تجزیه پایداری عملکرد در زنوتیپ‌های نخود با استفاده از تجزیه آثار اصلی افزایشی و آثار متقابل ضرب‌پذیر (AMMI)

حسن زالی، سید حسین صباغ‌پور، عزت‌الله فرشادفر، پیام پژشکور، منصور صفی خانی
 رمضان سرمی‌سرسُت و عبدالله هاشمی‌پور

(تاریخ دریافت: 85/8/14؛ تاریخ پذیرش: 1386/10/2)

چکیده

وجود اثر متقابل زنوتیپ × محیط موجب شده که عملکرد زنوتیپ‌ها در دانه و سبزی سبب شود از شرایط محیطی مورد ارزیابی قرار گیرد تا اطلاعات حساس پایدار کارایی محیط به‌گونه‌ای مربوط به گروه برای معرفی آنها را افزایش دهد. در این تحقیق به منظور بررسی انتخاب زنوتیپ‌های پر محصول و سازگار با شرایط دیم، تعداد 17 لاین و زنوتیپ نخود در فاصله طرح بر روی هر کامل 18 نمونه به مدت دو سال (1382-83) در ناحیه استان کرمانشاه، گرگان و ایلام در شرایط دیم اجرا گردید. اثر متقابل زنوتیپ × محیط با استفاده از مدل آمار اصلی افزایشی و اثرات متقابل ضرب‌پذیر (AMMI) در سطح احتمال 0/1‌% معنی دار بود. مجموع مربعات اثر متقابل توسط مدل IPCA (امنیت مصرفی محیط) به چهار اثر معتقد اثر متقابل AMMI مربوط به چهار مولفه اصلی اثر متقابل IPCA (امنیت محیط) که با ترکیب 49/9 الف. از تغییرات اثر متقابل زنوتیپ × محیط را توصیف می‌کند. براساس نمودار پایل مدل FLIP AMMI اثرات از پایداری محسوب بر خوردار با پایین و زنوتیپ 114-97-FLIP97X114 و زنوتیپ 114-97-FLIP97X114-AMMI با سازگاری کرمانشاه و عملاً می‌تواند به عنوان زنوتیپ سازگار با عملکرد پایدار معرفی شود.

واژه‌های کلیدی: نخود، اثر متقابل زنوتیپ × محیط، تجزیه پایداری، مدل آمار اصلی افزایشی و آثار متقابل ضرب‌پذیر (مدل AMMI)، با پایل

مقدمه

محیط‌های بادمجانی و یگمی موجب نیتروژن انسدادی در خاک موجب حاصل کردن کم‌کست محصول بوده که 1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد زراعت اصلاح انباشت، دانشکده کشاورزی، دانشگاه رازی کرمانشاه
2. استادیار پژوهش مؤسسه تحقیقات دیم سارود، کرمانشاه
3. مربی پژوهش مرکز تحقیقات دیم ایلام
4. مربی پژوهش مرکز تحقیقات دیم گیلان
5. مربی پژوهش مرکز تحقیقات و منابع طبیعی گیلان
6. مربی پژوهش مرکز تحقیقات کشاورزی ایلام

\[Hassanzali1382@yahoo.com\]

173
بیانیه: مدل AAMMI ابزار مفیدی در تشخیص اثر متقابل دومین عامل در یک مطالعه AAMMI می‌باشد.

مقطع است. همچنین مدل AAMMI می‌تواند با استفاده از نتایج عملکرد حاصل از چندین مطالعه خاص که زنوتیپ‌ها در آنها ارزیابی می‌شود، می‌تواند عملکرد گیاهی نخود در یک مطالعه استفاده شود.

کاربرد: گروه برای تجربه نیاز به AAMMI می‌باشد. AAMMI از نظر فوتیژی، تعیین ویژگی‌های آزمونی مختلف ابزاری با هم مقایسه کرد ولی در نتایج مدل AAMMI را مانند: گونه، ناحیه، روش برای تجربه وارد عمل می‌گردد. نتایج نشان دهنده کاهش نیاز مانند نشان می‌دهد.

شومین (15) بود. AAMMI در مدل سطح مقابل اثرات AAMMI موفقیتمندی که همراه با بهبود زنوتیپ و میکروبات کاهش چهارگانه بیانی این دوگانه و کاهش میکروبی را می‌کند. این نتایج به دلیل انتخاب زنوتیپ‌هایی که آگاه از واقعه مهم آن را کم بوده و با انتخاب زنوتیپ‌های پایدار، آنها میکروبی روی آنها کاهش پیدا خواهد کرد.

از نظر تجربه و تحلیل روش‌های معمول مثل استفاده از جدولهای تجربه واریانس آزمونی فقط اطلاعاتی در مورد اثر متقابل زنوتیپ و میکروبات به دست می‌دهد. محققین معرفی‌های معنی‌داری را جهت تشخیص پایداری ارزش و معرفی آنها به کار برده‌اند.

مدل ترکیبی از تجربه واریانس و تجربه به AAMMI موفقیتمندی که همراه با بهبود زنوتیپ و میکروبات کاهش چهارگانه بیانی این دوگانه و کاهش میکروبی را می‌کند. این نتایج به دلیل انتخاب زنوتیپ‌هایی که آگاه از واقعه مهم آن را کم بوده و با انتخاب زنوتیپ‌های پایدار، آنها میکروبی روی آنها کاهش پیدا خواهد کرد.

مدل AAMMI موفقیتمندی که همراه با بهبود زنوتیپ و میکروبات کاهش چهارگانه بیانی این دوگانه و کاهش میکروبی را می‌کند. این نتایج به دلیل انتخاب زنوتیپ‌هایی که آگاه از واقعه مهم آن را کم بوده و با انتخاب زنوتیپ‌های پایدار، آنها میکروبی روی آنها کاهش پیدا خواهد کرد.

موقایه و روش‌ها

آزمایش در شرایط آب و هوا و همچنین کیفیت انگیم‌های R انجام شده و در آن 17 لاین خود به همراه رقم آزمایش به عنوان شاخص به کار گرفته شده است. طرح بلوک‌های کامل تصادفی با چهار تکرار در پنج ایستگاه تحقیقات کشاورزی کرمانشاه، لرستان، گیلان، ایلام و هرمزگان ایستگاه تحقیقات کشاورزی کرمانشاه، لرستان، گیلان، ایلام و هرمزگان ایستگاه تحقیقات کشاورزی کرمانشاه، لرستان، گیلان، ایلام و هرمزگان
جدول 1. مشخصات ویژگیهای مورد بررسی در آزمایش

<table>
<thead>
<tr>
<th>مشا در</th>
<th>نام زنوتیپ</th>
<th>شماره زنوتیپ</th>
<th>مشا در</th>
<th>نام زنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایکاردا</td>
<td>X95TH154</td>
<td>10</td>
<td>ایکاردا</td>
<td>FLIP 97-211</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-43</td>
<td>11</td>
<td>ایکاردا</td>
<td>FLIP 97-113</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-95</td>
<td>12</td>
<td>ایکاردا</td>
<td>FLIP 97-85</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-114</td>
<td>13</td>
<td>ایکاردا</td>
<td>FLIP 97-78</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X94TH45K10</td>
<td>14</td>
<td>ایکاردا</td>
<td>FLIP 97-41</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X95TH51K0</td>
<td>15</td>
<td>ایکاردا</td>
<td>FLIP 97-30</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X45TH115K10</td>
<td>16</td>
<td>ایکاردا</td>
<td>FLIP 97-102</td>
</tr>
<tr>
<td>رقم معرفی شده</td>
<td>Arman</td>
<td>17</td>
<td>ایکاردا</td>
<td>FLIP 97-79</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X95TH1</td>
<td>18</td>
<td>ایکاردا</td>
<td>FLIP 97-11</td>
</tr>
</tbody>
</table>

(گرگان - سال 83) نشانگر میکروفاست. مشخصات زنوتیپ‌های مورد استفاده در جدول 1 آمده است. در این جدول AMMI در مورد تغییر واریانس و تغییر مولفه‌های اصلی به طور همزمان انجام می‌شود. مدل تجربی به صورت زیر است (6 و 13):

\[Y_{ger} = \mu + \sigma_g + \beta + \lambda \gamma \frac{\mu}{\sigma_g} = \mu + \gamma \frac{\mu}{\beta} \]

در فرمول بالا، \(Y_{ger} \) عامل زنوتیپ بالا در میکروفاست و \(\sigma \) میانگین کل، \(\beta \) اثر اصلی زنوتیپ (اختلاف میانگین یک زنوتیپ از میانگین زنوتیپ‌ها)، \(\gamma \) اثر اصلی میکروفاست (اختلاف میانگین یک میکروفاست از میانگین میکروفاست‌ها) می‌باشد. \(\lambda \) یک مقیاس منفرد برای میکروفاست مولفه‌های اصلی. \(\mu \) که برای یک مقدار ویژه مربوط به همان مولفه‌ای اصلی است. \(N \) عناصر ن (Eigen value) محل میکروفاست PCA را بایق ماده در مدل AMMI می‌باشد. \(\gamma \) ویژه PCA (IPCA) ویژه میکروفاست \(\gamma \) از مولفه اصلی اثر متفاوت (IPCA) ویژه میکروفاست \(\gamma \) از مولفه اصلی اثر متفاوت (IPCA) عبارت مربوط به باقی ماده (چنین و \(\delta \) عبارت مربوط به خط اکستورینی که آزمایش تکرار داشته باشد) می‌باشد.

به منظور ارزیابی پایداری زنوتیپ‌ها از مولفه‌های اصلی آزمایش نشانگر میکروفاست و دوم برای ارتباط دادن زنوتیپ‌های مخلوط به میکروفاست، از تغییرات با پایله اشتراکهای شد و همچنین برای بررسی دقیق زنوتیپ‌ها و میکروفاست تجربی کلاستر بر روی مولفه‌های اصلی اول و دوم انجام شد.
جدول 2. تجزیه برای زنوتیپ‌های نخود در محیط‌های مختلف AMMI

<table>
<thead>
<tr>
<th>مایکلین مربوط</th>
<th>درصد مجموع مربوطات</th>
<th>مجموع مربوطات</th>
<th>درجه آراز</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>کل</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>679</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>349,215</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>169</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>510</td>
<td></td>
</tr>
</tbody>
</table>

به‌منظور تجزیه برای تغییرات زنوتیپی × محیط، تجزیه به شرح زیر انجام گردید:

- تجزیه واریانس با مدل AMMI
- اثر متقابل زنوتیپ × محیط نشان داد (جدول 2). زنوتیپ، محیط و اثر متقابل یکی از اثرات مهم در تکرار تیپ خاصی داشته و باعث تغییر در تاخیر در رشد گل‌کوبی می‌شود.
- تجزیه کلاستری از نرم‌افزار استفاده شد.

نتایج و بحث

در این تحقیق برای تجزیه AMMI با برنامه GENESTAT و برای Statistica برای رس محدوده از نرم‌افزار برای رسم نمودار استفاده گردید.

- مدل‌های اصلی روی ماتریس بایان‌دهنده صورت گرفت که چهار مدل اصلی اول در سطح احتمال 0.05، مدل‌های دومین رتبه داشتند. اولین مدل اصلی 44٪ از مجموع مربوطات اثر متقابل را حذف کرد. این مدل از میانگین‌های IPMCA1 و IPCA3 بیشتر برای بررسی اثرات اصلی و اثرات اثر متقابل مورد استفاده قرار گرفت.

- مدل‌های اصلی 68٪ از مجموع مربوطات اثر متقابل را حذف کرد. این مدل از میانگین‌های IPMCA1 و IPCA3 بیشتر برای بررسی اثرات اصلی و اثرات اثر متقابل مورد استفاده قرار گرفت.

- مدل‌های اصلی 80٪ از مجموع مربوطات اثر متقابل را حذف کرد. این مدل از میانگین‌های IPMCA1 و IPCA3 بیشتر برای بررسی اثرات اصلی و اثرات اثر متقابل مورد استفاده قرار گرفت.

- مدل‌های اصلی 90٪ از مجموع مربوطات اثر متقابل را حذف کرد. این مدل از میانگین‌های IPMCA1 و IPCA3 بیشتر برای بررسی اثرات اصلی و اثرات اثر متقابل مورد استفاده قرار گرفت.

- مدل‌های اصلی 100٪ از مجموع مربوطات اثر متقابل را حذف کرد. این مدل از میانگین‌های IPMCA1 و IPCA3 بیشتر برای بررسی اثرات اصلی و اثرات اثر متقابل مورد استفاده قرار گرفت.
شکل 1. پایه پلات میانگین زنوتیبها و محیط‌ها و مقدار اولین مؤلفه اصلی آنها (مدل AMMI1)

جدول 3. عملکرد دانه و مقدار مؤلفه‌های اصلی اول و دوم زنوتیب‌های نخود

<table>
<thead>
<tr>
<th>IPCA₂</th>
<th>IPCA₁</th>
<th>میانگین</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/8333</td>
<td>-16/8979</td>
<td>1774</td>
<td>1</td>
</tr>
<tr>
<td>3/6338</td>
<td>16/1146</td>
<td>1610</td>
<td>2</td>
</tr>
<tr>
<td>4/6735</td>
<td>-9/5942</td>
<td>1647</td>
<td>3</td>
</tr>
<tr>
<td>-13/1572</td>
<td>-10/4446</td>
<td>1884</td>
<td>4</td>
</tr>
<tr>
<td>-9/4442</td>
<td>11/5314</td>
<td>1734</td>
<td>5</td>
</tr>
<tr>
<td>8/4968</td>
<td>-11/5865</td>
<td>1531</td>
<td>6</td>
</tr>
<tr>
<td>-14/5280</td>
<td>-8/4890</td>
<td>1838</td>
<td>7</td>
</tr>
<tr>
<td>6/5250</td>
<td>6/3205</td>
<td>1659</td>
<td>8</td>
</tr>
<tr>
<td>-11/3330</td>
<td>10/3394</td>
<td>1579</td>
<td>9</td>
</tr>
<tr>
<td>5/1415</td>
<td>-21/3928</td>
<td>1688</td>
<td>10</td>
</tr>
<tr>
<td>1/9333</td>
<td>13/7683</td>
<td>1554</td>
<td>11</td>
</tr>
<tr>
<td>10/1587</td>
<td>12/7625</td>
<td>1672</td>
<td>12</td>
</tr>
<tr>
<td>-8/3873</td>
<td>4/7671</td>
<td>1718</td>
<td>13</td>
</tr>
<tr>
<td>-11/447</td>
<td>12/3718</td>
<td>1683</td>
<td>14</td>
</tr>
<tr>
<td>2/8755</td>
<td>-9/5773</td>
<td>1835</td>
<td>15</td>
</tr>
<tr>
<td>12/6157</td>
<td>-3/7305</td>
<td>1612</td>
<td>16</td>
</tr>
<tr>
<td>-2/5661</td>
<td>-17/6118</td>
<td>1899</td>
<td>17</td>
</tr>
</tbody>
</table>
جدول 2: گروه‌بندی زنوتیپ‌ها و محیط‌ها براساس اولین مؤلفه اصلی اثر متقابل و مؤلفه‌های اصلی اول و دوم

<table>
<thead>
<tr>
<th>شماره زنوتیپ‌ها</th>
<th>گروه</th>
<th>مؤلفه اصلی اثر متقابل</th>
<th>مؤلفه‌های اصلی اول و دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IPCA1(Genotype)</td>
<td>IPCA1(Environment)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقادیر اولین مؤلفه اصلی زنوتیپ‌ها و همچنین محیط‌ها (جدول 2) انجام شد. تجزیه کلاستر مقادیر اولین مؤلفه اصلی برای زنوتیپ‌ها، چهار گروه زنوتیپی را مشخص نمود که گروه اول شامل زنوتیپ‌های شماره‌های ۱۶، ۱۷ و ۱ با مقادیر بی‌دسته IPCA1ی بودند. گروه دوم شامل زنوتیپ‌های شماره‌های ۱۵ و ۱۴ با مقادیر بی‌دسته IPCA2 هنگامی که کمترین مقدار IPCA1 را به خود اختصاص دادند ۱۶ و ۱۷ که کمترین مقدار IPCA1 و دو گروه بعدی مقادیر حد‌واست این دو گروه را نداشتند. همچنین تجزیه کلاستر روی مقادیر اولین مؤلفه اصلی محیط‌ها به سه گروه با شخص نمود که گروه اول محیط‌ها شماره ۹ با بالاترین مقدار IPCA1 بود و گروه دوم محیط‌ها شماره ۱۰ و ۱۱ با کمترین مقدار IPCA1 بود و گروه سوم دارای مقادیر حد‌واست می‌باشد.

بررسی پای پلاک شکل ۱ نشان می‌دهد که زنوتیپ‌های معمولاً در بالای پلاک‌ها به منظور تشخیص بهتر از دو نوع مشخصه استفاده می‌شود و جنون زنوتیپ‌ها در ارتباط با محیط مورد ارزیابی قرار می‌گیرند، لذا محیط‌ها به صورت بردار و
تجزیه پایداری همکرد در زنوتیپ‌های نخود با استفاده از تجزیه آثار اصلی افزایشی و ...

شکل 2. یک پایلا براساس مقادیر مؤلفه‌های اصلی اول و دوم زنوتیپ‌ها و محیط‌ها (مدل یک)

(AMMI)

زنوتیپ‌ها بصورت نقطه براساس مقادیر مؤلفه‌های اصلی اول و دوم نقطه پایای شده‌اند (شکل 2). این باعث پیش‌بینی تکراری نوع مربوط به اثر متقابل زنوتیپ × محیط را توجه می‌کند و سهم مؤلفه اصلی اول و دوم بر تغییر زنوتیپ‌ها و محیط به ترتیب 28 و 28 % است (جدول 2).

با توجه به طور کلی این تحقیق می‌توان نتیجه گرفت که روش AMMI به توجه به آن که به چهار مؤلفه اصلی 94 % از تغییرات اثر متقابل زنوتیپ × محیط را نتیجه می‌کند، روش مناسبی برای تجزیه پایداری زنوتیپ‌ها بوده است. در مدل آن، 28 % از تغییرات اثر متقابل را توجه می‌کند زنوتیپ‌های شماره 13، (FLIP 97 - 97) و 15 (X95THK10) و 14 (FLIP 96 - 97) که همگونی عملکرد آنها از میانگین کل پایایی تر است. زنوتیپ‌های شماره 8 و 13 دارای اثر متقابل کم هستند بنا برای اثر سازگاری عمومی بوده و زنوتیپ 13 با علت میانگین عملکرد بیشتر از میانگین کل، زنوتیپ با سازگاری عمومی خوب شناخته می‌شود (شکل 2).

179
منابع مورد استفاده

1. پوستینی، ک. 1374. بررسی خواص کیفی و کمی از ارقام مختلف نخود در رابطه با سرمایه میزان آب. پایان نامه کارشناسی ارشد زراعت و اصلاح نباتات. دانشکده کشاورزی، دانشگاه تهران.

2. روستایی، م. د. صادق زاده اهری، ع. حسامی، ک. سلیمانی، ه. یوسفی، ک. نادر محمودی، م. پور سیاه بیدی، م. مسعود احمدی، م. حسینی حسینی، ع. عابدی اصل. 1372. بررسی سازگاری و پایداری عملکرد دانه زننده‌های گندم نان در مناطق سردسیر و معتدل دم. 1372. مجله نهال و بذر. 1359: 416-426.

3. محمد علی جلیلی، ن. 1376. حیات‌نامه در/یزان. انتشارات چهار دانشگاهی. دانشگاه تهران.

