بررسی زمان و غلظت مناسب محلول پاشی اسید چربیک و ایزوبروپیل استر 2-4 دی در افزایش برخی از صفات میوه پرتقال نالو و نارنگی کلماتیان

سیده رستگار و مجد راحمی*۱

(تاریخ دریافت: ۸۵/۱۱/۲۴، تاریخ پذیرش: ۸۵/۸/۲۷)

چکیده
پرتقال نالو و نارنگی کلماتیان، جزو اراقم زودرس محصول می‌شوند. تأخیر در پرداشتن میوه، باعث کاهش آب و نرم نشدن میوه می‌شود. از تنظیم کننده‌های رشد، برای بهبود کیفیت میوه مراکز استفاده شده است. در پژوهش حاضر زمان و غلظت مناسب کاربرد اسید چربیک و Clementine (Navel) و نارنگی کلماتیان (Calasanz) از میوه پرتقال فراز گرفته. از این میوه به صورت فاکتوریل در قالب طبقه کلی شامل تصادفی در سه نیرو در سال‌های ۱۳۸۳ و ۱۳۸۴ در یک باغ تجاری واقع در شهرستان قهم انجام گرفت. محلول پاشی شهاخیا (شمال و جنوب هر درخت) با استفاده از سمتان ۱۰ لیتری، تا حد آب چک ادامه شد. در هر دو سال تیمارهای اسید چربیک (۱۰۰، ۱۵۰ و ۲۰۰ میلی گرم در لیتر) و ایزوبروپیل استر ۲-۴ دی (۰، ۸ و ۲۲ میلی گرم در لیتر) در سه زمان ۸، ۱۶ و ۳۲ میولی میوه پرتقال نالو (پرتقال با قطر متوسط ۳۵ میلی‌متر و نارنگی با قطر متوسط ۴۵ میلی‌متر) استفاده شدند. میوه‌های پرتقال نالو و نارنگی کلماتیان روز بعد از آخرین محلول پاشی برداشت شدند. نتایج آزمایش نشان داد که پرتقال نالو به مرحله دوم محلول پاشی (۲۲ میلی‌متر) و نارنگی کلماتیان به مرحله اول محلول پاشی (۸ میلی‌متر) میوه بی‌قصر می‌شود. میوه ۲۴ میلی‌گرم در لیتر در مقایسه با شاهد باعث پیش‌تراشی میزان آب میوه شدند.

و از همراه کلیدی: پرتقال نالو، نارنگی کلماتیان، اسید چربیک، ایزوبروپیل استر ۲-۴ دی

ارقام مهم کالیفرنیا، اسپانیا و آفریقای جنوبی می‌باشند (۲). رقم

کلماتیانی طی سال‌های ۱۳۶۹ و ۱۳۷۰ از ارکان شد و به عنوان مقامی که در سال ۱۲۲۴ به سرمایا نشان داد جزئی ارقام افتخادی نارنگی در شمال قاره آسیایی و در نیروی اصلی تجاری غلظت و سرعت برخی از کاربرد اسید چربیک و ایزوبروپیل استر ۲-۴ دی در دریافت: ۸۵/۱۱/۲۴، تاریخ پذیرش: ۸۵/۸/۲۷)

۱. به ترتیب دانشجوی سال کارشناسی ارشد و استاد علوم زراعی، دانشکده کشاورزی، دانشگاه شیراز
2. Rahemi@shirazu.ac.ir

* مسئول مقالات، پست دکتری کامپیوتر
دولت برای آمین‌ها که پری را به تأخیر می‌اندازند، مشخص می‌شود که چگونه اینظارندی رشد از کاهش برخی از جلوگیری و DNA کاربرد امید جیربیک در موهای مرکبات، باعث افزایش صفت موه و تأخیر در پایین‌پوشیدن می‌شود. امید جیربیک با نگهداری پوست در محله جویان میزان حساسیت به فساده‌ها ایجاد نهایی از طریق میکرو ارگانیزم‌ها را کاهش می‌دهد (5). دیویز و همکاران (14) و فیلدز و همکاران (18) افزایش آب موه را در تغییر مخلوط پاپایا با امید جیربیکی به ترتیب در برداشت همایون و والنسیا گزارش کردند.

پژوهش‌های انجام شده نشان می‌دهد که میزان افزایش آب موه به بین زبان کاربردی و برداشت نسبت به درمان (18). نتایج این تحقیق نشان دادند که رشد جهت افزایش آب موه ضروری می‌باشد. پژوهش‌های دیگر بیان کرده‌اند که تغییرات در افزایش عضلانی این محصولات و کاهش فیلترپی‌ها در آنها گردد (2). معمولاً دم‌شدن، نورش، کاهش آب موه و کاهش کیفیت، مشکل عمده برای موه‌های است. به این‌ویژه برای زمان نگهداری موه در بیشتر مرکبات دیر، برداشت شده کاهش آب و خشکی‌کننده موه را در تجربه دگرگونه (Juice sauce) (Granulation) شدن، به یک مثال، بررسی شدن این افزایش در سال‌های 1378 و 1384 در شرکت پارس ناگر در شهرستان جهرم (محمودی جفرپور؛ 1395) طول‌شماری و 124 (8) در طرح پرداختن از نگهداری موه در بیشتر مرکبات می‌باشد. انتخاب از روش‌های (Phenothiol) (نوع اکسین مصنوعی) در اواخر ریزش فیزیولوژی باعث افزایش اندمازه موه بهترین قرار گرفتن می‌شود.

امید جیربیک جهت هر مورد موه را به تأخیر می‌اندازد (26). به بهبود دربرگیری افزایش موه، برداشت در بسیاری از محصولات از جمله مرکبات می‌شود (31). کاربرد جیربیک در این تحقیق اندازه‌گیری در لیمپورش و کاربردهای منحصر است (28). تأثیر در بیشتر استفاده از جیربیک به بیانک خاص آن را در فعالیت‌های متعدد کا و آزمایشات زمان‌دار خواهد کرد. }
بررسی زمان و فناوری مناسب محلول پاشی اسید جیرولیک و ایزوپروپیل استر 25 - دی...
جدول 1. اثر غلظت و زمان محلول پاشی اسید چربیک و ایزوپروپیل استر در درصد آب میوه پرتابال ناول محلول پاشی شده در مرحله اول (فقر میوه 64 mm)، مرحله دوم (فقر میوه 69 mm)، و مرحله سوم (فقر میوه 70 mm) در تؤییب مربک سالهای 1383 و 1384 و تیمار (میلی کرم در لیتر)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله سوم (mm)</th>
<th>مرحله دوم (mm)</th>
<th>مرحله اول (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>44/68a=d</td>
<td>47/61a=d</td>
<td>45/68a=d</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>57/65b</td>
<td>52/67b</td>
<td>49/68c</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>47/61a=d</td>
<td>51/67b</td>
<td>49/68c</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>68/67b</td>
<td>63/71b</td>
<td>62/71b</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>46/64a=d</td>
<td>50/66b</td>
<td>48/64a=d</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>47/66b</td>
<td>47/66b</td>
<td>47/66b</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>58/65b</td>
<td>58/65b</td>
<td>58/65b</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>54/65b</td>
<td>53/65b</td>
<td>53/65b</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>53/65b</td>
<td>53/65b</td>
<td>53/65b</td>
</tr>
</tbody>
</table>

LSD=5/1

در هر ستون میانگین‌هایی که دارای تحریک مشابهی هستند، در سطح احتمال 5% آزمون LSD تفاوت معنی‌داری با هم ندارند.

جدول 2. اثر غلظت و زمان محلول پاشی اسید چربیک و ایزوپروپیل استر در درصد آب میوه ناولگی کلماتین محلول پاشی شده در مرحله اول (فقر میوه 76 mm)، مرحله دوم (فقر میوه 78 mm) و مرحله سوم (فقر میوه 50 mm) در تؤییب مربک سالهای 1383 و 1384 و تیمار (میلی کرم در لیتر)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>مرحله سوم (mm)</th>
<th>مرحله دوم (mm)</th>
<th>مرحله اول (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>37/57ab</td>
<td>37/57ab</td>
<td>37/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>41/57ab</td>
<td>44/57ab</td>
<td>42/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>44/57ab</td>
<td>44/57ab</td>
<td>44/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>41/57ab</td>
<td>44/57ab</td>
<td>44/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>39/57ab</td>
<td>38/57ab</td>
<td>38/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>37/57ab</td>
<td>37/57ab</td>
<td>37/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>40/57ab</td>
<td>40/57ab</td>
<td>40/57ab</td>
</tr>
<tr>
<td>اسید چربیک</td>
<td>39/57ab</td>
<td>39/57ab</td>
<td>39/57ab</td>
</tr>
</tbody>
</table>

LSD=5/9

در هر ستون میانگین‌هایی که دارای حروف مشابهی هستند، در سطح احتمال 5% آزمون LSD تفاوت معنی‌داری با هم ندارند.

در هر ستون میانگین‌هایی که دارای حروف مشابهی هستند، در سطح احتمال 5% آزمون LSD تفاوت معنی‌داری با هم ندارند.

دیقی در توجهی افرازی آب در تیجه محلول پاشی با اسید چربیک یک نشانه است. با توجه به نتایج اسید چربیک در تأخیر پری، احتمال دارد بیش از بهبود ارتباط آوندی و آیکنی فتوالی نسبت به شاهد می‌شود، در تیجه کاهش آب به تأخیر می‌اندازد. از طرفی احتمال افرازی آب در تیجه افرازی سفید میوه و کاراکی آیکن‌های سید کاهش 200
جیبی‌کی در تأخیر رنگ گیبری میوه‌های پرتقال هالمین (15) و گریپ فورد (19) نیز گزارش شده است. اسید جیبی‌کی تجزیه کاروئیل و تجمع کاروئنید را به تأخیر می‌اندازد (10 و 30). با توجه به نتایج به دست آمده، 0.42 دی تأثیر معنی‌داری بر میزان کاروئیل در تأخیر ناکار می‌باشد و ناتوانی کلسترولی هالمنی در نداشت (شکل 1- آلف و ب). این نتایج با گزارش ال‌تاونی و همکاران (16) در رابطه با تأثیر رنگ گیبری میوه پرتقال‌های هالمین و والنسیا در اثر محلول پاشی با 0.2- دی متابولیت دارند.

اول و دوم محلول پاشی میزان کاروئیل بوسترا نسبت به شاهد در سطح احتمال 5% افزایش دادند (شکل 1- آلف). در نارنجی کلماتنی اسید جیبی‌کی در غلتخت های 150 و 200 میلی گرم در لیتر در محلول اول و دوم و غلتخت 100 میلی گرم در لیتر در محلول دوم محلول پاشی در سطح احتمال 5% سبب افزایش میزان کاروئیل بوسترا ناشده شدند (شکل 1- ب). پرو و همکاران (3) نشان دادند که اسید جیبی‌کی قبل از نیش رنگ باعث تأخیر 10 می‌باشد. نقش اسید (Sunburst) در رنگ گیبری نارنگی سانترست (Sunburst)
جدول ۳. اثر غلظت و زمان محلول پاژشی اسید جیبریلک و ایزوپروپیل استر-۲،۴ دی بر میزان تغییر شکل (سفره میلی‌تر)

<table>
<thead>
<tr>
<th>میوه پرتقال ناول محلول پاژشی شده در مرحله اول (فقر میوه mm)</th>
<th>مرحله سوم (فقر میوه mm)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>1/34۶۶۶</td>
<td>1/1۷۶۶۶</td>
</tr>
<tr>
<td>اسید جیبریلک ۱۲۵</td>
<td>1/3۶۸۶</td>
<td>1/3۶۸۶</td>
</tr>
<tr>
<td>اسید جیبریلک ۲۵۰</td>
<td>1/1۹۸۶</td>
<td>1/1۹۸۶</td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌های که دارای حروف مشابه هستند، در سطح احتمال ۵% آزمون LSD تفاوت معنی‌داری با هم ندارند.

تغییر شکل میوه (سفره)

نتایج نشان داد که در پرتقال ناول، اسید جیبریلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی گرم در لیتر در مرحله دوم محلول پاژشی و ۲۰۰ میلی گرم در لیتر در مرحله دوم محلول پاژشی در سطح احتمال ۵% سطح میوه را به طور معنی‌داری نسبت به شاهد افزایش داد. با بررسی نتایج تأثیر بر روی وضعیت میوه پرتقال ناول، مشخص شد که این تأثیر رشد تیمار، معنی‌داری بر سطح میوه پرنده ندارد (جدول ۳). در این تحقیق، کلمات تائید غلظت‌های اسید جیبریلک در مرحله اول و دوم و سوم محلول پاژشی سیرکس در مرحله اول و دوم محلول پاژشی معنی‌داری افزایش دادند. به‌طور کلی میزان سیرکس در مرحله اول و دوم محلول پاژشی در حالی که ۱/۸۴ در غلظت‌های ۱۶ و ۲۴ میلی گرم در لیتر ندی در مرحله اول محلول پاژشی باعث افزایش معنی‌داری سیرکس در سطح احتمال ۵% شدند (جدول ۳).

اسید جیبریلک از طریق تأثیر زمان رسیدن میوه و در نتیجه جوان نتایج میوه از نظر فیزیولوژیکی فرآیند بیشتری برای رشد و افزایش آب و اندازه میوه فراهم می‌نماید. نتایج بدهد این پژوهش به نتایج سابقه پژوهشگران مطابقت دارد (۹، ۱۱، ۱۳، ۱۵، ۱۷). آلیمدا و همکاران گزارش کردند که ۲-۳ دی پا به میوه پرتقال ناول میوه پرتقال پرا می‌گردد همچنین مقدس و رحمی (۴) نشان دادند که ۴-۲ دی طول و قطر نارنجی محلی جهROM را افزایش می‌دهد. کاربرد
جدول ۲ اثر غلتخت و زمان محلول پاشی اسد چیپرلیک و ایزوبوریل استر ۴۲-۶۴ (۱ میلی‌گرم در لیتر) بر میزان تغییر شکل (فقط میلی‌متر) میوه نارنگی کلماتنی محلول پاشی شده در مرحله اول (فقط میوه ۴۲ mm) و مرحله دوم (فقط میوه ۴۵ mm) در تجربه مربک سال‌های ۱۳۸۳ و ۱۳۸۴.

<table>
<thead>
<tr>
<th>تیمار (میلی‌گرم در لیتر)</th>
<th>مرحله سوم</th>
<th>مرحله دوم</th>
<th>مرحله اول</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(۴۲)</td>
<td>(۴۵)</td>
<td>(۴۵)</td>
</tr>
<tr>
<td>شاهد</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
</tr>
<tr>
<td>اسد چیپرلیک ۱۰۰</td>
<td>۴/۱ c</td>
<td>۴/۱ c</td>
<td>۴/۱ c</td>
</tr>
<tr>
<td>اسد چیپرلیک ۱۵۰</td>
<td>۴/۱ c</td>
<td>۴/۱ c</td>
<td>۴/۱ c</td>
</tr>
<tr>
<td>اسد چیپرلیک ۵۰۰</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
</tr>
<tr>
<td>۲/۴ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
</tr>
<tr>
<td>۲/۹ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
</tr>
<tr>
<td>۲/۹ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
<td>۴/۱ ab</td>
</tr>
</tbody>
</table>

LSD=۰/۵۷

در هر ستون، میانگین‌هایی که دارای حروف مشابه هستند، در سطح احتمال ۵% آزمون LSD تفاوت معنی‌داری با هم ندارند.

![نمودار](#)

LSD=۲

![نمودار](#)

LSD=۲/۲۵

پژوهش زمان و غلتخت محلول پاشی اسد چیپرلیک و ایزوبوریل استر ۴۲-۶۴ (۱ میلی‌گرم در لیتر) بر میزان تغییر شکل (فقط میلی‌متر) میوه نارنگی کلماتنی محلول پاشی شده در مرحله اول (فقط میوه ۴۲ mm) و مرحله دوم (فقط میوه ۴۵ mm) در تجربه مربک سال‌های ۱۳۸۳ و ۱۳۸۴. میانگین‌هایی که در هر ستون دارای حروف مشابه هستند در سطح احتمال ۵% آزمون LSD اختلاف معنی‌داری ندارند.
این نمودار نشان می‌دهد که در سطح احتمال 5 در نتایج کلماتنی کادوسی، میزان محلول پاشی آهن و شاهد در مرحله اول و دوم محلول پاشی باعث کاهش معنی‌دار درصد پوست میوه شده‌است. همچنین نتایج نشان داد که در نتایج گازی شاهد در این سطح احتمال، درصد پوست میوه شاهد در مرحله اول و دوم محلول پاشی کاهش یافته‌است.

در بخشی از بررسی نتایج، در سال دیگرترین ناوت تفاوت معنی‌داری بین تیمارهای مختلف 4.2-دی و اسید جیبریک در مقایسه با شاهد ثبت نشد.
جدول 5. اثر غلظت و زمان محلول پاشی اسد گیرریک و ایزوپروپیل استر گرفته بر میزان درصد پوست میوه نارنگی کلمنی در محلول پاشی شده در مرحله دوم (فطر میوه ۶۴ mm) و مرحله سوم (فطر میوه ۷۰ mm) تجزیه مركب سالهای ۱۳۸۲ و ۱۳۸۴.

<table>
<thead>
<tr>
<th>زمان محلول پاشی (فطر میوه (mm))</th>
<th>تیمار (میلیگرم در لیتر)</th>
<th>شاهد</th>
<th>اسد گیرریک</th>
<th>اسد گیرریک</th>
<th>اسد گیرریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماهی دولت ۶۴ (۵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۵/۴۲ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۷/۴۳ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۱/۴۵ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۳/۴۲ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۶/۴۱ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۹/۴۲ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماهی دولت ۷۰ (۶۶)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۶/۴۱ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۸/۴۱ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۱/۴۲ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۳/۴۲ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۶/۴۲ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۹/۴۱ طأ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD=۲.۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین هایی که دارای حروف مشابه هستند، در سطح احتمال ۵% آزمون LSD تفاوت معنی‌داری با هم ندارند.

دانته که محلول پاشی با اسد گیرریک قبل از تغییر رنگ درصد پوست نارنگی را کاهش داد. نتایج به دست آمده در Sunburst این پژوهش با تحقیقات دیگر پژوهشگران مطابقت دارد (۱۹ و ۲۳). اسد گیرریک رشد پوست را کند می‌نماید و به همین دلیل

منابع مورد استفاده

1. خوئی، س. ۱٣۷۱. اصول تغذیه میوه‌ها. مؤسسه تحقیقات آب و خاک. مرکز تحقیقات کشاورزی مازندران.
2. فلوئوی قربانی، ر. ۱٣۸۲. پرورش مرکبات در ایران. انتشارات دانشگاه گیلان.
3. لاووی، م. هژ. زاغ و رامبدیان. ۱٣٠٨. بیوشیمی و فیزیولوژی مورفون‌ها. گیاه. انتشارات دانشگاه فردوسی مشهد.
4. مقدس، م. و. رحمی. ۱٣۸۲. ژنتیک مورفون‌ها. ژنتیک اسید به انتزاح و ژلونگری از ریشه قبل از برداشت نارنگی محلی. مجله علوم کشاورزی ایران (۲۳۲): ۴۲۵-۴۲۹.