربع (گرم)</td>
<td>0/25</td>
</tr>
<tr>
<td>وزن هزار دانه (گرم)</td>
<td>0/52</td>
</tr>
<tr>
<td>تعداد دانه در سیستم</td>
<td>0/57</td>
</tr>
<tr>
<td>وزن دانه در سیستم (گرم)</td>
<td>0/7</td>
</tr>
<tr>
<td>تعداد سیستم در متر مربع</td>
<td>0/8</td>
</tr>
<tr>
<td>ارتفاع بوته (سانتی متر)</td>
<td>0/86</td>
</tr>
<tr>
<td>تعداد سیستم به سیستم</td>
<td>0/59</td>
</tr>
<tr>
<td>طول سیستم اصلی (سانتی متر)</td>
<td>0/44</td>
</tr>
<tr>
<td>تراکم سیستم به سیستم</td>
<td>0/99</td>
</tr>
<tr>
<td>وزن حجم دانه (گرم در 500 میلی لیتر)</td>
<td>0/83</td>
</tr>
<tr>
<td>تعداد روز تا کرده افشانی</td>
<td>0/74</td>
</tr>
<tr>
<td>تعداد روز تا کرده دهی</td>
<td>0/86</td>
</tr>
<tr>
<td>تعداد روز تا رسیدگی</td>
<td>0/88</td>
</tr>
<tr>
<td>طول ریشه (سانتی متر)</td>
<td>0/91</td>
</tr>
<tr>
<td>طول برگ پرچم (سانتی متر)</td>
<td>0/94</td>
</tr>
<tr>
<td>عرض برگ پرچم (سانتی متر)</td>
<td>0/31</td>
</tr>
<tr>
<td>طول آرایشین میناگره (سانتی متر)</td>
<td>0/06</td>
</tr>
<tr>
<td>واریانس توجهی (سانتی متر)</td>
<td>1/01</td>
</tr>
<tr>
<td>واریانس توجهی (سانتی متر)</td>
<td>0/01</td>
</tr>
<tr>
<td>مقادیر ویژه</td>
<td>0/02</td>
</tr>
</tbody>
</table>

138
جدول 2. بار عامل‌های دوران پانچه، واریانس‌های نسبی و تجمعی در تجزیه بار عامل‌ها برای صفات مرفولوژیک.

<table>
<thead>
<tr>
<th>صفات</th>
<th>مؤلفه</th>
<th>پنجم</th>
<th>چهارم</th>
<th>سوم</th>
<th>دوم</th>
<th>اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>عامل‌کردن دانه در متر مربع (گرم)</td>
<td>0/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ساختار برداشت (بند)</td>
<td>0/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عامل‌کردن بیوولوژیک (گرم)</td>
<td>0/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن هزار دانه (گرم)</td>
<td>0/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در سبیله</td>
<td>0/27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن دانه در سبیله (گرم)</td>
<td>0/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در متر مربع</td>
<td>0/33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارتفاع بوطه (سانتی متر)</td>
<td>0/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد سبیله‌ها در سبیله</td>
<td>0/39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول سبیله اصلی (سانتی متر)</td>
<td>0/42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم سبیله در سبیله</td>
<td>0/45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن حجمی (گرم در 500 میلیلیتر)</td>
<td>0/48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روژها در انتقال</td>
<td>0/51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روژها در سبیله دهه</td>
<td>0/54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روژها در شهرستان</td>
<td>0/57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول رنگکی (سانتی متر)</td>
<td>0/60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول بند بزرگ (سانتی متر)</td>
<td>0/63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض بند بزرگ (سانتی متر)</td>
<td>0/66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول بند بزرگ بزرگ (سانتی متر)</td>
<td>0/69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>واریانس توزیع شده</td>
<td>0/72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>واریانس توزیع شده تجمعی</td>
<td>0/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقادیر ویژه</td>
<td>0/78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شود. مقایسه نتایج حاصل از سال‌های اول و دوم نشان داد که برداشت، وزن هزار دانه و تعداد سبیله در متر مربع، این عامل می‌تواند بایانگر ارتباط منفی اجرا عامل‌کردن و اهمیت ارتباط برخی صفات مووفولوژیک با عامل‌کردن دانه باشد. با توجه به سهم بیشتر صفات فنوفولوژیک در آن که بیانگر پایان دوره رشد رویشی گیاه است، این عامل را می‌توان عامل زیست توده نامید (4). در سال دوم ارتباط عامل اول 7/22 درصد از انواع داده‌ها را توجیه نمود و بیشتر تأثیر مثبت وزن دانه در سبیله، تعداد دانه در سبیله، عرض بند بزرگ، تعداد سبیله‌های اصلی، شاخص برداشت و وزن هزار دانه بود و می‌تواند عامل اجرای عامل‌کردن نام‌گذاری...
اين عامل می‌توانند سبب افزایش بار در اجزای عملکرد و کاهش برخی از دیگر صفات مرتبط با عملکرد دنیه شود. این عامل (عملکرد چهرام) در حالی که دنیه تأثیر نسبت به سایر عوامل تأثیر عملکرد یافته و تاثیر عمده‌تری دارد. برآورد می‌شود که منجر به افزایش هم‌زنمان طول دوره رسیدگی، اجرای عملکرد و عملکرد دنیه در جسمه مدرع طاعون می‌شود. در عملکرد پیمان و عملکرد دنیه نسبت به سایر عوامل و تراکم سیستله در سیلیم به صورت مثبت و قابل توجه مؤثر بودند.

و افزایش این عوامل منجر به افزایش تعداد و تراکم سیستله بازور در سیلیم و طول بدنکل و کاهش تعداد سیلیم در متر مربع و عرض گرچه مهم بود، البته در ضرایب مثبت و اثر زیادی تعداد و تراکم سیستله در سیلیم در عامل پنج در مقایسه با سایر صفات به نظر می‌رسد این عامل در سال 1383 نیز بیشتر باقی ماند و همین تعداد سیستله در سیلیم اصلی در انجام تنویع باند و این عامل را، تغییر موجود در سیلیم نام کدزایی نمو. اگر نمایند ورود او در ارتباط با خطاهایی در رفتار بهبودی از صفت و همچنین اجزای عملکرد گردید. به‌طور کلی نتایج تجزیه و تحلیل شامل داد که انتخاب زیست‌پزشک بر اساس عملکرد ذکر می‌تواند منجر به بهبود گریختن و افزایش پایان‌های عمده‌ای عملکرد در و در سال می‌تواند انتقای بونه به در این عامل های چهرام و نیچه دارای ضرایب ثابت‌هایی از نظر صفات مختلف در هر دول سال بودن و انتظار درد روبروی زیست‌پزشکی، برخی از اجزای عملکرد مانند وزن دانه در سیلیم و وزن هزار دانه ذوب. عملکرد چهرام در حالی که در سال 1387 در تغییرات داده این نتیجه نمود. این عامل در سال 1387 به دست داشته تأثیر منفی وزن هزار دانه و وزن دانه در سیلیم و وزن حجمی و عرض گرچه تأثیر مثبت تعداد سیستله در مت و عملکرد دانه بود. به‌طور ایفای افزایش (جدول 1 و 2) عامل دوم در سال 1382 1387 بیشتر تحت تأثیر افزایش بونه. طول آخرج می‌انگر و عملکرد بیولوژیک در جهت مثبت فورتیفیک و الی صفات تعداد دانه در سیلیم شاخه برداشت و وزن دانه در سیلیم، تعداد سیستله در سیلیم و تراکم سیستله در سیلیم به صورت منفی تأثیر قابل توجه در این عامل داشتند. ولی صفات تعریف بونه یا مگه‌وارپای روم تا سیستله تاثیر منفی را در عامل دوم داشتند. به‌طور که نمی‌توان آن را عامل طول دو سال ارزیابی نامیم. مقایسه تابع مربوط به ردیابی بین صفات می‌باشد. در عملکرد سوم و در سال ارزیابی صفات عملکرد دانه وزن دانه در سیلیم عملکرد بیولوژیک در مت و عرض به صورت مثبت و قابل توجه و همچنین وزن هزار دانه و یا عامل سیلیم به صفت عملکرد دانه تأثیر مثبت و با اهمیت کمتر بردایش و عرض گرچه به صورت مثبت و با اهمیت کمتر صفات دومین می‌باشد به صورت منفی تأثیر کارا گایدن به تاکتیوالیون متواند به داشته تأثیر منفی وزن هزار دانه و وزن دانه در سیلیم، شاخه برداشت، تعداد دانه در سیلیم و تعداد سیستله در مت منفی در عامل منفی در سال ارزیابی 71 درصد از نوع کل را توجه نمود و بیشتر تحت تأثیر مثبت افزایش بونه. طول آخرج می‌انگر و طول ریشه قرار داشت. و اگر باعث افزایش بونه بود، ولی صفات مانند عملکرد دانه، شاخه برداشت تعداد دانه در سیلیم و تعداد سیستله در مت منفی در عامل منفی در سال ارزیابی 71 درصد از نوع کل را توجه نمود و بیشتر تحت تأثیر مثبت افزایش بونه بود.
جدول 3: ضرایب همبستگی فنوتیپی (پایین گرفت) و زنجیکی (پایین گرفت) با سه صفات مختلف در سال 1382

<table>
<thead>
<tr>
<th>صفت</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.19</td>
<td>0.19</td>
<td>0.13</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
</tbody>
</table>

جدول 4: ضرایب همبستگی فنوتیپی (پایین گرفت) و زنجیکی (پایین گرفت) با سه صفات مختلف در سال 1383

<table>
<thead>
<tr>
<th>صفت</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.19</td>
<td>0.19</td>
<td>0.13</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
</tbody>
</table>

بررسی ضرایب همبستگی بین صفات مختلف (جدول 3 و 4) نشان داد که همبستگی با ارتفاع بیشتر در عناصرهای ذهنی و عاملی قوی‌تر از ارتفاع بیشتر در عناصرهای بدنی است. همچنین، در جدول 4، مقدار همبستگی بین صفات مختلف در سال 1383 نیز با ارتفاع بیشتر در سال 1382 به همراه افزایش در عناصرهای ذهنی و عاملی قوی‌تر است.
جدول 5: آثار مستقیم و غیر مستقیم فنوتیپی و زیرنوعی (اعضای داخل پرانتز) اجزای عملکرد بر عملکرد دانه گندم

<table>
<thead>
<tr>
<th>سلول اول ارزیابی (1979)</th>
<th>سلول دوم ارزیابی (1982)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان تعداد سنبله بارور</td>
<td>میزان تعداد سنبله بارور</td>
</tr>
<tr>
<td>میزان تعداد سنبله بارور</td>
<td>میزان تعداد سنبله بارور</td>
</tr>
<tr>
<td>میزان تعداد سنبله بارور</td>
<td>میزان تعداد سنبله بارور</td>
</tr>
<tr>
<td>میزان تعداد سنبله بارور</td>
<td>میزان تعداد سنبله بارور</td>
</tr>
<tr>
<td>میزان تعداد سنبله بارور</td>
<td>میزان تعداد سنبله بارور</td>
</tr>
</tbody>
</table>

کمیت بین وزن هزار دانه و عملکرد دانه مشاهده شد (جدول 3 و 4). در سال اول ارزیابی وزن هزار دانه دارای آثار مستقیم و غیر مستقیم فنوتیپی و زیرنوعی بود است و این مقدار در سال دوم افزایش یافت. در طول دوره رشد گیاه، میزان تعداد سنبله بارور و وزن هزار دانه در سال اول ارزیابی تأثیر مستقیم و غیر مستقیم فنوتیپی و زیرنوعی داشت و میزان تعداد سنبله بارور در سنبله دوم و عملکرد دانه در سنبله دوم افزایش یافت.

نتایج تحقیق در عملکرد دانه به منظور بررسی دقیق تر روابط بین صفات اصلاح از ضرب همبستگی زیرنوعی و فنوتیپی (جدول 5) نشان داد که تعداد سنبله بارور و وزن هزار دانه در سال اول ارزیابی تأثیر مستقیم و غیر مستقیم فنوتیپی و زیرنوعی داشت و میزان تعداد سنبله بارور در سنبله دوم و عملکرد دانه در سنبله دوم افزایش یافت.

به طور کلی نتایج این مطالعه نشان داد که آثار مستقیم تعداد سنبله بارور، وزن هزار دانه و تعداد سنبله در سنبله بارور بر عملکرد دانه بسیار مثبت بوده است و در حدود 3 و 4 درصد از عملکرد دانه را تأثیرگذاری کرده است.
تجزیه و تحلیل ویژگی‌های پذیرش بیشتری در مقابله با وزن هزار دانه بر اثر افزایش عملکرد دانه برخوردار باشد، و بر اساس نتایج تجزیه برای عملکرد انتخاب لایه‌ها از استفاده عامل‌های چهارم و سوم به عنوان شاخص انتخاب در برنامه‌های سنگین و به منظور بهبود اجزای عملکرد و عملکرد دانه می‌تواند از پاسخ‌های بیشتری برخوردار باشد.

انتشار: نسیمی فریبرزی، مراد افتخاری، صادق شریعتی. تکامل میزان همبستگی فنوئیدی بودن که بین‌گیر تأثیر عوامل محیطی بر روابط بین اجزای عملکرد با عملکرد دانه است و این نتیجه با نتایج سیدول و همکاران (19). زیر تطابق داشت. نتایج ضرایب همبستگی و تجزیه ضرایب مسیر حاکی از آن بود که تعداد دانه در سنبله و تعداد سنبله پنارو می‌تواند از کارانی (موزه‌های زیست‌شناسی) استفاده مورد استفاده.

1. آزاتی، ا. 1378. اصلاح کیفیت زراعی (ترجمه). انتشارات دانشگاه صنعتی اصفهان.
2. بهرام نژاد، ب. 1375. بررسی تأثیر زیستی اجزای عملکرد و ساخته‌کردن کیفی معیار و روابط آنها در 376 رقم گند سمی غرب کشور با استفاده از روش‌های آماری چند متغیره. پایان‌نامه کارشناسی ارشد اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
4. شاهین‌نیا، ف. 1379. ارزیابی خصوصیات کیفی و کیفی اگرزو گلولین با وزن مولکولی بالا در لایه‌های اصلاحی. ارقام زراعی و بومی گند به روش تجزیه و تحلیل های چند متغیره. پایان‌نامه کارشناسی ارشد اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
5. کرمی، م. 1366. گزارش آب در هزاران انگارگر به‌منظور ساختگی و پیش‌بینی کیفیت نان نزدیک به روش‌های زیستی با وزن مولکولی بالا از طریق روش‌های آماری چند متغیره. پایان‌نامه کارشناسی ارشد اصلاح نباتات، دانشگاه صنعتی اصفهان.
6. کلامبرد زاد، م. 1379. ارزیابی خصوصیات کیفی و کیفی گند نان زیست به روش‌های زیستی با وزن مولکولی بالا از طریق روشهای آماری چند متغیره. پایان‌نامه کارشناسی ارشد اصلاح نباتات، دانشگاه صنعتی اصفهان.