اثر آیپاری تکمیلی و مقدار فراهمی آب از عملکرد، اجزای عملکرد و برخی صفات فیزیولوژیک در رضم گندم دیم

محمدرضا تدنی و بحی امام

(تاریخ دریافت: 1/85/21 تاریخ پذیرش: 1/85/21)

چکیده

به منظور بررسی اثر مقادیر متفاوت آب دریافتی در مراحل مختلف رشد در سیستم آیپاری تکمیلی، فراهم کردن فتوستنی و عملکرد دانه گندم تحت شرایط دیم، پژوهشی زمینه‌ای در قالب طرح آماری کاهش نرخ در باله سالهای زراعی 70-78 و 83-85 در مزرعه تحقیقاتی دانشگاه شیراز به اجرا درآمد. تیمار کاهشی اصلی شامل آیپاری تکمیلی در سطح 5 میلی‌متر از بدن آیپاری (دبی)، آیپاری در مراحل: باله رنگ، غلاف رنگ، گلدهی و پر شدن دانه، تیمار کاهشی 2 رقم گندم به نامهای آگوسنا و فاین و تیمار کاهشی 15 و تیمار کاهشی فرعی عامل کود نیتروژن در سطح 0.40 و 80 کیلوگرم در هکتار بود. نتایج نشان داد که در هر دو سال آزمایش، سرعت فتوستنی، میزان هدایت روزانه، خلق CO2، سرعت تعرق در تیمار آیپاری تکمیلی در مرحله ساقه رنگ تسبیب به افزایش تیمارها برتری معنی‌داری داشت. به علاوه، در دو تیمار آیپاری تکمیلی و در مراحل مختلف رشد، میزان پارامترهای فتوستنی، هدایت روزانه و سرعت در گونه‌ای کاهشی در باله دو سال آزمایشی کاهش یافته بر اساس عملکرد دانه در هر دو سال آزمایشی از تیمار آیپاری تکمیلی در مرحله ساقه رنگ و کمترین مقدار از تیمار دیم حاصل شد. به‌طور کلی میزان پارامترهای فتوستنی، اجزای عملکرد و عملکرد دانه در برهمکنش تیمارهای آپاری تکمیلی در مرحله ساقه رنگ * رقم فاین-15 و سطح 80 کیلوگرم نیتروژن در هکتار به‌دست آمد. آبیاری تکمیلی در مرحله ساقه رنگ در سال‌های 70-78 و 83-85 منجر به افزایش عملکردی بیشتری نسبت به دیم گردید. با اشاره به نظر رئیس آپاری تکمیلی در مرحله ساقه رنگ تأثیر بایزی بر عملکرد دانه ارائه گندم دیم دارد و در صورت تأمین آب کافی در دیمازارها می‌توان با یک آپاری تکمیلی در زمان مناسب، عملکرد گندم دیم را تا حدی برای افزایش داد.

واژه‌های کلیدی: مراحل رشد گندم، آپاری تکمیلی، دیم‌کاری، فتوستنی، عملکرد دانه

مقدمه

کشور ایران به لحاظ قرار گرفتن در ناحیه خشک و تهیه خشک جهان از نزولات آسیای محدودی بر خوردار است، که با

برنامه‌ریزی و استفاده اصولی از امکانات می‌توان از کاهش تولید

در سال‌های کم باران جلوگیری کرد (24). ایران دارای اقلیم مستمری‌های بوده که ویژگی‌های این منطقه شامل تابستانهای

کش‌های ساقه درک نشته کاهش ورودی از داخل، بر اساس کاهش در حال حاضر استفاده زراعت و اصلاح نباتات، دانشگاه شیراز

کشور ایران به لحاظ قرار گرفتن در ناحیه خشک و تهیه خشک جهان از نزولات آسیای محدودی بر خوردار است، که با

1. دانشجوی ساقه درک کرات و اصلاح نباتات، دانشگاه شیراز، دانشگاه شیراز

2. استاد زراعت و اصلاح نباتات، دانشگاه شیراز

yaemam@shirazu.ac.ir

مطالب مکانیک: پست الکترونیکی: *
که میزان بارندگی برای رشد گیاه کافی باشد، ولی برکشت باران مناسب با دو رشد گیاه نباشند، عملکرد دانه، به دلیل کم‌میزان بارندگی، رشد کاهش خواهد یافت، حتی در شرایط ممکن است کل محصول به بین برود. بنابراین، در مناطق که مقدار و پراکنش زمان بارندگی مناسب است، آبیاری تکمیلی برای تولید مطلوب کندم می‌تواند قابل توجه بهشد (28).

منظره‌ای از آبیاری تکمیلی، کاربرد مقدار محصولات اب در زمان توقف بارندگی است. تا این کنون، برای تدوین رشد بونه‌ها و افزایش و تاثیب عملکرد دانه تأثیر مثبتی نیافته است. این مقدار آب مصرفی به تنهایی برای تولید گیاه زراعتی کافی نیست، بنابراین از یکی از ویژگی‌های ضروری آبیاری تکمیلی، طبیعت تکمیلی باران و آبیاری است (28 و 33). آبیاری تکمیلی بهبود در مناطق وسیعی از براساس 3 جنبه اساسی بر اساس دوره می‌باشد: 1- آب فاقد برای بهبود عملکرد گیاه زراعتی که به صورت دیده که به صورت تکمیلی. برای رشد گیاه زراعتی کافی است، ناکام است (39 و 29). در مناطق وسیعی از گیاه زراعتی، برای بهبود عملکرد کندم می‌تواند قابل توجه بهشد (28).
ارث آب‌یاری تکمیلی و مقدار فراهمی آب بر عملکرد اجزاء عملکرد و...
جدول 1. میزان بارندگی در طی سال‌های زراعی ۸۳-۴۸ و ۸۳-۵۵ (mm)

<table>
<thead>
<tr>
<th>ماهر</th>
<th>آبان</th>
<th>آذر</th>
<th>دی</th>
<th>بهمن</th>
<th>اسفند</th>
<th>فروردین</th>
<th>اردیبهشت</th>
<th>خرداد</th>
<th>جمع سال زراعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۳</td>
<td>۱۴۲</td>
<td>۳۰۰</td>
<td>۴۰۵</td>
<td>۷۰۷</td>
<td>۷۰۷</td>
<td>۷۰۷</td>
<td>۷۰۷</td>
<td>۷۰۷</td>
<td>۴۸۸</td>
</tr>
<tr>
<td>۸۴</td>
<td>۴۵۰</td>
<td>۳۰۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۳۸۵</td>
</tr>
<tr>
<td>۸۵</td>
<td>۴۵۰</td>
<td>۳۰۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۳۸۵</td>
</tr>
</tbody>
</table>

جدول 2. میزان آب داده شده (mm) در مراحل مختلف رشد ارگان گندم توسط سیستم آب‌پیمایی نکبی

<table>
<thead>
<tr>
<th>مرحله رشد</th>
<th>میزان آب داده شده در حاصل از باران</th>
<th>میزان آب داده شده در حاصل از آب سال زراعی ۸۳-۴۸</th>
<th>میزان آب داده شده در حاصل از آب سال زراعی ۸۳-۵۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساقه رنف (S)</td>
<td>۴۸.۵</td>
<td>۵۰.۵</td>
<td>۵۰.۵</td>
</tr>
<tr>
<td>خلاف رنف (G)</td>
<td>۴۸۵</td>
<td>۴۸۵</td>
<td>۴۸۵</td>
</tr>
<tr>
<td>گل‌دهی (D)</td>
<td>۵۸۵</td>
<td>۵۸۵</td>
<td>۵۸۵</td>
</tr>
<tr>
<td>پر شدن دانه (P)</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
<td>۴۵۰</td>
</tr>
</tbody>
</table>

رشد انجام شد و بردادن نهایی از یک متر مربع بونه‌های واقع در ردیف‌های قرار گرفته در مرکز فوتوهای تعیین شده در هر کرت صورت گرفت.

دانه‌های کندم از سبب‌های بردادن شده با استفاده جدا شد و دانه‌ها در آن و در دمای ۰۵ درجه سانتی‌گراد در مدت ۲۷ ساعت قرار داده می‌شد. سپس با استفاده از نرم‌افزار Excel و SAS صورت تجزیه و تحلیل گرفت و میانگین‌دادن داده با وسیله آزمون دانکن با هم مقایسه گردید.

نتایج و بحث

کلیه صفات اندامگیری شده در دو سال آزمایش مورد تجزیه و ارزیابی می‌کرد قرار گرفت تا معنی‌داری و عدم معنی‌داری تفاوت‌های بین آن‌ها اصلی و برهگش نیازی‌ها مشخص گردید (جدول2). بررسی سرعت فتوسنتز بین ای‌پیآی نکبی در هر یک از مرحله‌های ارگان توسط روش انتخابی و جدول ۲ نشان داد که در هر دو سال زراعی ۸۳-۴۸ و ۸۳-۵۵ بین ای‌پیآی نکبی در مرحله آب‌پیمایی گندم سرعت فتوسنتز در مرحله

حد ظرفیت مزرعه بر حسب درصد وزنی Rc/۶m رطوبت و بونه خاک به صورت تفاضل وزن نمونه‌های مرطوب و نمونه‌های خشک ارتفاع یا عمق نمونه برداری از خاک D /g/cm³ چرم مخصوص ظاهری خاک بر حسب ۱۰ pb در طی دو سال زراعی، مقادیر باران و زمان پراکنش آن اندامگیری و پاداشت بارداری شد که مقادیر باران، زمان پراکنش آن میزان آب داده شده و میزان آب داده شده در دو سال آزمایش در جدول‌های ۱ و ۲ آورده شده است. با استفاده از دستگاه فتوسنتز سنج (مدلل CeS-A) با پارامترهای سرعت فتوسنتز، هدایت روندهای برقی غلفظ CO۲، زیر روندهای و تعرق در مرحله‌های ساقه رنف (Zadoks Growth Stage) (ZGS=۳۳) (ZGS=۳۴) (ZGS=۳۵) (ZGS=۳۶) و در مرحله پر شدن (ZGS=۴۰) دانه در اردیبهشت (ZGS=۴۰) در هر دو سال آزمایش که روز بونه‌های که در مجاورت هر یک از فوتوهای دریافت کننده آب، قرار داشتند اندامگیری شد. از این‌ها باکر و فتوسنتز در بالاترین پرگ کاملاً باز شده در هر ساقه اصلی و در هر یک از مرحله‌های
جدول ۳. تجزیه و اریان مركب در سال آزمایش برای صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>سرعت تعرق</th>
<th>هدایت روزنایه</th>
<th>فوتون‌سرعت</th>
<th>فوتون‌سرعت</th>
<th>عملکرد</th>
<th>درجه آزادی</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴/۸۹ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۱/۲ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۲</td>
<td>تکرار</td>
</tr>
<tr>
<td>۱۴/۸۹ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۱/۲ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱</td>
<td>سال</td>
</tr>
<tr>
<td>۱۴/۸۹ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۱/۲ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۲</td>
<td>خطا</td>
</tr>
<tr>
<td>۱۴/۸۹ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۱/۲ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۴</td>
<td>آبیاری</td>
</tr>
<tr>
<td>۱۴/۸۹ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۱/۲ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۴</td>
<td>آبیاری</td>
</tr>
<tr>
<td>۱۴/۸۹ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۱/۲ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۱۶۴/۸ m/s</td>
<td>۱۶۳/۲ m/s</td>
<td>۴</td>
<td>آبیاری</td>
</tr>
</tbody>
</table>

* : به ترتیب معنی دار بودن در سطح احتمال ۰/۰۵ و ۰/۰۱ *
m : غیر معنی دار

جدول ۴. واکنش سرعت فوتون‌سرعت به میزان آب داده شده در هر یک از مرحله رشد ارقام گذشته (μmolCO₂ m⁻² s⁻¹)

<table>
<thead>
<tr>
<th>تیمار دم</th>
<th>تیمار آبیاری تکمیل</th>
<th>سال</th>
<th>مرحله رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۶-۸۵</td>
<td>۸۶-۸۵</td>
<td>۸۶-۸۵</td>
<td>۸۶-۸۵</td>
</tr>
<tr>
<td>۸۲-۸۴</td>
<td>۸۲-۸۴</td>
<td>۸۲-۸۴</td>
<td>۸۲-۸۴</td>
</tr>
<tr>
<td>۸۴-۸۴</td>
<td>۸۴-۸۴</td>
<td>۸۴-۸۴</td>
<td>۸۴-۸۴</td>
</tr>
<tr>
<td>۸۴-۸۴</td>
<td>۸۴-۸۴</td>
<td>۸۴-۸۴</td>
<td>۸۴-۸۴</td>
</tr>
</tbody>
</table>

* : در هر ستون میانگین‌های درازای حرارت ماهی بر اساس آزمون دانکن در سطح احتمال ۰/۰۵ اختلاف معنی‌دار ندارد.

از مهم‌ترین عوامل محیطی است که موجب افزایش سرعت فوتون‌سرعت می‌شود (8). بسیاری از پژوهش‌ها نشان داده است که کاهش فوتون‌سرعت در شرایط نتوانسته با اختلال در فرآیندهای بوشیمایی و مرتبه است (18 و 21). در آزمایش‌های روند کاهش معنی‌داری را نشان داد (جدول ۴). نتایج نشان دادند که روند کاهش معنی‌داری در روند ۱۴۹
شکل ۱. واکنش سرعت فتوسنتز به میزان آب داده شده در تیمارهای آبی‌رینه تکمیلی در دمای ۸۲-۸۵°C.

جدول ۵. تأثیر سطوح مختلف آبی‌رینه تکمیلی در مرحله رشد بر هدایت روزنه‌ای (mol CO₂ m⁻² s⁻¹) و شکل ۵. زیر روزنه‌ای (mol mol⁻¹) ارقام اندیشم دمید

| شکل ۱۰ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ | ۳۶ | ۳۸ | ۴۰ |
|--------|-----|---|-----|---|----|---|-----|---|----|---|----|---|----|---|-----|---|-----|---|----|---|----|
| T (°C) | ۲ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ | ۳۶ | ۳۸ |
| H (Wm⁻²) | ۲ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ | ۳۶ | ۳۸ |

جدول ۶. تأثیر سطوح مختلف آبی‌رینه تکمیلی در مرحله رشد بر هدایت روزنه‌ای (mol CO₂ m⁻² s⁻¹) و شکل ۵. زیر روزنه‌ای (mol mol⁻¹) ارقام اندیشم دمید

| شکل ۱۰ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ | ۳۶ | ۳۸ | ۴۰ |
|--------|-----|---|-----|---|----|---|-----|---|----|---|----|---|----|---|-----|---|-----|---|----|---|----|
| T (°C) | ۲ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ | ۳۶ | ۳۸ |
| H (Wm⁻²) | ۲ | ۴ | ۶ | ۸ | ۱۰ | ۱۲ | ۱۴ | ۱۶ | ۱۸ | ۲۰ | ۲۲ | ۲۴ | ۲۶ | ۲۸ | ۳۰ | ۳۲ | ۳۴ | ۳۶ | ۳۸ |

در هر سطح میانگین‌های متوسط حروف مشابه بر اساس آزمون دانک در سطح احتمال ۵٪ اختلاف معنی‌دار ندارند.
بیشتر از تیمار دیم بود. نتایج جدول ۵ نشان می‌دهد که با گذشت زمان و مواجهه بهتر گیاهان با آب آتی، کمیت و رطوبت خاک، غلظت CO۲ زیر رونت‌های در تیمار آبیاری در مرحله پر شدن دانه در مقایسه با تیمار سالم رفت و خالی که در نشان دادند تاکر و کوریک (۲۰۰۲) نیز بیان داشتند که تحت شرایط نش خشک، بیشترین طبقه‌بندی فعالیت فتوسنتزی می‌تواند ناشی از کاهش غلظت CO۲ مانند سیلوسیپی باشد که این خروج نیز ناشی از محدودیت رونت‌های می‌باشد.

کاهش چشمگیری در سرعت فتوسنتز (۱۱) ظهور رونت‌های و انفراش در غلظت CO۲ بین سلولی اتفاق می‌افتد (۲۳). ژنوشگران کاوش در فتوسنتز به دنبال شکست خشکی، اغلب به کاهش هدایت رونت‌های نسبت دادهاند (۱۱). عوامل احتمالی تعبیه کننده مقاومت به خشکی هر رقم، شامل حساسیت CO۲ کوتی سرعت نابل CO۲ به خشکی، جذب خالقی CO۲ کوتی به نسبت به دست دان آب مقاومت رونت‌های مقدار آب نسبت (۱۲) و تنظیم برتر اسیدی تحت شرایط نش می‌باشد (۱۹).

روند تغییر غلظت CO۲ زیر رونت‌های در مراحل مختلف آبیاری تکمیلی در مراحل مختلف رشد نشان داد که بیشترین نیاز تعریف پیوندهای گندم، در تیمار آبیاری تکمیلی در مرحله سالم و کمترین نیاز آن در تیمار آبیاری تکمیلی در مرحله پر شدن دانه بود (جدول ۶). به دلیل زیادی بودن هدایت رونت‌های در تیمار آبیاری در مراحل مختلف رشد، غلظت CO۲ زیر رونت‌های نیز در این مراحل رشد

جدول ۶: میزان تعریف (mmol H۲O m⁻² s⁻¹) در تیمارهای آبیاری تکمیلی در مراحل مختلف رشد سال

<table>
<thead>
<tr>
<th>تیمار دم</th>
<th>تیمار آبیاری</th>
<th>مراحل رشد</th>
<th>سال</th>
<th>ساقه رفت و خالی</th>
<th>غلاف رفت و خالی</th>
<th>گل دهنده</th>
<th>پر شدن دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۴/۲</td>
<td>۵۴/۲</td>
<td>۱۲/۸۸</td>
<td>۱۲/۸۸</td>
<td>۱۲/۸۸</td>
<td>۱۲/۸۸</td>
<td>۱۲/۸۸</td>
<td>۱۲/۸۸</td>
</tr>
<tr>
<td>۲۸/۴</td>
<td>۲۸/۴</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
</tr>
<tr>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
<td>۹/۱۵</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
</tr>
</tbody>
</table>

* در هر ستون میانگین‌های دارای حرف مشابه با اس ای آزمون ناکان در سطح احتمال ۵٪ اختلاف معنی‌دار ندارند.
شکل 3. واکنش سرعت تعرق به میزان آب داده شده در تیمارهای آبیاری تکمیلی در سال 85-86

ساقه رفتین بیشتر از مراد آلابری نسبت به میزان آب داده شده در تیمارهای آبیاری تکمیلی بود. همچنین میزان تعرق در تیمار دیم در مقایسه با تیمارهای آبی کاهش چشمه‌گیری داشت (جدول 4). هرچند در تیمار دیم، نیز بیشترین میزان تعرق مربوط به زمان ساقه رفتین گیاه و کمترین آن در مرحله پر شدن دانه بود. این نتایج به‌صورتی که میزان ساقه رفتین گیاه بوده است نقش مجزا و مؤثرتر بوده است.

نتایج نشان داد که در هر دو سال آزمایش، بیشترین میزان LAI رفتین و رقم فاصله و سطح تعداد پریشون و سطح گیاهان در مقایسه با رفتین دیم و کمترین آن از تیمار دیم و رقم آگوستا و سطح و میزان LAI گنبد به دست آمد. بیشترین میزان LAI نیز در مرحله گل‌دهی به دست آمد.

همچنین بالاترین سرعت فتوستزی، هدایت روزنه‌ها و غله‌های CO2 زیر روزنه‌ها و تعرق، از تیمار آبیاری تکمیلی در مرحله رشد، هم‌بینگی زایدی در هر دو سال آزمایش داشته است (شکل 4). پژوهشگران سیاری نشان داده‌اند که تنش آبی موجب بسته شدن روزنه‌ها و کاهش سرعت تعرق می‌شود (20 و 21). و هر کاهش کاهش در پاناس آب‌بافته‌های گیاهی موجب کاهش فتوستزی می‌شود (37).

این نتایج نشان داد که میزان تعرق به‌صورتی که میزان ساقه رفتین، زمان پر شدن و میزان کاهش فتوستزی، به‌طور مشترک در فاصله فتوستزی در طول دوره نشش داشت، میزان سلولی همراهی CO2 ساقه رفتین گیاه بوده است. هویتی.
جدول 7. عملکرد دانه تیمارهای مختلف آبیاری تکمیلی در دو سال ازمایش

<table>
<thead>
<tr>
<th>تیمار آبیاری تکمیلی</th>
<th>عملکرد دانه (kg/ha)</th>
<th>درصد افزایش نسبت به دیم</th>
<th>84-85</th>
<th>86-87</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>222</td>
<td>200</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>-</td>
<td>176</td>
<td>177</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>-</td>
<td>165</td>
<td>160</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>-</td>
<td>145/82</td>
<td>148/56</td>
<td>147/56</td>
<td>147/56</td>
</tr>
<tr>
<td>-</td>
<td>118/88/4</td>
<td>-</td>
<td>112/4</td>
<td>112/4</td>
</tr>
</tbody>
</table>

- در هر ستون میانگین‌های دارای حرف مشابه بر اساس آزمون دانکن در سطح احتمال 0.05 اختلاف معنی‌داری ندارند.

که هیپستگی زیادی بین میزان پانارمترهای اندازه‌گیری شده و واکنشها بین آن‌ها آب در میان در بوته‌های گندم دیم به دست آمده (شکل‌های 1 و 2).

با توجه به نتایج به دست آمده عملکرد دانه به طور معنی‌داری تحت تأثیر تیمارهای آبیاری تکمیلی گرفت (جدول 7). در هر سال ازمایش بیشترین عملکرد دانه از تیمار آبیاری تکمیلی در مرحله ساقه رفتگی و کمترین آن از تیمار دیم به دست آمد. در ازمایش طهماسبی سروستانی و همکاران، نتایج تیمار آبیاری در هر یک از مراحل رشد گندم، بسیار افزایش عملکرد دانه نسبت به تیمار دیم کرد و میزان افزایش عملکرد در شرایط آبیاری تکمیلی نسبت به تیمار شاهد (شرایط دیم) برابر 289 کیلوگرم در هکتار (معادل 18 درصد) بود.

نتایج جدول 7 نشان می‌دهد که در بین مراحل مختلف رشد، مرحله ساقه رفتگی گندم نسبت به سایر مراحل، از حساسیت بیشتری جهت دستیابی به عملکردهای زیادتر برخوردار است. آبیاری در این مرحله ضروری به بقاء بیشتر پنج‌ها شد و از طرفی به دلیل اینکه این مرحله، آغاز ورود گیاه به فاز زایم بود که با ترکیب بیشتری انجام در ناحیه نیروهای انتهایی همراه است. (2) تعبیه کندن اجزای عملکرد دانه شل منابع سیبک، تعادل دانه گلچه در سیبک و در نهایت عملکرد دانه خواهند بود (3). در

153
درصد افزایش عملکرد مشاهده گردید. در سال‌های 2000 تا 2005 بیش از 20 درصد در مرحله ساختارهای متغیر به افزایش عملکرد داده شد. در سال‌های 2010 تا 2015 بیش از 30 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2020 تا 2025 بیش از 40 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2030 تا 2035 بیش از 50 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2040 تا 2045 بیش از 60 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2050 تا 2055 بیش از 70 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2060 تا 2065 بیش از 80 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2070 تا 2075 بیش از 90 درصد در مقایسه با تیمار دیگر داده شد. در سال‌های 2080 تا 2085 بیش از 100 درصد در مقایسه با تیمار دیگر داده شد.

ممنوع مورد استفاده

1. امام، ی. (1387) ریاضیات مسیرهای مشترک. انتشارات دانشگاه شیراز.
2. امام، ی. (1388) ریاضیات مسیرهای مشترک. انتشارات دانشگاه شیراز.
3. کشاورزی، ع. (1389) ریاضیات مسیرهای مشترک. انتشارات دانشگاه شیراز.
4. طهماسبی، س. (1390) ریاضیات مسیرهای مشترک. انتشارات دانشگاه شیراز.
5. وزارت جهاد کشاورزی (1391) ریاضیات مسیرهای مشترک. انتشارات دانشگاه شیراز.
6. وزارت جهاد کشاورزی (1392) ریاضیات مسیرهای مشترک. انتشارات دانشگاه شیراز.

