مقایسه روندی سیل با دو روش ماسکینگام و ماسکینگام-کانی در بخشی از رودخانه لیقوان

حمیدرضا مرادی، مهدی وفخاو و علی اکبر باویل

(تاریخ دریافت: 14/10/1387)

چکیده
روندهای جریان به عنوان یک فرآیند رياضی برای پیش بینی تغییرات یزدگری، سرعت و شکل موج سیل به صورت تابعی از زمان در یکجا چند نقطه در طول آبهای، کلان با مخزن می باشد. برای انجام روندی سیل از دو روش چندگانه و هیدرولوژیکی استفاده می‌شود. روش چندگانه گرچه دقت روش هیدرولوژیکی را ندارد ولی سیر از سه‌تایی از آن بوده و در طراحی سازه‌ها و کنترل سیل‌های اطراف قابل قبولی به کار می‌روند. تحقیقات حاضر در یکجا از رودخانه لیقوان (دست فصل ایستاده‌های هیدرولوژیکی لیقوان و هروی) در استان آذربایجان شرقی به طول ۱۲ کلومتر انجام گرفت. در این تحقیق با استفاده از اطلاعات نشان داد که دو روش ماسکینگام و ماسکینگام-کانی انجام گرفت. تأیید نشان داد که دو روش ماسکینگام سیل با یکدیگر متفاوت به آن دوره باز گشته در یکجا هست (ایستاگه پایین دست) دارای اختلاف زیادی می‌باشد. دلیل بر وجود اورد و این اختلاف، می‌تواند متعدد باشد که از آن جمله می‌توان به کوهستانی بودن منطقه و وجود شاخه فرعی در دو ایستگاه اشاره نمود.

واژه‌های کلیدی: روندی سیل، ماسکینگام، ماسکینگام-کانی

مقدمه
روندهای جریان در یکجا رودخانه به عنوان یک فرآیند ریاضی برای پیش‌بینی تغییرات یزدگری، سرعت و شکل موج سیل به صورت تابعی از زمان انجام شده‌اند که در سال ۱۸۷۱ در سایت انجام شد. این روش برای حفظ سیل‌های ساده در یکجا به منظور کمک به پیچیدگی حل ایستایی سیل‌های ساده در یکجا در سال ۱۸۷۱ به منظور کمک به پیچیدگی حل ایستایی سیل‌های ساده در یکجا در سال ۱۸۷۱ (۱۵)

روندی سیل به طریق هیدرولوژیکی و هیدرولوژیکی قابل مطالعه می‌باشد. اگر جریان آب فقط به صورت تابعی از زمان در محیط مشخص روندی گردید، روندی سیل هیدرولوژیکی و یا

1. به ترتیب استادیار، مربی و دانشجوی ساین کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، تهران
2. * مسئول مکاتبات، پست الکترونیکی: morady5hr@yahoo.com
مستندی روندی‌پایی متمرکز نامیده می‌شود. موارد استفاده در این روش عبارتند از: یوپسپتیل جزایر، هیدروگرافی طبیعی و واحد، دیگر معنی‌دار و حل‌ساز سیال‌های حادثه‌ای می‌باشد. اگر روندی‌پایی جزایر به صورت تابعی از زمان و مكان در طول سیستم مورد نظر باشد این روش به نام روندی‌پایی هیدروپلیکا نیز می‌شود.

توضیحات شناخته شده است. در این روش از هم‌بودن یوپسپتیل جزایر و معادله حرکت استفاده شده و اساس آن بر تبدیل جزایر سطحی از استقرای است. (۶ و ۱۲) گرچه استفاده از روش هیدروپلیکا نقشه روش هیدروپلیکا را ندارد ولی بسیار ساده‌تر از استقرای سطحی می‌باشد و در طراحی سازه‌ها و کنترل سیل

با یکدیگر که در کنار هم می‌باشد مستندی روندی‌پایی متمرکز نامیده می‌شود. موارد استفاده در این روش عبارتند از: یوپسپتیل جزایر، هیدروگرافی طبیعی و واحد، دیگر معنی‌دار و حل‌ساز سیال‌های حادثه‌ای می‌باشد. اگر روندی‌پایی جزایر به صورت تابعی از زمان و مكان در طول سیستم مورد نظر باشد این روش به نام روندی‌پایی هیدروپلیکا نیز می‌شود.

توضیحات شناخته شده است. در این روش از هم‌بودن یوپسپتیل جزایر و معادله حرکت استفاده شده و اساس آن بر تبدیل جزایر سطحی از استقرای است. (۶ و ۱۲) گرچه استفاده از روش هیدروپلیکا نقشه روش هیدروپلیکا را ندارد ولی بسیار ساده‌تر از استقرای سطحی می‌باشد و در طراحی سازه‌ها و کنترل سیل

با یکدیگر که در کنار هم می‌باشد
مدفوعه رودهای سیل با در روشه ماسکینگام و ماسکینگام - کاتز در...

یافته هیدرومتری لیقوان

19: یافته هیدرومتری لیقوان

21: یافته هیدرومتری هوروی

شکل 1: موقعیت جغرافیایی منطقه مورد مطالعه

مواد بستر، درجه ناهمواری در سطح بستر کانال، تغییرات در سطح بستر کانال، تأثیر نسبی مواد، پوشش گیاهی و درجه پیچان رود بودن کانال، تعیین می‌شود (9، 5 و 13).

روندبایی سیل با روشه ماسکینگام

روشه ماسکینگام (Muskingum) طی مطالعات کنترل سیل که توسط مک کارتری (McCa...
فی‌ماهیان به کار گرفته شده و این معادلات به شرح زیر می‌باشند:

\[
\frac{\Delta X}{c_K \Delta t} = S_i
\]

\[
B = c_k
\]

\[
\text{سرعت موج هماهنگ با} \; Q \text{ و } \Delta x \text{ به ترتیب کام مکانی و زمانی روندپایی در روش ماسکی‌زام-کانزه} \; \Delta x \text{ به کام مکانی} \; \Delta t \text{ و } \Delta x \text{ با همان طول بازه است. برای تعیین } \Delta t \text{ از نموداری که توسط کانزه ارائه شده استفاده می‌شود (شکل 3).}

\[
\frac{\Delta X}{c_k \Delta t} = \text{مشخص می‌شود و با در نظر گرفتن آن که عدد خواندنی شده روی محور گوناگون حد نهایی برای کسر } \frac{\Delta X}{c_k \Delta t} \text{ باشد مقدار } \Delta t \text{ تعیین می‌شود. در این تحقیق برای محاسبه } \Delta t \text{ از } \frac{3}{4} \text{ سرعت دیج اوج و در طول بازه } \Delta t \text{ در نظر گرفتن شرایط رویداده و نمودار ارائه شده توسط کانزه } 10 \text{ مکانی برای روندپایی استفاده شده است.}

\[
Q_{i+1}^{j+1} = C_i Q_i^{j+1} + C_r Q_r^{j+1} + C_f Q_f^{j+1}
\]

\[
C_i = \frac{\Delta t + \gamma K \Delta X}{\gamma K (\Delta X + \Delta t)}
\]

\[
C_f = \frac{\Delta t + \gamma K (\Delta X - \Delta t)}{\gamma K (\Delta X + \Delta t)}
\]

\[
C_r = \frac{\gamma K (\Delta X) - \Delta t}{\gamma K (\Delta X + \Delta t)}
\]

\[
X = \frac{\gamma}{\epsilon K} \frac{Q}{S_i \Delta x}
\]

\[
K = \frac{\Delta x}{c_k}
\]

نتایج و بحث

نتایج حاصل از نمودار داده‌ها با نرم‌افزار Hyfa توزیع لگ مولفه سپارامتری با روش حداکثر درست نمایی به عنوان بهترین توزیع برای پرآورد (Maximum likelihood) حداکثر دیب لحظه‌ای در حوزه‌ی بیشتر. نتایج مربوط به برآورد حداکثر دیب لحظه‌ای استخراج‌های لیفون و هرودی با دو راه‌های

شکل ۲: انواع دیگر در موقع حرکت موج سیل

مکانیک را نشان می‌دهد. این دیس از نقاط مکانی و زمانی

قیمت و تعداد موسیقی محور ۱ و خط زمان موسیقی لاه است (۱۰ و ۱۵).

شکل ۳: تغییرات در موقع حرکت موج سیل

لازم به ذکر است که روش ماسکینگ کانزه برای روندپایی توزیع موردد استفاده قرار می‌گیرد. معادلاتی که در این بروز

استفاده می‌شود در وابسته ۷ تا ۱۳ ارائه شده است.

\[Q_{i+1}^{j+1} = C_i Q_i^{j+1} + C_r Q_r^{j+1} + C_f Q_f^{j+1} \]

\[C_i = \frac{\Delta t + \gamma K \Delta X}{\gamma K (\Delta X + \Delta t)} \]

\[C_f = \frac{\Delta t + \gamma K (\Delta X - \Delta t)}{\gamma K (\Delta X + \Delta t)} \]

\[C_r = \frac{\gamma K (\Delta X) - \Delta t}{\gamma K (\Delta X + \Delta t)} \]

\[X = \frac{\gamma}{\epsilon K} \frac{Q}{S_i \Delta x} \]

\[K = \frac{\Delta x}{c_k} \]
جدول ۱. دبیر اوج محاسبه شده به ازای دوره‌های بزگشته مختلف بر حسب متر مکعب در نتایج

<table>
<thead>
<tr>
<th>دوره بزگشته (سال)</th>
<th>۱۰۰</th>
<th>۵۰</th>
<th>۲۰</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایستگاه لیقوان</td>
<td>۱۹۸۶</td>
<td>۱۹۹۴</td>
<td>۱۹۸۸</td>
<td>۱۹۷۹</td>
</tr>
<tr>
<td>ایستگاه هریو</td>
<td>۸۵۶</td>
<td>۸۶۷</td>
<td>۸۶۸</td>
<td>۸۶۹</td>
</tr>
</tbody>
</table>

جدول ۲. هیدروگراف‌های مربوط به دوره‌های بزگشته مختلف برای ایستگاه لیقوان بر حسب متر مکعب در نتایج

<table>
<thead>
<tr>
<th>زمان بازگشت (ساعت)</th>
<th>هیدروگراف با دوره بزگشته ۵۰ سال</th>
<th>هیدروگراف با دوره بزگشته ۱۰۰ سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۷:۰۳</td>
<td>۰۶:۵۷</td>
<td>۰۶:۵۷</td>
</tr>
<tr>
<td>۰۸:۵۱</td>
<td>۰۸:۴۹</td>
<td>۰۸:۴۹</td>
</tr>
<tr>
<td>۰۸:۲۹</td>
<td>۰۸:۲۷</td>
<td>۰۸:۲۷</td>
</tr>
<tr>
<td>۰۸:۰۹</td>
<td>۰۸:۰۷</td>
<td>۰۸:۰۷</td>
</tr>
<tr>
<td>۰۷:۵۸</td>
<td>۰۷:۵۶</td>
<td>۰۷:۵۶</td>
</tr>
<tr>
<td>۰۷:۵۶</td>
<td>۰۷:۵۴</td>
<td>۰۷:۵۴</td>
</tr>
<tr>
<td>۰۷:۵۴</td>
<td>۰۷:۵۲</td>
<td>۰۷:۵۲</td>
</tr>
<tr>
<td>۰۷:۵۲</td>
<td>۰۷:۵۰</td>
<td>۰۷:۵۰</td>
</tr>
<tr>
<td>۰۷:۵۰</td>
<td>۰۷:۴۸</td>
<td>۰۷:۴۸</td>
</tr>
<tr>
<td>۰۷:۴۸</td>
<td>۰۷:۴۶</td>
<td>۰۷:۴۶</td>
</tr>
</tbody>
</table>

جدول ۳. نتایج مقایسه رقم تراز سطح آب رودخانه‌های ماسکنگان و ماسکنگان-کانی با آزمون ی جنی

<table>
<thead>
<tr>
<th>دوره بزگشته (سال)</th>
<th>۱۰۰</th>
<th>۵۰</th>
<th>۲۰</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>تمحاسبات</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>درجه آزادی</td>
<td>۸</td>
<td>۷</td>
<td>۶</td>
<td>۵</td>
</tr>
</tbody>
</table>

به‌روزرسانی‌های مربوط به روش‌های روندی‌زایی ماسکنگان و ماسکنگان-کانی وجود دارد که نشان می‌دهد عدم تفاوت نتایج روندی‌زایی حاصل از این دو روش می‌باشد. نتایج مقایسه رقم تراز سطح آب رودخانه‌های ماسکنگان و ماسکنگان-کانی با آزمون ی جنی در جدول ۳ ارائه شده است. در مورد روش‌های روندی‌زایی استفاده شده در این تحقیق لازم به ذکر است که روش ماسکنگان به طور معمول در مواقعی که جنگ سیل با هیدروگراف ورودی و خروجی مشخص وجود داشته باشد به کار می‌رود و در صورت عدم وجود هیدروگراف خروجی مشخص الکترود و روندی‌زایی معمولاً از روش ماسکنگان-کانی استفاده می‌شود. در این تحقیق وجه

۳۴۰
مقایسه روند یاپی سیل با در روش ماسکینگام و ماسکینگام- کاوز در...

شکل 5. روند یاپی سیل 10 ساله با روش ماسکینگام و ماسکینگام- کاوز

شکل 6. روند یاپی سیل 20 ساله با روش ماسکینگام و ماسکینگام- کاوز

شکل 7. روند یاپی سیل 50 ساله با روش ماسکینگام و ماسکینگام- کاوز

شکل 8. روند یاپی سیل 100 ساله با روش ماسکینگام و ماسکینگام- کاوز

341
نتایج دیه‌های روندهای شده در مقایسه با مقادیر دیه مربوط به ان دوره باز گشته در استگاه بابل دست (هروی) محقق اتفاق اتفاقی میدهد، دلیلی به وجود آورنداد این اختلافه می‌تواند منعکس کند که از آن جمله می‌توان به وضعیت کوهستانی نهادن محله و وجود سخا به فرعی در بین دو استگاه اشاره نمود.

تماوز این روش در محاسبه پارامتر X بود و برای محاسبه پارامتر K در هر دو روش از دیجیت ال اوج استفاده شده است. پارامتر K با دقت مطلق رقیم سطح آب حاصل از روش‌های روندی‌پایی (با دقت 1/10 متر) به کمک آزمون ت جفتی با هم مقایسه شدند. نتیجه این آزمون نشان داد که بین رقیم سطح آب حاصل از دو روش برای روندهای باز کورت مختلف در سطح معناداری 5/0 اختلاف وجود دارد.

مباحث مورد استفاده

1. آفریندی، س. 1386. هیدرولوژی مهندسی. مرکز نشر دانشگاهی، تهران.
2. دهقانی، م. 1383. ت-ngای گرفتن روش‌های روندی‌پایی سیلاب در رودخانه چیره و میدی زهره. پایان‌نامه کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران.
3. عباسی، م. 1375. مقایسه روش‌های مختلف هیدرولیکی و هیدرولوژیکی روندی‌پایی در بخشی از رودخانه کارون. پایان‌نامه کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران.
4. صنفی، س. 1383. تغییر الگوی مدیریت بهبود در دشت‌های سیلابی پایان‌نامه کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران.
5. مهدوی، م. 1378. هیدرولوژی کاربردی. جلد دوم. انتشارات دانشگاه تهران.
6. میرپرفا، ا. 1377. هیدرولوژی مهندسی. انتشارات دانشگاه شیراز.