بهینه سازی روش ستون کردن سیستم و لازم نمادند Heterodera schachtii

کاربرد آنها در کشت آزمایشگاهی بذرهای چندقرنقد

آتنا شامهر، پیمان نوروزی، قاسمعلی گروسو و نسیری یاری

(تاریخ دریافت: 85/11/24؛ تاریخ پذیرش: 85/12/12)

چکیده

در این پژوهش پس از بهینه‌سازی روش ستون کردن سطحی سیست و لازم نمادند مولد سیست چندقرنقد (Heterodera schachtii) امکان به کارگیری نمادان در گیاه‌های دیگر چندقرنقد‌نامه تبدیل لازم به سیست در کشت آزمایشگاهی بررسی گردید. چندین میزان ابتدایی سیست‌ها از خاک آلوده استخراج و در محلول کلرید روی 50 گرم در هر تار و تریفخ تخم‌ها صورت گرفت. سپس، جهت نهی از لازمغیری کردن سیست در کشت استفاده گردید. می‌توان گفت مشابهی بین دو روش دانکن برای تعداد لازم‌های زندگی و سیست‌ها مشخص نشد که تعداد این امتیازات 70 درصد به مدت 42 دقیقه به اضافه هیپکزر دیده 5 دقیقه و نیز هیپکزر سید/4 20 دقیقه به مدت 20 دقیقه به ترتیب به عنوان بهترین تیمارهای ستون کردن سیست‌های جدا سازی شده از خاک و لازم‌های خارج شده از سیست‌های غیر ستون می‌باشدند. در مرحله بعد، به منظور بررسی تبدیل لازم به سیست در شرایط دون شیطانی و 20 روز بعد از لازم‌های گیاه‌های مناسب برای به رشته‌ها به رشته‌ها با لازم‌های ستون شده از محیط کشت PG، GL متفاوت سیست‌های مختلف هورمون‌های استفاده گردید. مشاهده سیست‌های تغییرات شده در روش ریشه‌پیک، پس از چندین روز توسط استحکام‌کننده همان شیطان نهایی سیست‌ها 20 روز پس از همان گیاه‌های صورت گرفت. روی هر گیاه‌هایی از سیست مذکور 5 تا 12 سیست تغییری کرده، بر روی لازم‌های تغییرات شده کشت آزمایشگاهی استفاده شد.

واژه‌های کلیدی: مولد سیست، سیست، چندقرنقد، کشت آزمایشگاهی، رهبریهای مویین

مقدمه

از این نکته حاصل می‌گردد که Heterodera schachtii Schmidt, 1871 آماره کرد. زراعت چندقرنقد همه ساله در معرض آفات و پیامدهای مختلف می‌باشد. از عامل رایجی که در چندقرنقد ایجاد می‌تواند می‌توان به نامهی مولد سیست چندقرنقد بیماری می‌کند. می‌توان به نامهی مولد سیست چندقرنقد بیماری می‌کند.

1. به ترتیب دانشجوی سایه کارشناس ارشد و استادیار بیوتکنولوژی، دانشکده فنی و مهندسی، دانشگاه جهادگران ایلام، ایلام، ایران.
2. به ترتیب استادیار جامعه و کارشناس خبره مؤسسه تحقیقات اصلاح و تهیه بذر چندقرنقد، کرج.

پیمان نوروزی @yahoo.com; پست الکترونیکی: *
مواد و روش‌ها
مواد گیاهی
از دو رقم چند فرد حساس به نامند مولتی سیستم به استفاده مولتی زم 773 و منوزون 1 بیمار که گیاه‌های آزمایشگاه استفاده گردید. برای در نظر گرفتن و ناحیه زمین، درون ستون کردن طرح با نوع‌های ترکیبی در آزمایشگاه استفاده از نیتریکساید 2/5 و اتانول مولتی (روی محیط آزمایشگاهی) کشت کرده و 60 گرم در لیتر آکار کشت شدند. این پس از دو روز بذور جوانه‌های دیده بر محیط مناسب حاصل (Naphtalene acetic acid) NAA میلی گرم در لیتر هورمون روش فوتو پری جهت تولید ۱۰۰ نمونه با (Indol botric acid) IBA روش‌های انتخاب و مناسب شده و مشکلات مختلف گردیدند.

جداسازی و خاصیت سازی سپست از خاک آلوه
خاک آلوده به نامند درون تکنیک ریشه شک و روی آن گره اضافه گردید و به خوبی مخلوط شدند تا سیستم‌ها از داخل ذرات خاک رها شده و به سطح آب پایین گردید. پس از ۳۰ ثانیه روش‌نویس را روی الکل‌هایی با قطر مناسب ۵۰ و ۲۵ میکرون (به ترتیب روی ۵۰ میلی‌گرم فرآورده) خالی کرده و سپس سیستم‌های حاصل از روی الک (۵ میکرون) با شستشو توسط پست به درون برش ریشه‌شناس سیستم‌های به‌کلی به عنوان گردید. ترتیب جداسازی شده با مقدار کاه و کلکس همراه بودن که برای خاصیت سازی آنها از ساتنفیوز با شرایط مختلف ساپورت استفاده گردید. بدن نمونه حاوی ۱ تا ۲ قاشق سیستم همراه ریخته. به داخل لوله‌های ساتنفیوز ۱۰ میلی‌لیتری ریخته شده و ۲ تا ۳ فاصله بودر کانالین به آنها اضافه گردید. بعد از

حذف ۱۰ برآورد شده که نامند مولتی سیستم چند فرد قند، مستند کاهش بیش از ۹۰ درصد مقدار است (۲۴). منوزون چند فرد در صورت استفاده روی ریشه گیاه حساس، قابلت تعقیب از ریشه و تبدیل شدن به سیستم را دارا می‌باشند. این عمل در شرایط مزروعه و گلخانه امکان پذیر است. در شرایط کشت آزمایشگاهی هم گیاه و لارو یا زنی درون سیستم باشند. علیرغم این، فراهم سازی یکین مناسب جهت تعقیب از ریشه و تبدیل آنها به سیستم از نکات مهم و اساسی در ماپی زنی لارو در کشت آزمایشگاهی می‌باشد. منظور مایه زنی لارو سیستم در محیط کشت آزمایشگاهی بوده و روش‌های دارویی با نوع‌های تکنیک و مناسب شده و به مقدار زیاد در کشت‌های منفی قابل بهبود می‌باشد (۵ و ۱۹). کشت‌های ریشه مویی، می‌توانند به عنوان سنجش کشت آزمایشگاهی برای مقاومت به نامند به کار رودند (۱۷، والی) در بررسی مایه زنی باختن چند فرد با Agrobacterium rhizogenes گردیده. چنین ریشه‌های نیاز به هورمون نداشته و به سرعت کوچک و مناسب شده به مقدار منفی در کشت‌های منفی قابل بهبود می‌باشد (۵ و ۱۹). کشت‌های ریشه مویی، می‌توانند به عنوان سنجش کشت آزمایشگاهی برای مقاومت به نامند به کار رودند (۱۷، والی) در بررسی مایه زنی باختن کشت Arabidopsis thaliana گیاهان ۱۲ روزه، کشت آزمایشگاهی با لارو سیستم درون سیستم مذکور پس از سه هفته ماهی شیری رنگ روز ریشه‌ها مشاهده شد (۹). در شرایط کشت آزمایشگاهی گیاه Arabidopsis به میزان سیستم‌های مویی سیستم‌های سیستم‌های بررسی شده است (۱۵). چنین ریشه مویی گیاه Arabidopsis به لارو سیستم درون چند فرد قند بررسی شده است (۱۲). انتخاب از جداسازی کشت آزمایشگاهی برای ارزیابی مقاومت به عوامل محیط بیافته گیاه‌های چند فرد شده است (۳ و ۱۸).
طبیعت بهترین زمان تریفیک تخم نهایتی مولد سیستم چندگانه

جهت جمع آوری از اوراهیا سر دوم

منظور از بهترین زمان تریفیک تخم، مدت زمان لازم برای خروج بیشترین تعداد اوراهیا زنده و فعال از تخم می‌باشد. برای تعبیه بهترین زمان سیستم‌های جدید شده در خاک و سیستم تکرار (هر تکرار شامل 500 سیستم) روی تنظیم (توربی) در مخلوط کردن روی 5/5 گرم در لیتر (20)، بر روی آنها ریخته شد. نمونه‌های حاصل از تریفیک تخم‌ها بال‌تر هنگام 20 در شرایط تبخش و همکاران (10)، در تاریکی و در شرایط دما 15°C، قرار گرفتند. شماره اوراهیا در روز سوم، نجم، شمش، دهم، سیزدهم، هفدهم و بیستم از شرایط تریفیک تخم‌ها صورت گرفت و براساس نتائج به دست آمده از شمارش منحنی تریفیک تخم رسم گردید.

سترون کردن لازم نهایتی مولد سیستم چندگانه

جهت تعبیه بهترین روش برای سترون کردن اوراهیا با حفظ تقریب بیماری‌زایی و زنده ماندن، اوراهیا خارج شده از سیستم‌های غیر استریت تحت تیمارهاهای هپیکاریستید با غلظت‌های 0/1، 0/0، 0/0 درصد + تریتون /% به مدت 20 دقیقه و آن اکسپرس با غلظت‌های 0/0، 0/0 درصد به مدت 10 دقیقه قرار گرفتند.

بله از سترون کردن مولد سیستم چندگانه

سیستم‌های غیر استریت در سیستم تکرار و 500 میکرولیتر محلول حاوی اوراهیا در تاکار انجم شد. میانگین تعداد اوراهیا زنده غیرسترون 30000 و تعداد اوراهیا زنده و تیمار 5 درصد از سترون کردن اوراهیا شمارش اوراهیا زنده سترون در زیر است. استریتومیکروکوبیک صورت گرفت.

آزمون عدم آلودگی سیستم و لازم‌ترین سترون شده

پس از عملکرد تیمارها سترون کردن سیستم و در آزمایشی بال‌تر (Luria broth) LB و دمای 15 در لوله‌ای (Potato Dextrose Broth) PDB و در دمای 15°C و دمای 25 در اتاقی شد. به مدت دو روز نگهداری شدند.

H. schachtii

سترون کردن سیستم نهایتی

بهرین تیمار برای شد عفونی سیستم، تیماری است که ضمن از بین برد آلفاگلیکزیا فارنی و باکتریایی سیستم، چند رفتار آن را حفظ کند. به برای دیگر تیمار در تیمار عفونی نابود بود. به منظور دستیاری به چندین تیمار از چندین آزمایش استفاده گردید. سیستم‌های خالص به دست آمده، پس از شش‌شنبه کامل سیستم با آب شوری سترون تحت تیمار اوراهیا، دیل (هر تیمار در سیستم تکرار) قرار گرفتند:

\[\text{A: حیوب کریسم 5 درصد (w/v) + تریتون (w/v/)/20} \]

\[\text{B: حیوب کریسم 5 درصد (w/v) + اتانول 20} \]

\[\text{C: اتانول 20/5 (w/v) + حیوب کریسم 5 درصد (w/v) + تریتون (w/v/)/20} \]

\[\text{D: درصد (w/v) + تریتون (w/v/)/20} \]

پس از عملکرد تیمار، شستشو با آب شوری سترون پنج یا شش مرتی انجام شد.

به منظور تریفیک تخم از سیستم سترون، آنها را در محلول کریزی ریز سترون (5 گرم در لیتر) قرار داده و در شرایط تاریکی و دمای 15°C 25 در اتاقی شد. به مدت دو روز نگهداری شدند.
در میلیلتری ریخته شد. ولیربه روز شکریه ۱۲۰ دور در دماه اتفاق به مدت ۳ روز نگهداری شدند. همچنین لازه‌های سترون شده جهت آزمون عدم آتودگی روز می‌کست قرار دادند. پس از گذشت سه روز مشاهده ظاهره و از روز نگهداری، رنگ مغيطیه‌ها کشت و مقایسه با کنترل مثبت (میوه‌های جهتی سپست و لازو ضد عفونی نشده) و منفی (میوه‌های سترون فاقد سپست و لازو) تأثیر PDB و LB (میوه‌های سترون) کرون مشخص گردید.

نتایج و بحث
سترون کرون سپست
شمارش لازه‌های آزاد شده از سپست‌های سترون در زمان پنج‌شامل با نتایج هم‌ست. میزان ۱/۸ میلی‌گرم در لیتر، آنفود داد. مقدار آگار میوه‌های کشت ۹ گرم در لیتر تعیین گردید. گیاههایی چنین ریخته دار شده

۲۴۰
جدول 1. شمارش لاروهوی ستون شده با تیمارهای A، B، C و D به ترتیب ۰/۱، ۰/۱۲، ۰/۳ و ۰/۶ درصد هیپکریت

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زنده</th>
<th>مرده</th>
<th>مجموع</th>
<th>درصد زنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۲۰۰</td>
<td>۷۴</td>
<td>۲۷۴</td>
<td>۷۴</td>
</tr>
<tr>
<td>B</td>
<td>۱۴۶</td>
<td>۱۱۲</td>
<td>۲۵۸</td>
<td>۵۷</td>
</tr>
<tr>
<td>C</td>
<td>۹۴</td>
<td>۱۸۵</td>
<td>۲۸۹</td>
<td>۴۴</td>
</tr>
<tr>
<td>D</td>
<td>۷۱</td>
<td>۲۳۳</td>
<td>۳۰۴</td>
<td>۱۱</td>
</tr>
<tr>
<td>E</td>
<td>۱۰</td>
<td>۳۳۱</td>
<td>۳۴۱</td>
<td>۳</td>
</tr>
<tr>
<td>F</td>
<td>۱۹</td>
<td>۲۹۰</td>
<td>۴۰۹</td>
<td>۶</td>
</tr>
</tbody>
</table>

به این صورت که سیست‌ها را با روش فوق ستون نموده و در محیط کشت ستون اثر باکتری و گیاه‌های آنتیگونیست را روی سیست‌های آزمایشی نموده و با وقوع کمک‌های استرسی به بودجه‌های ستون از سیست‌های آزمایشی و گیاه‌های نامناسب است. نور و همکاران (۱۶). در گزارشی در مورد بررسی باکتری‌های مرتبط با نمونه مولتی سیست‌های سیست‌ها را توسط محلول سفید، کنده‌های هیپکریت سدیم (۵/۳ درصد به مدت پنج دقیقه و سپس هفت دقیقه شستشو با آب نقطه متریک ستون انجام داده است. هدف وی در این آزمایش صرف‌ای بررسی باکتری‌های موجود در سطح سیست‌های بوده و از لاروهوی آزاد مشاهده شده، جهت کمیت کشت آزمایش‌گاهی استفاده نموده است.

نتیجه‌گیری‌های تخصصی

براساس نتایج آزمایش ستون کردن و با توجه به تعداد لاروهوی زنده تیمار بیشتر تیمار جهت سیست‌های آزمایشی اتخاذ (۲/۰ و ۲۵/۰/ و ۲۵/۵/ و ۵/۰۵/۵ به مدت ۵ دقیقه تشخیص داده شد. طبق گزارش‌های موجود در مورد مایه زنی چرود در شرایط کشت آزمایش‌گاهی، همواره از منبع اولیه سیست‌شناسی استفاده شده است (۲ و ۴). به عنوان مثال، نوروزی و همکاران (۱ و ۲)، جهت مایه زنی ریشه‌های مویین با چند ناماد از سیست‌های اولیه سیست‌های تکیه‌شده در خروی میزان حساسیت جهت مایه زنی از شرایط سیست‌شناسی استفاده نموده. اینها در آزمایش‌های خود از تیمار خاصی جهت ضدعفونی سیست‌ها استفاده گرددند. ولی در تحقیق حاضر، به دلیل عدم وجود منبع اولیه سیست‌شناسی، سیست‌های مورد نیاز از چشم‌های الکتریکی و آموزگاری برای ریشه‌های الکتریکی بهره‌برداری کرده و بررسی (۴) در بررسی حداکثر ضدعفونی سیست‌ها انجام داده‌اند. یکی از هیپکریت سدیم (۱/۰ به مهار آنتی‌بیوتیک‌های از این ۱۰ میلی‌گرم در نهایت افزایش و ۵ میلی‌گرم در نهایت استریک، پنی سیلیمی که عکس‌سازی چنیت با کاهش ذرات لاروهوی داخل تخم‌ها از سیست‌های آزمایشی شود و در نهایت تعداد لاروهوی به صفر
خواهد رسید. با توجه به نتایج به دست آمده به منظور استفاده از لاروی‌های فعال و پرتحرک برای مایه زنی، باید از لاروی‌های آزاد شده از سیسته‌های تیمار شده با محلول کاریکد روی پس از روز هفتم استفاده کرد. کاوزر و همکاران (19) در آزمایش H. schachtii (جهت مایه زنی گیاه) سیسته‌های غیر سقزی را در محلول کاریکد روی ۳ میلی‌متری در ۲۵ درجه سانتی‌گراد و با استفاده از روش گرانداز (۹) از یکینه تا هفت روز لاروی‌های آزاد شده را جمع آوری و نمونه‌برداری کردند. در این زمان تعداد لاروی‌های بیمار زیاد بوده و همچنین وضعیت فعالیت و تحرک لاروی‌ها در این زمان بهتر از زمان‌های دیگر بود.

سترون کردن سطحی لارو نمازه مولد سیست چندقند در تیمار۱، ۳، ۵ و ۷ درصد. درصد هیپوکریت سدیم، میانگین لاروی‌های زنده سترون به ترتیب ۲۰۰ و ۱۰۰ لارو در ۱۰۰ میکرو لتر بود. پس از شمارش لاروی‌های سترون مشخص گردید که غلظت ۳/۰ درصد هیپوکریت سدیم به طور وضعیت سبب از این رفت لاروی‌ها می‌گردد. در نتیجه این دو تیمار در رابطه با سترون کردن سطحی لاروی‌ها نمی‌توان استفاده نمود (جدول ۱).

پس از شمارش لاروی‌های سترون توسط تیمارهای آب اکسیزنه، مشاهده شد که تقریباً تمامی لاروی‌ها مرده بودند که

جدول ۱. شماره لاروی‌های درصدی زنده در تیمارهای آب اکسیزنه، هر تکرار

<table>
<thead>
<tr>
<th>تیمارهای سیسته‌ها</th>
<th>درصد</th>
<th>مجموع زنده‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب‌زدایی ۱۵۰</td>
<td>۹۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>آب‌زدایی ۱۲۰</td>
<td>۹۰</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>آب‌زدایی ۱۰۰</td>
<td>۹۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>آب‌زدایی ۸۰</td>
<td>۹۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>آب‌زدایی ۶۰</td>
<td>۹۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>آب‌زدایی ۴۰</td>
<td>۹۰</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

نتایج آزمون عدم آزمودگی سیسته‌ها و لاروی‌های سترون شده

پس از مشاهده و با دادآوری برداری از نتایج حاصل از آزمون
جدول ۳ میانگین تعداد لاروهاي زنده آزاد شده از هر تيمار سترون سايزی سپست با روش...نامي

<table>
<thead>
<tr>
<th>شماره تيمارها</th>
<th>كروماتوگرفي ميانگين ها در سطح اعتمال یک درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(w/w) + (w/v) + (v/v) + (v/v) + (v/v)</td>
</tr>
<tr>
<td>B</td>
<td>(w/v) + (v/v) + (v/v) + (v/v) + (v/v)</td>
</tr>
<tr>
<td>C</td>
<td>(v/v) + (v/v) + (v/v) + (v/v) + (v/v)</td>
</tr>
<tr>
<td>D</td>
<td>(v/v) + (v/v) + (v/v) + (v/v) + (v/v)</td>
</tr>
</tbody>
</table>

\[CV = 10.63 \quad \text{Lsd 0.01=3.46} \]

تأثیر محیط کشت گیاهی در تشکیل سیست‌های تیمار در سترون سپست، مشاهده شد که

تپس از سه روش از چهارگیاهی سیست‌های سترون در محیط‌های A و B (جدول ۳) PDG

قارچی و باکتریایی مشاهده شد. تیمار‌های D و C

بودند. سفت مورد نظر برای تعمیر تیمار سترون کرد، پس از تایید قدرت سترون کندن هر تیمار، تعداد لاروهاي

زدن خارج شده از سترون سپست ميازي (جدول ۳).

آزمون سترون کردن لاروها نشان داد که شرایط سترون

新加坡 پریوریت بوده و هیچ گونه آلودگی باکتریایی یا

قارچی پس از گذشتن یک هفته در نمونه‌های تیمار‌های دیده

نشت است، همچنین نتیجه آزمون عدم آلودگی لاروهاي که پس

از سترون کردن روي محیط نماین داد که تیمار‌های سترون سازی پس از

شروع سلام و سترون بودن و هیچ گونه آلودگی قارچی و یا

باکتریایی روي محیط کشت مشاهده نگردید. بنابراین از تیمار

۱ درصد هیپکارت سدیم که نسبت لاروهاي زدنگه بيشتر

نسبت به سایر تیمارها داشت، استفاده گردید. گازور و همکاران

(9) پس از سترون لاروهاي تAMPLE ولجد سپست سبب زمینه,

جفت آزمون آلودگی از محیط کشت KB استفاده نمودند.

لواح و همکاران (11) پس از به کار بردن غلظت‌های مختلف

هیپکارت سدیم، با به کار بردن محیط اختصاصی باکتری‌ها,

سترون بودن لاروهاي سترون شده را آزمایش نمودند.

223
نتیجه‌گیری
نتایج آزمایش‌های انجام شده در این تحقیق نشان‌می‌دهد که هیپوکارتیل سدیم (Na⁺) در صدها کبدن لاروها با حفظ قدرت به‌بارمالی زایی آنها مناسب می‌باشد. نظر به اینکه ترکیبات ضد عفونی کننده، روي میزان تفکیک تخمها و حفظنی تعداد لاروها زنده تأثیر منفی داشته و موجب مرگ و میر و از دست دادن تعداد زیادی از لاروها می‌شود، لذا توصیه می‌گردد ابتدای تفکیک تخمها در شرایط غیر سریع صورت گرفته، سپس ضد عفونی لاروها انجام شود. به‌ترین زمان جهت جمع آوری لاروها سن دوم، هنگام دوم پس از شروع تفکیک می‌باشد که بهترین تعداد لاروها سن دوم در این تحقیق طی روژه‌های هفتم تا دهم جمع آوری گردید. نتایج مطالعات انجام شده در این تحقیق مشخص نمود که میزان با کشت بذردها در محدوده کشت‌های هورسون‌های NAA و IBA به‌طور کلی کمتر در لیتر درون ظروف پری و قرار دادن آنها به حالت مایل در انگال‌های کلاه بهبود جت‌های لارو به سیستم نمود. به‌ترین شرایط جهت تبدیل لارو به سیستم عنوان به‌ترین می‌باشد که چهارم گل‌گذشته به‌صرفه یک درصد ساکارز بدن چند رفتند شناخته شد.

نتایج بررسی تبدیل لارو به سیستم (مایه زننگان در می‌تویند)
کشت آزمایشگاهی
پس از ریشه کردن، ریشه‌ها به رنگ سفید و لاروها به رنگ قرمز مشاهده شدند. در برخی ریشه‌ها لاروها به خوبی به رنگ قرمز نمایان بودند و در برخی دیگر از ریشه‌ها همچنان تعداد لاروها در داخل بافت ریشه مشاهده گردیدند. به طور متوسط، 14 روز بعد از مایه زننگ در رنگ آمیزی شده، لارو در داخل بافت مشاهده گردید. در برخی نمونه‌ها، سیستم کرکک‌داری شکل به رنگ قرمز مشاهده شدند. بهترین زمان مشاهده سیستم به‌صورت چپ‌تا-شام هفت پس از نامسا و ریشه‌ها به‌صورت چپ‌تا-شام هفت پس از نامسا و سیستم‌هایی با رنگ آمیزی مشاهده شده در آزمایشگاهی و سیستم‌هایی با رنگ آمیزی مشاهده شده در آزمایشگاهی، 3 و 4 نشان داده شده اند. نمونه‌هایی مایه زننگ در بازگرد نمایی 10 تا 15 برای در زیر استون‌موکسکوب مشاهده و شمارش سیستم‌ها مشاهده کم مقدار چهار تا شش هفت پس می‌باشد. عمده‌ترین دو تا سه هفت پس از مایه زننگ مایه‌های سفید توسط استون‌موکسکوب مشاهده

244
بهینه سازی روش سترون کردن سیست و لارو نماده

شکل ۴: سپس زنگ آمیزی شده پس از تشکیل روش ریشه چگاندرفند

شکل ۳: مشاهده لاروها زنگ آمیزی شده در پافت ریشه

شکل ۵ ألف: الی و ب. ماده‌های سفید تشکیل شده روی ریشه‌های موبین پس از سه هفته از شروع مایه زنی با لاروها نماده چگاندرفند به ترتیب با پرگما ۴۰ و ۸۰ پرایر استرنومیکروسکوپ

شکل ۶: الی و ب. سیست‌های چهارهای تشکیل شده روی ریشه‌های موبین پنجه هفته پس از مایه زنی با لاروهای نماده چگاندرفند به ترتیب با پرگما ۲۰ و ۴۰ پرایر استرنومیکروسکوپ

۲۴۵
متن مورد استفاده

