تجزیه پایداری عملکرد در زنوتیپ‌های نخود با استفاده از تجزیه آثار اصلی افزايشی و آثار مقابل ضرب‌پذیر (AMMI)

حسین زالی‌ی، سید حسین صباغ‌پور، عزت الله فرشادفر، پیام پژشکور، منصور صنفی خانی
 رمضان سریرست و عبدالله هاشمی‌پیگی

(تاریخ دریافت: 14/8/87; تاریخ پذیرش: 8/7/82)

چکیده

وجود اثر مقابل زنوتیپ × محیط موجب شده که عملکرد زنوتیپ‌ها در دامنه و سیعی از شرایط محیطی مورد ارزیابی قرار گیرد تا اطلاعات حاصل بتواند کارایی مربوط به گیاه برای معرفی آنها را افزایش دهد. در این تحقیق به مکان‌های فرسوده و انتخاب زنوتیپ‌های پر احتمال و سازگار با شرایط دزم نیز تعداد 171 زنوتیپ نخود در قالب طرح بلوک‌های کامل تصادفی در چهار تکرار به مدت 3 ماه در سال (1388-87) در 3 نقطه استحکام کشاورزی کرمانشاه، گرگان و ایلام در شرایط دزم اجرا گردید. اثر مقابل زنوتیپ × محیط با استفاده از مدل آثار اصلی افزايشی و اثرات مقابل ضرب‌پذیر (مدل AMMI) در سطح احتمال 1% ممکن دارد. پس از تجزیه و تحلیل مجموع مربوط اثر مقابل توسط مدل AMMI به چهار مدل اصلی اثر مقابل (IPCA) منفی دار تکیکی گردید. در مجموع چهار مدل اصلی (IPCA) و یا اثرات زنوتیپ × محیط را ترکیب می‌کردند. برای استفاده به‌این‌گونه مدل FLIP 97-79 X95TH1 ،FLIP 97-114 و FLIP 97-114 از پایداری مناسب برخوردار بودند و زنوتیپ 114-97-97-79 بایا عملکرد بالا می‌تواند به عنوان زنوتیپ سازگار با عملکرد پایدار معرفی شود.

واژه‌های کلیدی: نخود، اثر مقابل زنوتیپ × محیط، تجزیه پایداری، مدل آثار اصلی افزايشی و آثار مقابل ضرب‌پذیر (مدل AMMI)، پایا پلات

مقدمه

حبیبات به‌خطر ویرانی مهم تربیت نیتروژن‌انسانی در خاک موجب حاصل کردن کاهش کشت محصول به‌دست که

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد زراعت اصلاح نباتات، دانشکده کشاورزی، دانشگاه رازی کرمانشاه
2. استاد پژوهش مؤسسه تحصیلات دیم سراسری، کرمانشاه
3. مربی پژوهش مرکز تحقیقات دیم لرستان
4. مربی پژوهش مرکز تحقیقات دیم گچساران
5. مربی پژوهش مرکز تحقیقات و منابع طبیعی گرگان
6. مربی پژوهش مرکز تحقیقات کشاورزی ایلام

Hassanzali1382@yahoo.com

عنوان: مسئول مکاتبات، پست الکترونیکی

عبده خان: غلات است، می‌شود (1). حیوانی به یزه‌هایی نخود از منابع مهم پروتئین‌گاهی بوده که دارای 32 درصد پروتئین است که در غلظت اکثر مرمود به خصوص اقشار در آمریکا مورد مورد

173
استفاده قرار گرفتن گیاه (3) از این بیان به سطح زیر کشت حدود 24000 کیلوگرم در هektار می‌باشد که نسبت به میزان عمکرد گیاهان و کشورهای مهم منطقه کننده نخود، عمکرد گیاه در این بیان باینی می‌باشد که عوامل مختلف در پایین بودن عمکرد نحور موردنظر که یکی از عوامل مهم آن می‌باشند. تولید ارقام حلالی و بومی حساسیت به بیماری (Ascochyta rabie) نام بر (2).

در جدول 1 نمایش داده شده که باید می‌باشد. میزان عمکرد وحشی به قطع می‌باشد. میژابن M

در مدل AMMI مولفه‌های اصلی می‌باشد. 12 و 11 هدف از این تحقیق بررسی سازگاری و پایداری عمکرد زنجبیل‌های نخود و گیاه‌زینجبیل‌های پایدار با عملکرد بالا در شرایط کلسی می‌باشد.

مواد و روش‌ها

آزمایش در شرایط آب و هواهای دیدکار انجام شد و در این 17 لاشه نخود به همراه رنگ آمیزی به عنوان شاهد در قابل طرح بلوک‌های کاملاً تعادلی عمدتاً چهار تکرار در پنج ایستگاه

تحقیقات کشاورزی کرمانشاه، لرستان، گیلان، آذربایجان شرقی، قم و ایلام

کمبود، بلوک می‌تواند بدن‌گزاری خصوصی ارقام نیز پیدا کند.
جدول 1. مشخصات زنوتیپ‌های مورد بررسی در آزمایش

<table>
<thead>
<tr>
<th>مشا</th>
<th>نام زنوتیپ</th>
<th>نام زنوتیپ</th>
<th>شماره زنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایکاردا</td>
<td>X95TH154</td>
<td>FLIP 97-211</td>
<td>1</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-43</td>
<td>FLIP 97-113</td>
<td>2</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-95</td>
<td>FLIP 97-85</td>
<td>3</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-114</td>
<td>FLIP 97-78</td>
<td>4</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X94TH45K10</td>
<td>FLIP 97-41</td>
<td>5</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X95TH51K0</td>
<td>FLIP 97-30</td>
<td>6</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X45TH150K10</td>
<td>FLIP 97-102</td>
<td>7</td>
</tr>
<tr>
<td>رک مفعول شده</td>
<td>Arman</td>
<td>FLIP 97-79</td>
<td>8</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X95TH1</td>
<td>FLIP 97-98</td>
<td>9</td>
</tr>
</tbody>
</table>

(گرگان - سال 83) نشانگر محیط‌های است. مشخصات زنوتیپ‌های مورد استفاده در جدول 1 آمده است.

در جدول 1، نشانگر محیط‌های AMMI و AMMI2 را به طور همزمان انجام می‌دهد. در جدول 2، نشانگر محیط‌های AMMI و AMMI2 را به صورت زیر است. (آماره Eigen value)

\[ Y_{ger} = \mu + \sigma_g + \beta + \sum \lambda_n \gamma_{gn} \delta_{on} + \rho_{ger} + \epsilon_{ger} \]

در فرمول بالا، \( Y_{ger} \) نشانگر محیط‌های مناسبی که اثر اصلی زنوتیپ (اختلاف میانگین یک نمونه) را به طور همزمان با تفاوتهای اصلی زنوتیپ و میانگین بین هر میانگین محیط‌ها را به صورت زیر بررسی می‌کند:

1. \( \delta_{on} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
2. \( \rho_{ger} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
3. \( \epsilon_{ger} \): اثر فاصله‌ای (اختلاف فاصله‌ای) می‌باشد.

برای بررسی باند ویژه، نشانگر محیط‌های اصلی است. نتیجه آماری محورهای PCA با قابلیت مناسبی در مدل PCA می‌باشد. نشانگر محیط‌های AMMI و AMMI2 را به صورت زیر بررسی می‌کند:

\[ Y_{ger} = \mu + \gamma_{gn} \delta_{on} + \rho_{ger} + \epsilon_{ger} \]

در فرمول بالا، \( Y_{ger} \) نشانگر محیط‌های مناسبی که اثر اصلی زنوتیپ (اختلاف میانگین یک نمونه) را به طور همزمان با تفاوتهای اصلی زنوتیپ و میانگین بین هر میانگین محیط‌ها را به صورت زیر بررسی می‌کند:

1. \( \gamma_{gn} \): اثر اصلی زنوتیپ (اختلاف اصلی زنوتیپ) می‌باشد.
2. \( \delta_{on} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
3. \( \rho_{ger} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
4. \( \epsilon_{ger} \): اثر فاصله‌ای (اختلاف فاصله‌ای) می‌باشد.

برای بررسی باند ویژه، نشانگر محیط‌های اصلی است. نتیجه آماری محورهای PCA با قابلیت مناسبی در مدل PCA می‌باشد.

در جدول 1، نشانگر محیط‌های AMMI و AMMI2 را به صورت زیر بررسی می‌کند:

\[ Y_{ger} = \mu + \gamma_{gn} \delta_{on} + \rho_{ger} + \epsilon_{ger} \]

در فرمول بالا، \( Y_{ger} \) نشانگر محیط‌های مناسبی که اثر اصلی زنوتیپ (اختلاف اصلی زنوتیپ) را به طور همزمان با تفاوتهای اصلی زنوتیپ و میانگین بین هر میانگین محیط‌ها را به صورت زیر بررسی می‌کند:

1. \( \mu \): ثابت است.
2. \( \gamma_{gn} \): اثر اصلی زنوتیپ (اختلاف اصلی زنوتیپ) می‌باشد.
3. \( \delta_{on} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
4. \( \rho_{ger} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
5. \( \epsilon_{ger} \): اثر فاصله‌ای (اختلاف فاصله‌ای) می‌باشد.

برای بررسی باند ویژه، نشانگر محیط‌های اصلی است. نتیجة آماری محورهای PCA با قابلیت مناسبی در مدل PCA می‌باشد.

در جدول 1، نشانگر محیط‌های AMMI و AMMI2 را به صورت زیر بررسی می‌کند:

\[ Y_{ger} = \mu + \gamma_{gn} \delta_{on} + \rho_{ger} + \epsilon_{ger} \]

در فرمول بالا، \( Y_{ger} \) نشانگر محیط‌های مناسبی که اثر اصلی زنوتیپ (اختلاف اصلی زنوتیپ) را به طور همزمان با تفاوتهای اصلی زنوتیپ و میانگین بین هر میانگین محیط‌ها را به صورت زیر بررسی می‌کند:

1. \( \mu \): ثابت است.
2. \( \gamma_{gn} \): اثر اصلی زنوتیپ (اختلاف اصلی زنوتیپ) می‌باشد.
3. \( \delta_{on} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
4. \( \rho_{ger} \): اثر میانگین محیط‌ها (اختلاف میانگین محیط‌ها) می‌باشد.
5. \( \epsilon_{ger} \): اثر فاصله‌ای (اختلاف فاصله‌ای) می‌باشد.

برای بررسی باند ویژه، نشانگر محیط‌های اصلی است. نتیجة آماری محورهای PCA با قابلیت مناسبی در مدل PCA می‌باشد.
در این تحقیق برای تجزیه AMMI با ویژگی‌های اختلافی و نون‌کمتری از نرم‌افزار Statistica و برای تجزیه کلاستر از نرم‌افزار GENESTAT استفاده شد.

نتایج و بحث

تجزیه وایپاپس با مدل AMMI اثر معنی‌داری را برای محتوی و اثر متغیر زنوتیپ × محتوی نشان داد (جدول ۲). زنوتیپ، محیط و اثر متغیر زنوتیپ × محیط با آمار معنی‌داری ۱/۶۷ درصد برای تغییرات اثر متغیری داشتند. اثر متغیری ۲۴/۶۷ درصد داشت. برنامه یا زنوتیپ می‌باشد که اهمیت نسبی اثر متغیری را تغییر می‌دهد.

به منظور تجزیه اثر متغیر زنوتیپ × محیط، تجزیه به مولفه‌های اصلی روت ماتریس باقی‌مانده صورت گرفت که چهار مولفه اصلی اول در سطح باقی‌مانده از آن‌ها دار شدند. اولین مولفه اصلی ۸۶/۷۸ درصد از مجموع مربعات اثر متغیری را به خود اختصاص داد و برای IPCA1، IPCA2، IPCA3 و IPCA4 به ترتیب برابر با ۲۸/۲۰، ۱۳/۲۰، ۲۸/۲۰ و ۲۳/۷۸ بود. مولفه اصلی IPCA4
تجزیه پایداری عملکرد در زنوتیپ‌های نخود با استفاده از تجزیه آثار اصلی افزایشی و 

![Graph](image_url)

شکل 1. پایای پلات میانگین زنوتیپ‌ها و محیط‌ها و مقادیر اولین مؤلفه اصلی آنها (مدل)

جدول 3. عملکرد دانه و مقادیر مؤلفه‌های اصلی اول و دوم زنوتیپ‌های نخود

<table>
<thead>
<tr>
<th>IPCA₂</th>
<th>IPCA₁</th>
<th>میانگین</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/348381</td>
<td>16/093500</td>
<td>1674</td>
<td>1</td>
</tr>
<tr>
<td>3/656780</td>
<td>16/112300</td>
<td>1610</td>
<td>2</td>
</tr>
<tr>
<td>6/678873</td>
<td>16/456877</td>
<td>1647</td>
<td>3</td>
</tr>
<tr>
<td>13/123401</td>
<td>15/944439</td>
<td>1884</td>
<td>4</td>
</tr>
<tr>
<td>-6/444350</td>
<td>10/321204</td>
<td>1734</td>
<td>5</td>
</tr>
<tr>
<td>-8/998868</td>
<td>11/098845</td>
<td>1631</td>
<td>6</td>
</tr>
<tr>
<td>-12/545800</td>
<td>-8/9990</td>
<td>1838</td>
<td>7</td>
</tr>
<tr>
<td>8/595000</td>
<td>-8/38040</td>
<td>1579</td>
<td>8</td>
</tr>
<tr>
<td>-10/333000</td>
<td>4/394922</td>
<td>1579</td>
<td>9</td>
</tr>
<tr>
<td>5/021250</td>
<td>-21/392499</td>
<td>1988</td>
<td>10</td>
</tr>
<tr>
<td>1/348381</td>
<td>12/783201</td>
<td>1554</td>
<td>11</td>
</tr>
<tr>
<td>10/101503</td>
<td>12/676425</td>
<td>1970</td>
<td>12</td>
</tr>
<tr>
<td>-8/861037</td>
<td>8/726761</td>
<td>1718</td>
<td>13</td>
</tr>
<tr>
<td>-11/9427</td>
<td>12/787750</td>
<td>1983</td>
<td>14</td>
</tr>
<tr>
<td>10/464505</td>
<td>-8/767939</td>
<td>1835</td>
<td>15</td>
</tr>
<tr>
<td>12/59818</td>
<td>-12/30850</td>
<td>1612</td>
<td>16</td>
</tr>
<tr>
<td>-7/303961</td>
<td>-4/71197</td>
<td>1796</td>
<td>17</td>
</tr>
</tbody>
</table>
جدول 2: گروه‌بندی زننیت‌ها و محیط‌ها براساس اولین مولفه اصلی اثر مقیاس و مولفه‌های اصلی اول و دوم

<table>
<thead>
<tr>
<th>شماره زننیت‌ها و محیط‌ها</th>
<th>گروه</th>
<th>مولفه اصلی اثر مقیاس</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>IPCA1_Genotype</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

مقادیر اولین مولفه اصلی زننیت‌ها و همچنین محیط‌ها

(جدول 2) انجام شد. تجزیه کلاستر مقادیر اولین مولفه اصلی برای زننیت‌ها. چهار گروه زننیتی را مشخص نمود که گروه اول شامل زننیت‌های شماره‌های 17، 18 و 17 اثر مشاهده شد و گروه دوم شامل زننیت‌های شماره‌های 15 و 16 اثر مشاهده نشد. گروه سوم شامل گروه‌های شماره‌های 14 و 13 اثر مشاهده نشد. گروه چهارم شامل گروه‌های شماره‌های 12 و 11 اثر مشاهده نشد. گروه پنجم شامل گروه‌های شماره‌های 10 و 9 اثر مشاهده نشد. گروه ششم شامل گروه‌های شماره‌های 8 و 7 اثر مشاهده نشد. گروه هفتم شامل گروه‌های شماره‌های 6 و 5 اثر مشاهده نشد. گروه هشتم شامل گروه‌های شماره‌های 4 و 3 اثر مشاهده نشد. گروه نهم شامل گروه‌های شماره‌های 2 و 1 اثر مشاهده نشد.

بررسی نشان می‌دهد که زننیت‌های

شماره 10، 11، 12، 13، 14، 15 و 16 می‌باشند. یکی از زننیت‌ها شماره 9، 8 و 7 می‌باشد. ویژگی‌های میانگین عدم کرد وزننیت‌های کل می‌توانند به عنوان زننیت‌های با ادبیات مطلوب مورد توجه قرار گیرند. معمولاً در بیاینگ برای بیماران به نظر تشخیص بهتر از دو نوع مشخصه استفاده می‌شود و چون زننیت‌ها در ارتباط با محیط مورد ارزیابی قرار می‌گیرند، لذا محیط‌ها به صورت بردار و
تجزیه پایداری هملکرد در زنوتیپ‌های نخود با استفاده از تجزیه آثار اصلی الگویی و...

شکل ۲. باعث بایل براساس مقادیر مؤلفه‌های اصلی اول و دوم زنوتیپ‌ها و محسوب می‌شود (مدل AMMI)

زنوتیپ‌ها بصورت نقطه براساس مقادیر مؤلفه‌های اصلی اول و دوم نقطه بایل شده‌اند (شکل ۲). این بایل بیش از ۷۶٪ تنوع مربوط به اثر متقابل زنوتیپ × محیط را توجیه می‌کند و سهم مؤلفه اصلی اول و دوم در تفکیک زنوتیپ‌ها و محیط به ترتیب ۲۸٪ و ۲۸٪ است (جدول ۲).

با توجه به باعث بایل شکل ۲، زنوتیپ‌های شماره ۴، ۶، ۷ و ۱۲ در دو اثر متقابل مشابه با محیط گویا یا بازندن، بنابراین این اثر واقعی دارای سازگاری خصوصی با محیط مذکور و زنوتیپ‌های شماره ۵، ۶ و ۷ در دوای سازگاری خصوصی با محیط I۱ باشند.

زنوتیپ‌های شماره ۱۱، ۱۲، ۱۳ و ۱۷ نیز دارای اثر متقابل بزرگ بوده و بازندن و دوای سازگاری شماره ۴ و ۸ و دوای اثر متقابل متوسط و جزء ارقام با پایداری متوسط محاسبه می‌شود. اما میانگین عامل‌های آنها از میانگین کل بااین تر است. زنوتیپ‌های شماره ۸ و ۹ و ۱۲ و ۱۳ دارای اثر متقابل کم هستند بنابراین دوای سازگاری عمومی بوده و زنوتیپ ۱۳ به علت میانگین عامل‌کردن برای از میانگین کل زنوتیپ با سازگاری عمومی خوب شناخته می‌شود (شکل ۲).
منابع مورد استفاده

1. پوستنی ک، ک. 1364. بررسی شیواص کیفی و کمی ارقام مختلف نخود در رابطه با سرما و میزان آب. پایان نامه کارشناسی ارشد

زراعت و اصلاح نیانات، دانشگاه تهران.

2. روستایی م، م. صادق زاده اهری، ع. حسینی ک، سلیمانی، ه. پاشوارک، ک. نادر محمودی، م. پور سیا بیدی، م. مسعود

احمدی، م. حسینی حسینی، ع. عابدی اصل، 1387. بررسی سازگاری و پایداری عملکرد دانه زنوبیهای کندم نان در مناطق

سردسر و معتدل دم. 1388. مجله نهال و بذر. 198(2): 280- 282.

3. مجنون حسینی، ن. 1378. حیوبات در پرورش، انتشارات جهاد دانشگاهی، دانشگاه تهران.


stability in multi-location maize trials. M. Sc. Thesis. Department of Plant Sci., The University of the Free State,

Bloemfontein.


plant breeding. NAS-NRC Pub., USA.


international maize cultivar trials. Crop Sci. 30: 493-500


Amsterdam, Netherlands.


10. Kaya, Y., C. Palta and S Taner. Additive main effect and multiplicative interactions analysis of yield performances


122: 335-342.


Queensland Australia.


Iran. International Chickpea Con. J. 20-22,2003. Indira Gandhi Agricultural University, Raipur Chhattisgarh,

India.


Thesis, Department of Agronomy, University of the Free State, Bloemfontein.


Appl. 4: 393-406.