پتاسیم معدنی شدن نیترات در یک خاک آهکی تیمار شده با دو نوع کود آلی

پژوهشی لطفی، فرشید نوربخش و مجید افونی

(تاریخ دریافت: 89/3/24; تاریخ پذیرش: 89/3/24)

چکیده
در سال‌های اخیر، استفاده از پسماندهای آلی و فراورده‌های جانبی کار خانه‌ها به عنوان کود آلی و اصلاح کوده‌های شکر برای تولید محصولات کشاورزی مورد توجه قرار گرفته است. در کشور ما به‌دلیل فقر موارد آلی خاک‌های کشور از یکوس و تولید نیازی کوده‌های آلی از سوی دیگر، تماشایی به استفاده از این کودهای‌الزایش‌پذیر است. هدف از تغییر این مطلوع‌برخی و تغییر اثر نوع کود، سطوح مختلف کوده و تعداد سال کوده‌ای بر پتانسیل معدنی شدن نیترات در یک خاک آهکی (فَابیا، لومپه، باریک، بیکه‌های آرژن) در منطقه اصفهان بود. آزمایش در قالب طرح کرته‌های خرد شده و در سه تکرار انجام گردید. هر کرت اصلی به سه کرت خرد شده تهیه گردید و عملیات تیمارها در سه سال متوالی به گونه‌ای بود که از اکثر اکثر به سالم افزایش و در سال دیگر به دوی پایه و بخش سوم در سال دوم و بت‌کرم کود (کود گاوی یا لجن فاضلاب) مشابه (150 و 100 مگاگرم بر هکتار) دریافت کردند. نمونه برداری مركب از خاک، پس از کوده دریافت 150 مگاگرم بر هکتار از دو اندازه (آرژن) در هر دو ایت، در پذیرش اختلاف معنی‌داری بین نتایج دادند. اضافه کردن 150 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری نداشته و هر دو ایت، در پذیرش اختلاف معنی‌داری در نمایش دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی و لجن فاضلاب به خاک، پتانسیل معدنی شدن نیترات را بهبود داد. نتایج نشان داد که در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، تفاوت معنی‌داری N

واژه‌های کلیدی: پتانسیم معدنی شدن نیترات، لجن فاضلاب، کود گاوی، بین‌جفت هدهاری

مقدمه
رشد و رفاه‌کردن جمعیت و پیدایش انفجار جمعیتی، یکی از تأمین نیازهای غذایی افراد جامعه، ایمنی غذایی با توجه به

1. دلتنشیه سالم کارساز که از احیای خانه‌سازی، داشتگردی کشاورزی، داشته‌گری صنعتی افغانستان و حفاظت خصوصی هنرمند و لازم است در حال حاضر عضو هیئت علمی دانشگاه آزاد اسلامی واحدهای

2. به ترتیب استادان و دانشکده کشاورزی، دانش‌گری صنعتی افغانستان

* مسئول مکاتبات، پست الکترونیکی:

farshid@cc.iut.ac.ir

367
کشاورزی پایدار (Sustainable agriculture) بزرگ‌ترین نیازهای غذایی حال و آینده بشر مورد توجه خاص تعامل مخاطبان کشاورزی از جمله علم خاک بوده و محور عملده تحکیقات و بررسی‌ها، ایجاد نیازهای و بهتر این است که به مدرن تولید کشاورزی مورد بررسی قرار گیرد (29).

قسمت عده کشور ما در اقیانوسیه شکل و نمی‌خور
است و علم وجود پوشش گیاهی کافی سبب بازگشت مقدار
کم بقایای گیاهی به خاک و در نتیجه کمبود مواد آلی در خاک
و بالعکس کشاورزین آن گردنده است. تیره‌بر زیکی از
عناصر برخوردار مورد نیاز گیاه و یکی از مهمترین اجزای همه
کودهای آلی است. در کودهای آلی بخش اعظم نیتروژن در
قابل مولکول‌های آلی قرار گرفته است. از طرفی گیاه قادر به
از تیره‌بر زیکی آلی نیست. برای آن که نیتروژن به شکل قابل
جدب گیاه درآید است معدنی تیره‌بر آلی مورد بررسی قرار
گرفته است (3).

اضافه کردن پس مانده‌ی صنعتی آلی و محدودات جانی به
زمین‌های کشاورزی در حالی است که برخورداری قرار گرفته
است. این امر از یک سو به دلیل افزایش انرژی مورد نیاز برای
تولید کودهای شیمیایی و از سوی دیگر به جهت هریزه زیاد و
مشکلات زیر بحث مدیریت در نتیجه دفن نقیبی آلی می‌باشد (22).

در مطالعه معدنی شدن نیتروژن، مقدار نیتروژن معدنی رها
شد اثر تجزیه مواد آلی تعمیم می‌شود که مفیدترین
اطلاعات کمی در مورد مقدار نیتروژن در دسترس گیاه فرام
می‌شود (22). یکی از اهداف مهم این نوع پژوهش‌ها به دست
آوردن برآوردی مناسب از میزان پس مانده‌ی آلی است که باید
به هواي اضافه گردد تا از یک سو سطح بهینه تولید محصول را
به همراه داشته باشد و از سوی دیگر مناسبی از به وجود آوردن
مشکلات زیر بحث مدیریت تعمیم مقدار نیتروژن در خاک و افزایش
آب‌زایی نیتروژن آلی باید به آب‌زایی و سازنده
(30).

نیتروژن آلی برای برخی از ماکرو معدنی شدن
نیتروژن آلی باید برای برخی از ماکرو
(30).
نتایج نشان داد برای تیتانسیل معدنی شدن نیتروژن 141 میلی گرم نیتروژن در کیلوگرم خاک، مربوط به خاکه بود که سالهای زیادی تحت کشت و کاری تزریق نکردند بود و کمترین مقدار تیتانسیل معدنی شدن نیتروژن 120 میلی گرم نیتروژن در کیلوگرم خاک، مربوط به خاکی بود که نسبتی قابل توجه بود.

گوته و همکاران (16) موردی در 2001 تا 2007، 120 تن در هکتار

لجن فاصلاپ را به خاک اضافه کردند و خاک را به مدت 12 هفته در دلی 330 درجه سانتی‌گراد انکوپاسیون کردند. میزان تجمیع نیتروژن این خاک افزایش یافته به ترتیب 15/4، 15/7 و 15/5 میلی گرم نیتروژن را به کیلوگرم دست آمد.

مقدمات تیتانسیل معدنی شدن نیتروژن و مقدار مربوط به نسبت سرعت به ترتیب 121/4، 120/2، 120/0 و متوسط 123/9 پیش گرفت. گوشه توجه به اینکه اضافه کردن کودهای آلی به خاک فاصلاپ و کود‌گذار به خاکه می‌تواند در سالهای اخیر مورد توجه قرار گرفته است (16)، تحقیق با هدف بررسی اثر کودهای آلی مختلف (لجن فاصلاپ و کود‌گازی)، سطوح مختلف کودهای آلی و مانند و آثار تجمیع و بقای این کودهای آلی مختلف بر ها تیتانسیل معدنی شدن نیتروژن، عملکرد و چگالی نیتروژن توسط گیاه ذرت انجام گردید.

مواد و روش‌ها

این تحقیق در مزرعه تحقیقات دانشگاه صنعتی اصفهان (لورک) تجفیف آباد واقع در 80 کیلومتری جنوب غربی شهر اصفهان انجام شد. این خاک متعلق به سطح‌های لومی می‌باشد. تیپیک (fine loamy mixed, thermic, Typic Hapludoll) هایال آرچیدی می‌باشد. بخش ویژه‌هایی از فلزات اکسیداتور شامل: نیکل، سیلیکون، ترمینال، سبزه و سبزه‌پوشانی و باعث کاهش گیاهی شد. در تحقیق، نیتروژن به شکل کیسه در واحدهای برابر تزریق گردید.

نمونه‌های خاک تیپ نیز از انتهای گزارشگاه و میان شکل‌های المنجنگ و در مدت 50/6 ساعت در دلی 60 درجه سانتی‌گراد خشک و عملکردگی به کلید و فضای آزادش روش کلیدال انسازه‌گری شامل: 25 کربن آلی نمونه‌های خاک‌ها استفاده از دسته‌گذاری شکل‌کلی مصل 200 میلی‌متری آب داده شدند (4 و 8). غلظت نیتروژن در نمونه‌های کیسه‌ای و خاک‌ها استفاده از دسته‌گذاری شکل‌کلی مصل 200 میلی‌متری آب داده شد و روش کلیدال انسازه‌گری شامل: 25 کربن آلی نمونه‌های خاک‌ها استفاده از روش کلیدال انسازه‌گری شامل: 25 کربن آلی نمونه‌های خاک‌ها استفاده از روش کلیدال انسازه‌گری شامل: 25 کربن آلی نمونه‌های خاک‌ها استفاده از
جدول ۱. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه (۲)

<table>
<thead>
<tr>
<th>ECE</th>
<th>pH</th>
<th>CEC</th>
<th>کریم آلی</th>
<th>رس</th>
<th>سیلت</th>
<th>شن</th>
</tr>
</thead>
<tbody>
<tr>
<td>dSm</td>
<td>cmol kg⁻¹</td>
<td>g kg⁻¹</td>
<td>g kg⁻¹</td>
<td>g kg⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۶</td>
<td>۸/۳</td>
<td>۳/۳/۵</td>
<td>۵</td>
<td>۴/۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. برخی خصوصیات شیمیایی کودههای آلی مورد استفاده

<table>
<thead>
<tr>
<th>کودهای آلی</th>
<th>pH</th>
<th>ECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>وایگی</td>
<td>۸/۶</td>
<td>۷/۴</td>
</tr>
<tr>
<td>لجن</td>
<td>۴/۷</td>
<td>۲/۴۹/۴</td>
</tr>
<tr>
<td>نیتروژن</td>
<td>۱۷/۹/۸</td>
<td>۱۳/۶/۵</td>
</tr>
</tbody>
</table>

روش تقطیر با نیمار آب (Steam distillation) انداره‌گیری شد (۲۱). مندل استفاده شده برای مطالعه تناسب معدنی شدن نیتروژن معادله نمایی رده‌ای که توسط استاندارد و اسمیت ارائه گردیده است (۳۵).

\[\text{N}_{\text{min}} = N_0 \left(1 - e^{-Kt} \right) \]

در این معادله \(N_{\text{min}} \) نیتروژن معدنی شده در زمان \(t \) به \(K \) و \(N_0 \) تریپ تناسب معدنی شدن نیتروژن و ثابت سرعت معدنی شدن نیتروژن می‌باشد. مقادیر \(K \) و \(N_0 \) با استفاده از نرم‌افزار Curve Expert و با تست‌های از روش آماری حتی محدود مجدوران تعیین گردید.

تجزیه و تحلیل آماری شامل تجزیه واریانس و مقایسه SAS میانگین و تجزیه و تحلیل رگرسیون با استفاده از نرم‌افزار انجام گردید.

نتایج و بحث

۱. خصوصیات خاک مورد مطالعه و کودههای آلی

برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه در جدول ۱ آراñه گردیده است. باخ شاخ، لوم رس سیلیکا بوده و pH آن در محدوده pH خاک‌های آهکی است. قابلیت هدایت الکتریکی آن نشان میدهد که خاک موردنظر جزو خاک‌های غیرشور محسوب می‌شود. مقدار اندک کربن آلی خاک، نشان
دانش‌های آلی کاربردی در چند یک خاک آهنی تیمار شده با دو نوع کود آهن به عنوان مواد آلی ایست. برخی فاصله‌های شیمیایی کودهای آلی کاربردی در چند یک خاک آهنی تیمار شده است. کودگاهی در مقایسه با چند فاصله دارای همان‌ویژگی اکسید پیش‌تری است. لجن فاصله‌دار مقدار نیتروژن کلی بیشتر است. لجن فاصله‌دار دارای مقدار نیتروژن کلی بیشتر است. لجن فاصله‌دار دارای مقدار نیتروژن کلی بیشتر است.

اثر نوع کود بر پتانسیل معدنی قلب نیتروژن

در شکل 1 روند زمانی معدنی قلب نیتروژن برای هر اختلاف در تیمارهای معدنی قلب نیتروژن بود کلی و لجن فاصله‌دار میشود. همان‌طور که در جدول 1 مشاهده می‌شود پتانسیل معدنی قلب نیتروژن در لجن فاصله‌دار اندکی بیشتر از کود گاهی است. لیکن این تفاوت معدنی در نمی‌باشد. از آنجا که سطح معدن آلی در خاک مورد مطالعه اندک است. به نظر می‌رسد به دلیل عدم کاربرد کود آلی در تیمار شاهد حضور معدنی نیتروژن در آن. نسبت به تیمارهایی که کود آلی دریافت کرده‌اند، پتانسیل معدنی قلب نیتروژن در لجن فاصله‌دار می‌باشد. از روش آنکه مقدار نیتروژن موجود در لجن فاصله‌دار بیش از کود گاهی است، بین پتانسیل معدنی قلب نیتروژن در لجن فاصله‌دار مشاهده شده. این عدم تفاوت معدنی در پتانسیل است که در کود گاهی و لجن فاصله‌دار مقدار به دست امیده پتانسیل معدنی قلب نیتروژن پس از پی به گنجایش ذوب شده از اختلافات اختلافات شیمیایی. به عبارت دیگر در برابر تفاوت در مقدار کل نیتروژن دو کود، بخش فعال نیتروژن این دو کود اختلافات زیادی ندارند.

برخی محققین اثر لجن فاصله‌دار (24) و کود گاهی (23) و کود گاهی (24) و کود
شکل 1. اثر نوع کود، سطح کودی و تعداد سال کوده‌بندی بر مقدار تجمیع نیتریژن معدنی شده (Nо) شاهد = B، کودگاری = C و N0 = شاهد.

جدول 3. میانگین ارتفاع مختلف در نوع کود بر پتانسیل معدنی شدن نیتریژن (N0) عملکرد و جذب نیتریژن به وسیله

<table>
<thead>
<tr>
<th>عدد نیتریژن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>N0 (mgN kg⁻¹ soil)</th>
<th>نوع کود</th>
</tr>
</thead>
<tbody>
<tr>
<td>180/8 a,b</td>
<td>27/6 a,b</td>
<td>573 a</td>
<td>شاهد A</td>
</tr>
<tr>
<td>139/9 a</td>
<td>18/6 a,b</td>
<td>558 a</td>
<td>کود گاری</td>
</tr>
<tr>
<td>27/5 b</td>
<td></td>
<td>180 b</td>
<td>لجن فاضلاب</td>
</tr>
</tbody>
</table>

*: میانگین هایی که در هر ستون در یک حرف مشترک هستند در سطح 0.05 درصد آزمون دانک تفاوت معنی‌دار ندارند.

نوع کود بر عملکرد گیاه در نهایت می‌یابد (جدول 3). به عبارت دیگر در تفسیر نتایج آزمون خاک می‌توان تا حدودی آراپین در پارامتر (عملکرد و جذب نیتریژن توسط گیاه زراعی) به جای یکدیگر استفاده کرد. تشنه تأثیر‌های عملکرد ذرت و جذب نیتریژن از شاخص هایی جون Nо به نوع بر تشنه بین آنها دلالت می‌کند. تشنه این واقعه حاکی از آن دارد که عملکرد گیاه ذرت در این مزارع به شدت تحت تأثیر بخش فعال

2. اثر سطح کودی بر پتانسیل معدنی شدن نیتریژن

جدول 4. اثر سطح مختلف کودی بر پتانسیل معدنی شدن نیتریژن (N0) را نشان می‌دهد. همان طور که ملاحظه می‌شود،
پاناسون معدنی شدن نیترözون در یک خاک آمریکی تیمار شده با دو نوع کود آنی

پارامتر N۰ در تیمارهای ۰۰۰ مگاگرم بر هکتار کود دریافت
کردهان نسبت به تیمارهای ۲۵ مگاگرم بر هکتار دریافت
کردهان به صورت معنی‌داری بیشتر است و مقادیر این عامل برای
تیمار شاهد نیز به صورت معنی‌داری پایینتر از تیمارهای است
که مقدار ۵۰ مگاگرم در هکتار دریافت کردهان
از آنجا که مسئله از تفاوت نوع کود، سطح بالایی کود آلی
(۲۵۰ مگاگرم بر هکتار) در مقایسه با سطح بالایی آن (۲۵)
mگاگرم بر هکتار) مقادیر نیترژن آلی به خاک می‌افزاید.

۱ اثر دفعات کودهای بر پاناسون معدنی شدن نیتروزن

اثر دفعات کودهای بر پاناسون معدنی شدن نیتروزن (N۰) در جدول
۵ به دست می‌آید N۰ در تیمار همه کودهای نیتروزن به صورت
معنی‌داری بیشتر از تیمار دوبار کود همه نیتروزن می‌باشد.
در حالتی که تفاوت اساسی بین دو شاخص است، نتایج به
توضیح داده شده با افزایش دفعات کودهای می‌باشد
کود دریافت کرده نیز تفاوت معنی‌داری مشاهده نشد.

مقایسه تأثیر زایدی شاخص N۰ از تکرار سالهای کودهای
با آنچه در مورد نیتروزن کل خاک‌ها مشاهده گردید گویای
تفاوت اساسی بین دو شاخص است. جوانا که پیش از این
توجه داده شده با افزایش دفعات کودهای کل خاک
متناوب با دفعات کودهای افزایش حاوی مکانی این افزایش
با سطح قیل و بعد از آن تفاوت معنی‌داری نبود.

کاربرد ۱۰۰ مگاگرم بر هکتار بیشتر مقادیر عملکرد را سبب
گردید که به نوع معنی‌داری بیشتر از عملکرد پس از کاربرد
مقدار ۲۵ مگاگرم بر هکتار با تیمار

شاهد نیترژن آلی در سطح بالایی کود همه نیتروزن است. با
گذشته زمان به سطح تیمار شاهد نزول یافته و نیترژن آلی
معنی‌دار بین نیتروزن کل در تیمار شاهد و تیمار

۵ اثر سطح کودهای پر وریزی‌ها چگونه درت

کاربرد ۱۰۰ مگاگرم بر هکتار بیشتری بر سطح کودهای اصلی
با وریزی کدرهان نسبت به تیمارهای ۲۵ مگاگرم بر هکتار دریافت
کردهان به صورت معنی‌داری بیشتر است و مقادیر این عامل برای
تیمار شاهد با دو نوع کودهای ۱۲۰ مگاگرم بر هکتار مشاهده نشد. این وضعیت

جدول 4 اثر سطح مختلف دو نوع کود پتاسیل معدنی نیتروژن (N)، عامل تفاوت جذب بی‌تیروزن به وسیله درخت (اعداد جدول میانگین اثر کود گاوی و لجن فاضلاب است)

<table>
<thead>
<tr>
<th>جذب بی‌تیروزن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>کودهاد</th>
<th>وزیگی</th>
<th>سطح کود</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/4 b</td>
<td>2/8 b</td>
<td>شاهد</td>
<td>180/3 c</td>
<td>5</td>
</tr>
<tr>
<td>76/7 b</td>
<td>1/4 b</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69/3 b</td>
<td>13 b</td>
<td>76/7 c b</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* میانگین‌های که در هر ستون در یک حرف مشترک هستند در سطح 0/05 درصد آزمون دانکن تفاوت معنی‌دار ندارند.

1. واحد وزن تیمارهای کود آتی مگاگرم بر هکتار می‌باشد.

جدول 5 اثر تعداد سال کوددهی به پتانسیل معدنی عامل شدن نیتروژن (N)، عملکرد و جذب بی‌تیروزن به وسیله درخت (اعداد جدول میانگین اثر کود گاوی و لجن فاضلاب است)

<table>
<thead>
<tr>
<th>جذب بی‌تیروزن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>کوددهی</th>
<th>وزیگی</th>
<th>کوددهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/4 b</td>
<td>2/8 b</td>
<td>شاهد</td>
<td>180/3 c</td>
<td>نیازی نیازی</td>
</tr>
<tr>
<td>76/7 b</td>
<td>1/4 b</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69/3 b</td>
<td>13 b</td>
<td>76/7 c b</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* میانگین‌های که در هر ستون در یک حرف مشترک هستند در سطح 0/05 درصد آزمون دانکن تفاوت معنی‌دار ندارند.

به طور مشابه بین تیمارهای که یک کود و دوبار کود داده شده‌اند نیاز قابل رونت است. این پایه‌ای و تثبیت نتایج فرانز لوبرز و همکاران (15) است که اظهار داشتند با گذشت زمان مقدار بی‌تیروزن لیپال رو به کاهش می‌گذارد. در تحقیق حاضر نیز با گذشت سال از آخرین کوددهی تفاوت معنی داری بین تیمار شاهد و تیمار یک کود کود خودرو مشاهده نمی‌شود. این یافته بر دیگر آنها از تأثیر ترسیمی به خصوص می‌باشد. نیازی نیازی (لیپال) بی‌تیروزن را کاهش و تفاوت کمی رفتار آن از بی‌تیروزن کلی را کاهش می‌دهد. تا این که تفاوت کمی رفتار بین تیمارهای که در زمان‌های مختلف کوددهی شده‌اند را نگریستاده شده و با این اختلاف تأثیرات تجمع کوددهی را بر گیاه به خوبی نشان نمی‌دهد. مانند و همکاران (26) نیز نشان دادند که یک کود کودی به مدت سه سال معدنی شدن نیتروژن را تا 12
پتانسیل معدنی شدن تیتروزن در یک خاک آگهی تیمار شده با دو نوع کود آنی

شکل۳: رابطه بین عملکرد گیاه درخت (Y) و حاصل ضرب پتانسیل معدنی شدن تیتروزن در ثبت سرعت معدنی شدن (N0K) نشان داده که کاربرد کمبودیست لجنشکل فضایی در دو سال متوالی، غلظت تیتروزن را در گیاهی درخت‌افراشی می‌دهد. اثر کاهش متوسط کیفیت گیاه درخت، مانند آنچه پیش از این درک به تأثیر نوع و سطح کود گفته شد، تشکیل مولکولی تغییرات عملکرد ذرت و جذب تیتروزن را نشان داد (جدول ۵).

شکل۲: رابطه بین عملکرد گیاه درخت (Y) و پتانسیل معدنی شدن تیتروزن (N0)

زنت (33) نشان داد که کاربرد کمبود تیتروزن در دو سال متوالی، غلظت تیتروزن را در گیاهی درخت‌افراشی می‌دهد. اثر کاهش متوسط کیفیت گیاه درخت، مانند آنچه پیش از این درک به تأثیر نوع و سطح کود گفته شد، تشکیل مولکولی تغییرات عملکرد ذرت و جذب تیتروزن را نشان داد (جدول ۵).

9. همبستگی‌های ساده خطی بین پارامترهای گیاهی و پارامترهای سینتیکی معدنی شدن تیتروزن

عملکرد گیاه درخت رابطه معنی‌داری را با N0 (0.031 N0 + 4.868: r = 0.531**) و حاصل ضرب (0.040 N0 + 5.251: r = 0.719***) نشان می‌دهد (شکل ۲). نتیجه‌گیری بالاتر عملکرد گیاه درخت با N0 فاکتور که تلفیقی از دو پارامتر پتانسیل معدنی شدن و ثابت سرعت معدنی شدن تیتروزن می‌باشد نسبت به حالتی است که به‌کار گذاشته‌اند با نتیجه‌گیری وارد مدل می‌شوند.

به طور کلی می‌توان نتیجه‌گیری کرد که کاربرد کودهای آلی (لنج فضایی و کودکاری) سبب افزایش پتانسیل معدنی شدن تیتروزن و در نتیجه عملکرد و جذب تیتروزن می‌شد. افزایش تأثیر‌پذیری تیتروزن کل جذب‌ها در نتیجه اگزوز تغییرات پتانسیل معدنی شدن تیتروزن بود که این اشاک‌ها اختلاف ماهیت دختری تیتروزن کل دختری تیتروزن مؤثر در این ماده است. بیان‌های این عملکرد و جذب تیتروزن می‌تواند به دست آید با بررسی نتایج مکاپسیه پارامتر K مکاپسیه حاصل ضرب N0.
سیاستگرایی

هزینه انجام این تحقیق از محل اعیانات برخی دانشگاه صنعتی اصفهان تأمین شده که به‌دید و سیله قدردانی می‌گردد. از جناب آقای مهندس صدر ارحامی نیز به دلیل همکاری ایشان در آزمایشگاه سیاستگرایی می‌باشد.

شکل ۱. رابطه بین جذب نیترزئون توسط گیاه درخت (\(N_{\text{up}}\)) و حاصل ضرب پتانسیل معنی‌دار شدن نیترزئون در تابث سرعت معنی‌دار شدن \((N_{\text{K}})\)

\[
N_{\text{up}} = 9.425 N_{\text{K}} - 50.033 \\
\text{r} = 0.734
\]

شکل ۲. رابطه بین جذب نیترزئون توسط گیاه درخت (\(N_{\text{up}}\)) و پتانسیل معنی‌دار شدن نیترزئون در تابث

\[
N_{\text{up}} = 0.286 N_{\text{K}} + 15.576 \\
\text{r} = 0.568
\]

مباحث مورد استفاده

۱. براییمی، ن. ۱۳۸۵. بررسی اثر کودهای آلی بر خصوصیات شیمیایی خاک و جذب عناصر به‌وسیله درخت و غندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.

۲. خدیوی، ا. ۱۳۸۲. اثر کودهای آلی بر اشکال شیمیایی عناصر سنگین و جذب این عناصر توسط غندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.

۳. ملکوتی، م. ج. و. همایی. ۱۳۷۵. خصوصیات شیمیایی خاکهای مناطق خشک (مشکلات و راه حل‌ها). انتشارات دانشگاه تربیت مدرس، اصفهان.

۴. توری‌خشت، ف. و. افنونی. ۱۳۷۹. تخمین ظرفیت زراعی و نقطه پژوهشگاهی از روش برخی خصوصیات فیزیکی و شیمیایی خاک. علوم و فنون کشاورزی و منابع طبیعی سال پایه‌ای / چهلم و دوم (ب) / زمستان ۱۳۸۶

