پتانسیل معدنی شدن نیتروژن در یک حاکم تیمار شده با دو نوع کود آلی

یزنده لطفی، فرشید نوربخش و مجید افandi1

(تاریخ دریافت : ۱۲/۳/۸۷؛ تاریخ پذیرش : ۸/۲/۱۳۸۶)

چکیده
در سالهای اخیر، استفاده از پسماندهای آلی و فراورده‌های جانی کار خانه‌ها به عنوان کود آلی و اصلاح کننده‌های خاک برای تولید محصولات کشاورزی مورد توجه قرار گرفته است. در کشور ما به‌دلیل فقر موارد آلی خاک‌های کشور از یکسره و تولید تجاری کود‌های آلی از سوی زیادی امکان به‌ستفاده از این کود‌های افزایش یافته است. هدف از انجام این مطالعه بررسی و تفکیک اثر نوع کود، سطوح مختلف کودی و تعداد سال کوده‌ی پتانسیل معدنی شدن نیتروژن در یک حاکم آهکی (قاینی، لولی) می‌باشد. تحقیق کیفی آزمایشی در منطقه اصفهان بود. آزمایش در قالب طرح کرده‌ای خرد شده و در سه تکرار انجام گردید. هر یک اصلی به سه کرت خرد شده شریم گردد و عملی تیمارها در سه سال مختلف به‌صورت کود (کود گاوی یا لجن فاضلاب) مشابه (۵۰ و 100 مگاگرم بر هکتار) دریافت شدند. نمونه‌برداری یک‌کت از خاک ۶ ماه پس از کوده‌ی مصرف از عمق ۰ تا ۱۵ سانتی‌متر انجام شد. پتانسیل معدنی شدن نیتروژن با استفاده از روش انکوپاسیون به‌دست می‌آید - آزمایشات انجام گردید. نتایج دانش پتانسیل معدنی شدن نیتروژن در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، نتایج معمولی‌داری نداشته و در هر دو این تیمارها نسبت به شاهد اختلاف معنی‌داری را نشان دادند. اضافه کردن 100 مگاگرم بر هکتار کود گاوی به لجن فاضلاب در خاک پتانسیل معدنی شدن نیتروژن را نسبت به تیمار شاهد ۴ برابر و نسبت به تیمار ۵۰ مگاگرم در هکنار ۱/۰/۰ روابط معنی‌داری مشاهده شد. خاک ضرورت پتانسیل معدنی شدن نیتروژن در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، ۲/۰/۰ و جدیدتر نیتروژن ۰/۰/۰ و ۰/۰/۰ و ۰/۰/۰ روابط معنی‌داری مشاهده شد. خاک ضرورت پتانسیل معدنی شدن نیتروژن در تیمارهای که کود گاوی و لجن فاضلاب دریافت کردند، ۲/۰/۰ و جدیدتر نیتروژن ۰/۰/۰ و ۰/۰/۰ روابط معنی‌داری را نشان داد. نتایج بیانگر آن است که اگر تاثیر بی‌روی نیتروژن کل در تیمارهای مورد مطالعه، متوقف از آگویی این پیگری در پتانسیل معدنی شدن نیتروژن است.

واژه‌های کلیدی: پتانسیل معدنی شدن نیتروژن، لجن فاضلاب، کود گاوی، سیستمیک رده اول، ثابت سرعت، نگهداری

مقدمه
رشد روافذرونوی جمعیت و پیدایش انفجار جمیینی، یکی از تأمین نیازهای غذایی افراد جامعه و امنیت غذایی با توجه به

۱- دانشجوی سابق کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان و در حال حاضر عضو هیئت علمی دانشگاه آزاد اسلامی واحد ايلام
۲- به ترتیب استادیار و دانشیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
farshid@cc.iut.ac.ir

* : مسئول مکاتبات، پست الکترونیکی:

375
درصد نیازهای غذایی خالدها و آینده بشر مورد توجه خاص توجه مخصصین کشاورزی از جمله علم خاک بوده و محور عمده تحقیقات و بررسی‌ها، ایجاد زمینه‌ها و پیشرفت این است که منجر به پیاده‌رفتن کشاورزی مدرن (Sustainable agriculture) قسمت عمده کشور ما دارای اقیمندان خشک و نیمه‌خشک است و علم وجود پوشش گیاهی کافی سپاسگذار مقدار کم بقایای گیاهی به خاک و در نتیجه کمبود مواد آلی در خاک و بالطبع کاشت نیترورژن از گرده‌می‌شود. نیترورژن یکی از عناصر ضروری مورد نیاز گیاه و بی‌کیسه از اهمیت ای با کودهای آلی. در کودهای آلی، به نمایش عمده نیترورژن در قالب مولکول‌های آلی قرار گرفته است. از طرفی گیاه قادر به جذب نیترورژن آلی نیست. بنابراین که نیترورژن به شکل قابل جذب گیاه در داده است معمولاً شهد نیترورژن، مقدار نیترورژن معنی‌دار در مطالعه معنی‌دار شد. این امر به تجزیه مواد آلی تعیین می‌شود که مفیدترین اطلاعات کمی در مورد مقدار نیترورژن در سترس گیاه فراهم می‌شود (22). یکی از اهداف مهم این نوع یپره‌ها به دست آوردن برآوردی مناسب از میزان پسماندهای آلی است که یکید به هزینه‌های داشته باشید و از سوی گیاه سالم و دستگی سوی سالم از هزینه و جویز اورودن مشکلات زمینه‌ای مانند تجربه نیترات در خاک و افزایش آب‌های نیترات به آب‌های زیرزمینی و سطحی گردید (20).

نیترورژن آلی برای بهره‌مندی که معنی‌دار شدند (Mineralization) نامیده می‌شود به وسیله فعالیت گروه وسیعی از موجودات سنگ‌تراش و انرژی زمین‌های کاملاً خاکی. کاهش و اکنون است که به شکل معنی‌دار تبدیل می‌شود در خاک‌های
پنامی معده شدن نیتروژن در یک خاک آمکش تیمار شده با دو نوع کود آنی

نتایج نشان داد بالاترین پنامی معده شدن نیتروژن 221 میلی گرم نیتروژن در کیلوگرم خاک، مربوط به خاک بود که سالهای زراعی تحت کشت کاه و گرار تهیه شده بود و کمترین مقدار پنامی معده شدن نیتروژن 120 میلی گرم نیتروژن در کیلوگرم خاک، مربوط به خاکی بود که لایه سطحی آن به وسیله فرسایش از بین رفته بود.

گوگم و همکاران (۱۶) مقدار ۸۳۸۱ و ۸۴۰۱ در هکتار لجن فاضلاب را به خاک اضافه کردند و خاک را به مدت ۱۲ هفته در دمای ۳۰ درجه سانتی گراد اکوپاسیون کردند. مقادیر تجمعی نیتروژن معده شده برازی تیمارها به ترتیب، ۱۵/۴، ۱۵۴/۱ و ۱۶۵/۱ میلی گرم نیتروژن بکیروگرم دست آمد و مقادیر مربوط به ناهمواری هم در ترتیب ۲۱/۴۷۰، ۳/۰۴ و ۳/۰۸۹ به فهرست گزارش گردید.

با توجه به اینکه اضافه کردن کودههای آلمی هم‌سنجین لجن فاضلاب و کود گاوا به زمین‌های کشاورزی در سالهای اخیر مورد توجه قرار گرفته است (۱۶)، این تحقیق به هدف بررسی اثر کودههای آلمی مختلف (لجن فاضلاب و کود گاوا) بر سطوح مختلف کودههای آلی و آثار تجمعی و باقیمانده اعمال کودههای آلمی مختلف بر پنامی معده شدن نیتروژن، عملکرد و جذب نیتروژن توسعه گیاه در تیمار اجمالی گردید.

مواد و روش‌ها

این تحقیق در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان (لورک) تجفیف آباد واقع در ۴۰ کیلومتری جنوب غربی شهر اصفهان انجام شد. این خاک متعلق به فاصل فامینی، لومی میکسد، ترمیک، نیپیک (fine loamy mixed, thermic, Typic Hapludoll) هایل آرچیلد می‌باشد. برخی ویژگی‌های فیزیکی و شیمیایی خاک، مربوط به لورک در جدول ۱ آراش دشده است. میانگین دمای سالانه هوا در اینجا ۲۵ درجه سانتی گراد و متوسط بارندگی ۱۴۰ میلی‌متر می‌باشد. این خاک آهکی (۹۵) گرم بر کیلوگرم، میانگین کراتین کلسیم) بوده مقادیر ظرفیت زراعی و نقطه پزرودگی دايم در این خاک به ترتیب ۲۳/۳ و ۱۰/۲ درصد می‌باشد.

جرمی می‌باشد (۴). طرح بررسی اثر لجن فاضلاب و کود گاوا بر خاک و گیاه از پاییز سال ۱۳۷۸ آغاز شد. برخی ویژگی‌های کودههای آلی انتخاب شده در این تحقیق در حوالی ۲ اورنه شده است. در مورد ۱۲۷۸ مقادیر مختلف کودههای آلی و لجن فاضلاب (۲۵۰ و ۱۰۰ تن در هکتار) اعمال شد. این طرح در قالب بلوک کاملاً تصادفی با سه تکرار در هر هر ساله با مساحت ۶۵ متر مربع (۱۵×۳) اجرا شد. در حالی که بررسی پیش‌زمینه شاد در مورد ۱۳۸۷ (دو تکرار و در ساله) در مورد ۱۳۸۰ (سه تکرار و در ساله) بود که ترتیب چهار تکرار اصلی در ساله سوم به صورت پیوسته به کمیتی زمانی می‌باشد.

کودههای مصرفی در یک‌Calculate: 369

Downloaded from jcpp.iut.ac.ir at 20:44 IRST on Friday October 11th 2019
جدول ۱. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه (۴)

<table>
<thead>
<tr>
<th>ECE (dS m⁻¹)</th>
<th>pH</th>
<th>CEC (cmol kg⁻¹)</th>
<th>کربن آلی (g kg⁻¹)</th>
<th>رس (g kg⁻¹)</th>
<th>سبیت (g kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۶</td>
<td>۸.۳</td>
<td>۳۳/۶</td>
<td>۵</td>
<td>SiCl</td>
<td>۱۲۳</td>
</tr>
</tbody>
</table>

خاک در گل اشاع و ECE در عصاره اشاع اندازه‌گیری شد.

برای ارزیابی توانایی معدنی شدن نیترژن از روش استاندارد و اسپیت (۲۵) استفاده شد. در این روش ۳۰ گرم خاک هوا خشک و الك شده را با شن ۲۰ مش اسید شویی شده با تنسیت ۱۲۵ (شان : خاک) به طور کامل مخلوط گردید. سپس مخلوط خاک و شن به لوله‌های آیینی انفال یافت. پس از شروع انکوپاپیون نیترژن معدنی موجود در نمونه‌های خاک به سیل ۱۰۰ میلی‌لیتر محلول ۵/۰۰ مولار کلسیم که در مقادیر ۱۰ میلی‌لیتر به لوله آیینی اضافه گردید. از سیستم خارج شد. در ادامه ۲۵ میلی‌لیتر محلول غلیظ بدن نیترژن (محلولی که شامل سلول‌های کلسیم ۲ مولار، سولفات‌های مسیم ۲/۰۰ مولار و سولفات‌های تیتانیم ۵۵۵/۰ مولار و سولفات‌های باریک ۱۰۰۰/۰ مولار) به جیران انفال شد. خاک در آسیب‌های به خاک اضافه گردید و محلول اضافی به وسیله مکش ۲۸ بر خارج گردید. لوله‌های آیینی در داخل انکوبانتر در دمای ۳۵ درجه سانتی‌گراد به مدت ۲۲ هفته نگهداری شدند و در روز بیست و چهاردهم انجام تهیه دربوش بالای برداشتند. عمل آیونیک تا هفته دهم، هرم و هفته پنجم و پس از آن تا هفته سیزدهم و دومه هفته هفته یکمیار و پس از آن تا هفته سیزدهم و دومه هفته هفته اضافه کردن ۱۰۰ میلی‌لیتر محلول کلسیم ۵/۰۰ مولار و اضافه کردن ۲۵ میلی‌لیتر محلول فاقد نیترژن انجام شد.

جدول ۲. برخی خصوصیات شیمیایی کودهای آلی مورد استفاده

<table>
<thead>
<tr>
<th>کودهای معدنی</th>
<th>واحد</th>
<th>pH</th>
<th>ECE (dS m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کربن آلی</td>
<td>g kg⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رس</td>
<td>g kg⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سبیت</td>
<td>g kg⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیترژن کل</td>
<td>g kg⁻¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش تقطیر با نیترژن (Steam distillation) ازادگری شد (۳۱). مدل استفاده شده برای مطالعه تناسب معدنی شدن نیترژن معادله تمایلی رده اول که توسط استاندارد و اسپیت ارائه گردیده است (۳۲).

N₀ = N₀ (1 - e⁻Kt)

برای تناسبی معدنی شدن نیترژن در زمان t، به K و N₀ از این معادله N₀ نیترژن معدنی شده در زمان t به طور کمینه شده ترتیب تناسبی معدنی شدن نیترژن و ثابت سرعت معدنی شدن نیترژن می‌باشد. مقادیر N₀ و K و با استفاده از نرم‌افزار Curve Expert تعبیه گردید.

تجزیه و تحلیل آماری شامل تجزیه واریانس و مقایسه SAS میانگین و تجزیه و تحلیل رگرسیون با استفاده از نرم‌افزار انجام گردید.

نتایج و بحث

۱. خصوصیات خاک مورد مطالعه و کودهای آلی

برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه در جدول ۱ آمده که این گردیده است. باتچ خاک، لوم رس سیلیکی بوده و pH آن در محدوده pH خاک‌های آهکی است. قابلیت هیدر نیترژن کربنیکی آن نشان می‌دهد که خاک مورد تهیه، جزء خاک‌های غیرسور محسوب می‌شود. مقدار اندک کربن آلی خاک، نشان
دانه‌ها: فقر آن از نظر مواد آنی است. برخی خصوصیات شیمیایی
کودهای آلی کاربردی در جدول ۲ نشان داده شده است.
کودگازی در مقایسه با لجن فضایی دارای هندیکرکی
پیشی می‌باشد. لجن فضایی نسبت به کودگازی دارای
اسیده‌تری است. لجن فضایی دارای مقدار نیتروژن کل
پیشی نسبت به کود گازی می‌باشد و لجن کودگازی دارای
مقدار کربن آلی بیشتری است.

اثر نوع کود بر پانسیل معدنی شدن نیتروژن

در شکل ۱ روند زمانی معدنی شدن نیتروژن برای هر یک از
تیمارهای مورد مطالعه نشان داده شده است. در هر یک از تیمار
شاهد بر اثر ارتفاع کودهای آلی بر مقدار شدن
نیتروژن، گزارش نشان داد که معدنی شدن نیتروژن تا حدی زیاد
تخت تأثیر نگر کود مصرفی قرار می‌گیرد.

اثر نوع کود بر خصوصیات مربوط به گیاه درخت

عمک‌کرد (وزن خشک کل بخش هواپیما) گیاه درخت در تیمار
شاهد به‌طور معنی‌داری از تیمارهای کودگازی کود گازی دیگر
پیشرفت می‌نماید. در حالی که نشان‌دهنده گیاه درخت در
عمک‌کرد در تیمارهایی که کود آلی دریافت کردند مشاهده
می‌گردد (جدول ۳).

جدول ۳: اثر نوع کود بر جذب نیتروژن توسعه گیاه درخت را

نشان می‌دهد. این نتایج تفاوت معنی‌داری بین میزان برداشت
نیتروژن توسعه گیاه درخت در دو روی کود گازی و لجن
فضایی می‌نماید. ولی در تیمار شاهد میزان جذب
نیتروژن توسعه گیاه درخت از تیمارهایی است که کود آلی
دریافت کرده‌اند. در ضعف مختلف نیز به‌طور افزایش
لجن فضایی (۵ و ۲۴) و کود گازی (۲۰ و ۲۸) بر میکروکارد
و جذب نیتروژن توسعه گیاه درخت اشتهار گردد. لپویی و همکاران
(۳۲) گزارش کرده‌اند که اضافه کردن کود گازی به گیاه افزایش
معنی‌داری در عملکرد و جذب نیتروژن توسعه گیاه درخت نسبت به تیمار شاهد می‌شود.

رونده اثر نوع کود بر جذب نیتروژن، تقیبیاً مشابه روند اثر
برخی محققین از لجن فضایی (۴۲ و ۳۲) و کود گازی

پانسیل معدنی شدن نیتروژن در یک خاک آهکی تیمار شده با دو نوع کود آلی

(۱۲ و ۱۳) را بر اثر فعالیت شدن نیتروژن گزارش نموده‌ند. هنگام و همکاران
الی اثر انواع کودهای آلی (کمیستات، لجن
فضایی) و کود خیبری (پانسیل معدنی شدن نیتروژن را در
یک خاک رسی مورد مطالعه قرار داده. نتایج آن نشان داد که
اثر انواعی کودهای آلی بر پانسیل معدنی شدن نیتروژن به این
ترتیب است: لجن فضایی کودگازی، کود خیبری، کمیستات. عین
رتیب اثر انواع گشه روزمانیه‌ای چه در ۳ ماهه شده در تحقیق‌های
می‌باشد (جدول ۳).

سربنا و پرامورز (۳۱) نیز در مقایسه اثر انواع کودهای
آلی بر معدنی شدن نیتروژن نشان دادند که بیشترین شدت
معدنی شدن نیتروژن در تیمار لجن فضایی صاف‌کننده شد. انجام و
همکاران (۱۱) بر اثر انواع کودهای آلی بر معدنی شدن
نیتروژن، گزارش نمودند که معدنی شدن نیتروژن تا حدی زیاد
تخت تأثیر نگر کود مصرفی قرار می‌گیرد.
شکل 1. اثر نوع کود، سطح کودی و تعداد سال کوددهی بر مقدار تجمیع نیتروژن معنی‌دار شده (N_N نشان = B، کودگاری = C_n و C_{2n} مقدار = 0.1، و 2 تعداد سال کوددهی

جدول 3. میانگین اثرات مختلف دو نوع کود بر پتانسیل معنی‌دار شدن نیتروژن (N_N)، عملکرد و جذب نیتروژن به وسیله ذرت در پایان سال سوم پس از شروع آزمایش

<table>
<thead>
<tr>
<th>جذب نیتروژن (kg ha<sup>-1</sup>)</th>
<th>عملکرد (Mg ha<sup>-1</sup>)</th>
<th>N<sub>N</sub> (mgN kg<sup>-1</sup> soil)</th>
<th>ویژگی</th>
<th>نوع کود</th>
</tr>
</thead>
<tbody>
<tr>
<td>180/8<sup>a</sup></td>
<td>22<sup>a</sup></td>
<td>534<sup>a</sup></td>
<td>Bاین</td>
<td>این</td>
</tr>
<tr>
<td>139/9<sup>b</sup></td>
<td>18<sup>b</sup></td>
<td>558<sup>b</sup></td>
<td>کودگار</td>
<td>این</td>
</tr>
<tr>
<td>27/5<sup>b</sup></td>
<td>4<sup>b</sup></td>
<td>180<sup>b</sup></td>
<td>شاهد</td>
<td>این</td>
</tr>
</tbody>
</table>

* میانگین‌هایی که در هر ستون در یک حریف مشترک هستند در سطح 5 درصد آزمون دانکن تفاوت معنی‌دار ندارند.

نیتروژن خاک یا نیتروژن لیبل خاک است و نشان می‌دهد یکی از مهم‌ترین آثار عامل کودهای آلی افزودن به خاک نیتروژن و در نتیجه تأمین دراز مدت نیتروژن گیاه است.

جدول 4. اثر سطح کودی بر پتانسیل معنی‌دار شدن نیتروژن

جدول 4. اثر سطح مختلف کودی بر پتانسیل معنی‌دار شدن نیتروژن (N_N) را نشان می‌دهد. همان‌طور که ملاحظه می‌شود:

نوع کود بر عملکرد گیاه ذرت می‌باشد (جدول 3). به عبارت دیگر در تفسیر نتایج آزمون کود خاکی می‌توان تا حدودی از ایده‌ای پارامتر (عملکرد و جذب نیتروژن توسط گیاه ذرت) به جای یکدیگر استفاده کرد. تنش به تأثیر‌پذیری عملکرد ذرت و جذب نیتروژن از واکنش‌هایی چون N_N به نوع بر تنشابه بین آنها دلالت می‌کند. تنشابه این واکنش‌ها حاکی از آن دارای که عملکرد گیاه ذرت در این مزرعه به شدت تحت تأثیر بخش‌های
پانزدهم معنی در یک کی Оک تمایل موضوع به دو نوع تکنولوژی

پارامتر N_k در تیمارهای که ۱۰۰ مگاگرم بر هکتار کود نیز در جدول

ن battalion معنی در یک کی Оک تمایل موضوع به دو نوع تکنولوژی

در تیمارهای که ۲۵ مگاگرم بر هکتار دریافت

کردند به صورت معنی داری بیشتر است و مقدار این عامل برای

تیمار شاهد نیز به صورت معنی داری یکی تر از تیمارهای است

که می‌توان ۲۵ مگاگرم در هکتار دریافت کردند.

از آنگاه که مستقل از تفاوت نوع کود، سطح بالای کود آن

(۱۰۰ مگاگرم بر هکتار) در مقایسه با سطح بالایی که آن

مگاگرم بر هکتار) مقدار بیشتری نیتروژن آلی به بیمار افزایش

نیاز افزایشی N_k در سطح بالای کود آن امکان پذیر و نظر

می‌رسد. اگر با دنیا مقدار این عامل برای دیپل و

ورود ترکیبات آلی کودی که حاوی نیتروژن می‌باشد. نتایج

تحتیکات سالی و همکاران (۲۰) نشان داد که با افزایش مقدار

کاربرد لحن فاضلاب، معنی دادن نیتروژن افزایش می‌یابد. آنی

و این تحقیقات رضوان. که شدت کاربرد لحن فاضلاب اثر

معنی دارد که افزایش مقدار لحن فاضلاب اثر

گرایش کردن که که افزایش مقدار لحن اضافه شده به خاک.

معنی دادن شدت نیتروژن افزایش می‌باشد. افزایش و همکاران (۲۰) اثر

کاربرد سطح متغیران لحن فاضلاب را بر معنی دادن شدت

نیتروژن مورد بررسی قرار داده. نتایج نشان داد که با افزایش

شدت کاربرد لحن فاضلاب از ۱۵۰ گرم بر کیلوگرم،

معنی دادن شدت نیتروژن افزایش می‌باشد.

۶ اثر دفعات کودهای پانزدهم معنی در یک کی Оک

اثر دفعات کودهای پانزدهم معنی در یک کی Оک

در جدول N_k دیده می‌شود. در تیمار N_k معنی داری بیشتر از تیمار دو مدل کود به صورت معنی داری زمان به دو صورت باعث ایجاد

بین تیمارهای یک و دو در صورت کود به صورت مقدار دیده

نیست. تحقیق با جلب این بین تیمار شاهد و تیماری که یک بار

کود دریافت کرده نیز تفاوت معنی داری مشاهده نشد.

مقایسه تأثیرگذاری شاخصی N_k از نکات سالهای کودهای

با آنچه در مورد نیتروژن کل خاکها مشاهده گردید گویای یک

تفاوت اساسی بین این دو شاخص است. چنان که به یک

توجه داده شد این تفاوت دفعات کودهای کل خاک

متناسب با دفعات کودهای افزایش حاصل می‌کنند و این افزایش

با سطح قبل و بعد از آن در تمام موارد معنی دارد. حالان

که رضوان N_k به گونه دیگری است. عدم وجود تفاوت معنی دار

بین تیمار شاهد و تیماری که در نخستین سال کودهای نهایا

پیکربند کود دریافت کردند مشاهده می‌دهد سطح پنجم

معنی دادن نیتروژن که گویای بخش عادی نیتروژن است با

گذشته زمان به سطح تیمار شاهد تازه بهاره و بنابراین اختلاف

معنی دار بین نیتروژن کل در تیمار شاهد و تیمار یکپاره کود

خورده را با نیتروژن موجود در مولکولها غیر قابل

تجزیه (اى به محتوی تجربه شده) نبست داد که هری شک در پک

دوره نگهداری هوازی ۲۴ هفتهای نیز آزاد نشدهان. این وضعیت

ثبت متفاوت کود گاوا نشان می‌دهد.

۷ اثر سطح کودی بر وزن‌های گیاهی در

کاربرد ۱۰۰ مگاگرم بر هکتار بیشترین مقدار عامل‌کرده را سبب

گردید که به وسیله دو تیمار از عامل کرده پس از کاربرد

۲۵ مگاگرم بر هکتار برای کاربرد

شاهد تفاوت معنی داری نشان نداد (جدول ۲۴). گزارش‌گرها و

اکثریا (۲۴) نشان دادن که هر یکی از افزایش لحن فاضلاب از

تا ۴۰ مگاگرم بر هکتار، رشد درت افزایشی می‌باشد. پالادا و

همکاران (۲۸) گزارش نمودن که یکی از هوای مختلف گیاه

اسفنا از جمله طول ساقه و تعداد برک، پاسخ معنی‌داری به

سطح تفاوت کود گاوا نشان می‌دهد.
جدول ۲: اثر سطوح مختلف دو نوع کود پتانسیل معدنی شدن نیترژن (\(N\))، عملکرد و چربی نیترژن به وسیله ذرت (اعداد جدول میانگین اثر کود گاوی و لجن فاضلاب است).

<table>
<thead>
<tr>
<th>عملکرد</th>
<th>عامل</th>
<th>سطح کود</th>
<th>نیترژن ((\text{mgN kg}^{-1}\text{soil}))</th>
<th>وزنی</th>
<th>نیترژن ((\text{mgN kg}^{-1}\text{soil}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>۲۷/۴ ۲۸/۴</td>
<td>۲۳/۴ ۲۴/۴</td>
<td>شاهد</td>
<td>۱۸۰/۳ ۱۸۳/۳</td>
<td>۱۱۵ ۱۱۸</td>
<td>۷۰۰/۸ ۷۱۸/۸</td>
</tr>
<tr>
<td>۱۰۹/۴ ۱۱۰/۴</td>
<td>۹۹/۴ ۱۰۲/۴</td>
<td>۲۵ ۲۵</td>
<td>۷۲۰/۸ ۷۳۰/۸</td>
<td>۹۱۵ ۹۱۵</td>
<td></td>
</tr>
<tr>
<td>۲۵۰/۴ ۲۵۵/۴</td>
<td>۲۵۵/۴ ۲۶۰/۴</td>
<td>۱۰۰ ۱۰۰</td>
<td>۷۲۰/۸ ۷۳۰/۸</td>
<td>۹۱۵ ۹۱۵</td>
<td></td>
</tr>
</tbody>
</table>

* میانگین‌هایی که در هر ستون در یک حرف مشترک هستند در سطح ۵ درصد آزمون دانکن تفاوت معنی‌دار ندارند.

1. احتمال تعداد سال کوددهی پتانسیل معدنی شدن نیترژن (\(N\))، عملکرد و چربی نیترژن به وسیله ذرت (اعداد جدول میانگین اثر کود گاوی و لجن فاضلاب است).

<table>
<thead>
<tr>
<th>عملکرد</th>
<th>عامل</th>
<th>سطح کوددهی</th>
<th>نیترژن ((\text{mgN kg}^{-1}\text{soil}))</th>
<th>وزنی</th>
<th>نیترژن ((\text{mgN kg}^{-1}\text{soil}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------</td>
<td>------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>۲۷/۴ ۲۸/۴</td>
<td>۲۸/۴ ۲۸/۴</td>
<td>شاهد</td>
<td>۱۸۰/۳ ۱۸۳/۳</td>
<td>۱۱۵ ۱۱۸</td>
<td>۷۰۰/۸ ۷۱۸/۸</td>
</tr>
<tr>
<td>۱۰۹/۴ ۱۱۰/۴</td>
<td>۱۰۹/۴ ۱۱۰/۴</td>
<td>۲۵ ۲۵</td>
<td>۷۲۰/۸ ۷۳۰/۸</td>
<td>۹۱۵ ۹۱۵</td>
<td></td>
</tr>
<tr>
<td>۲۵۰/۴ ۲۵۵/۴</td>
<td>۲۵۰/۴ ۲۵۵/۴</td>
<td>۱۰۰ ۱۰۰</td>
<td>۷۲۰/۸ ۷۳۰/۸</td>
<td>۹۱۵ ۹۱۵</td>
<td></td>
</tr>
</tbody>
</table>

* میانگین‌هایی که در هر ستون در یک حرف مشترک هستند در سطح ۵ درصد آزمون دانکن تفاوت معنی‌دار ندارند.
پناسیل معدنی شدن نیترورزان در یک خاک آهکی تیمار شده با دو نوع کود افزوده.

شکل ۳. رابطه بین عملکرد گیاه درخت (۳) و حاصل ضرب پناسیل معدنی شدن نیترورزان در ثابت سرعت معدنی شدن نیترورزان (N₀)

زاپت (۳۳) نشان دادند که کاربرد کمپوزت لجن فاصلاب در دو سال مختلف، غلظت نیترورزان را در گیاه ذرت افزایش می‌دهد. اثر دفعات کودهای جدید نیترورزان توسط گیاه ذرت، مانند آنجه پیش از این درباره تأثیر نوع و سطح کود گفته شد، تشکیل البی‌گی تغییرات عملکرد ذرت و جذب نیترورزان را نشان داد (جدول ۵).

۹. همبستگی‌های ساده خطی بین پارامترهای گیاهی و پارامترهای سیتیکی معدنی شدن نیترورزان

عملکرد گیاه ذرت رابطه معنی‌داری را با N₀ (۴۰/۵/۳۳/۳۹۰۰) و حاصل ضرب N₀ (۴۰/۵/۳۳/۳۹۰۰) نشان می‌دهد (شکل ۳) و ۳ کنی قابل توجه همبستگی بالاتر عملکرد گیاه ذرت با N₀ فاکتور که تلفیقی از دو پارامتر سیتیکی معدنی شدن و ثابت سرعت معدنی شدن نیترورزان می‌باشد نسبت به حالتی است که هر یک از این پارامترها به تنهایی وارد مدل می‌شوند.

به طور کلی می‌توان گفت که کاربرد کودهای آلی (لجن فاصلاب و کودگاری) سبب افزایش پناسیل معدنی شدن نیترورزان و در نتیجه عملکرد و جذب نیترورزان توسط گیاه ذرت می‌شود. البته تأثیر ضریبی نیترورزان کل خاک‌ها ممکن است از الگوی تغییرات پناسیل معدنی شدن نیترورزان بوده که گروهی اختلاف ماهیت دختر نیترورزان کل از دختر نیترورزان وال خاک است، ویژگی‌های گیاهی عملکرد و جذب نیترورزان توسط گیاه
سیاست‌گذاری هزینه‌های انجام این تحقیق از محل اعتبارات پژوهشی دانشگاه صنعتی اصفهان تأمین شده که بین قدیمی و سیلی قدردانی می‌گردد. از جناب آقای مهندس فرد ارحامی نیز به دیل همکاری ایشان در آزمایشهای سیاست‌گذاری می‌شود.

شکل ۵. رابطه بین جذب نیترژن توسط گیاه درخت (\(N_{up}\)) و حاصل ضرب پتانسیل معدنی شدن نیترژن در تابی سرعت معدنی شدن (\(I_{N,K}\))

شکل ۴. رابطه بین جذب نیترژن توسط گیاه درخت (\(N_{up}\)) و پتانسیل معدنی شدن نیترژن (\(E_{N}\))

۱. براهیمی، ن. ۱۳۸۵. بررسی اثر کودهای آلی بر خصوصیات شبیه‌سازی شاخ و جذب عناصر به وسیله‌ی درخت و گندم. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

۲. خدیوی، ا. ۱۳۸۲. اثر کودهای آلی بر اشکال شبیه‌سازی عناصر سطح و جذب آن عناصر توسط گندم و گیاه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

۳. ملکوتی، م. ج. و م. همایی. ۱۳۷۳. خصوصیات شبیه‌سازی خاک‌های مناطق خشک (مشکلات و راه‌حل‌ها). انتشارات دانشگاه تربیت مدرس، تهران.

۴. نوربخش، ف. و. افیونی. ۱۳۷۹. تحقیق در روش نوعی و نقشه‌برداری دائم از روز بررسی خصوصیات قیزیکی و شبیه‌سازی خاک. علوم و فنون کشاورزی و منابع طبیعی (۱): ۱-۹.

