پتاسیم معدنی شدن نیتروژن در یک خاک آهکی تیمار شده با دو نوع کود آلی

یزدان لطفی، فرشید نوربخش و مجید افونی

(تاریخ دریافت : 04/3/2012، تاریخ پذیرش : 02/4/2013)

چکیده
در سال‌های اخیر، استفاده از پسماندهای آلی و فراورده‌های جانینی کار خانه‌ها به عنوان کود آلی و اصلاح کننده‌های خاک برای تولید محصولات کشاورزی مورد توجه قرار گرفته است. در کشور ما به‌دست فقر مواد آلی خاک‌های کشور از یک‌پس و تولید نجای کودهای آلی از سوی بی‌کاری تمایل به استفاده از این کود‌های فراورده‌گیه را ایجاد شده است. هدف از انجام این مطالعه بررسی و تفکیک اثر نوع کود، سطح مختلف کوده و تعداد سال کوده یا پتانسیل معدنی شدن نیتروژن در یک خاک آلی (فاین، لومی، ویکی، تریکی، نبک هایل آرژید) در منطقه اصفهان بود. آزمایش در قالب طرح کرت‌های خرد شده و در سال کرت‌های تیمار و در دو مقدار به سه کرت خرد شده نشان داد که تینی کردن خاک، بهبودی در افزایش نتایج، تیمارهای که کود جریان یا جریان فلزات در کرده، پذیرفته می‌شود. نتایج مربوط به ذرت در پایان مطالعه پذیرفتند. با توجه به اینکه نتایج این مطالعه می‌تواند در راه اندازی نحوه تیمار و در انتخاب کود برای کمک به بهبود کیفیت خاک، انلاین و بهبود کیفیت محصولات کشاورزی کمک کند.

واژه‌های کلیدی: پتانسیل معدنی شدن نیتروژن، لجن فلزات، کود جریان، سیستم رده اول، ثابت سرعت، نگهداری

مقدمه
رشد و روزافزون جمعیت و پدیده افزایش جمعیتی، یکی از تأمین نیازهای غذایی افراد جامعه و امتحن غذایی با توجه به

1. داشته باشی سایه کارشناسی ارشد خاک‌شناسی، دانشگاه چارشماری، دانشگاه صنعتی اصفهان و در حال حاضر عضو هیئت علمی دانشگاه آزاد اسلامی واحد ابلبرد
2. به ترتیب استادیار و دانشیار خاک‌شناسی، دانشگاه چارشماری، دانشگاه صنعتی اصفهان

farshid@cc.iut.ac.ir

* مسئول مکاتبات، پست الکترونیکی: *
کشاورزی پایدار (Sustainable agriculture) نیازهای غذایی حال و آینده بشر مورد توجه خاص شده و سعی می‌شود تا منابع کشاورزی از جمله علم خاک بوده و محور عمده تحقیقات و بررسی‌ها ایجاد زیستهای و پیشرفت‌ها است که منجر به پایداری تولید کشاورزی می‌گردد (۲۹).

قسمت علمی کشور مداری اقلیمی‌ها خشک و نیمه‌خشک است و عدم وجود بیشتر گیاهی کافی سبب بازگشت مقدار کم بقایای گیاهی به خاک و در نتیجه کمبود مواد آلی در خاک و بالطبع کاهش تیزروزون آن گردد. است. تیزروزون یکی از عنصر نیازی برای مرور نازار گیاه و یکی از مهم‌ترین اجزای همه کودهای آلی است. در کودهای آلی بخش عمده تیزروزون در قالب مولکول‌های آلی قرار گرفته است. از طرفی گیاه قادر به تولید تیزروزون آلی نیست. بنابراین اگر که تیزروزون به شکل قابل جذب گیاه درآید اندام است معدنی شود (۳۰).

اضافه کردن پس‌مانده صنعتی آلی و محصولات جاتی به زمین‌های کشاورزی در سال‌های آخر مورد توجه قرار گرفته است. بنابراین این امر به دلیل افزایش ارزی مورد نیاز برای تولید کودهای شیمیایی و از سوی دیگر به عنوان هریزه زبد و مشکلات زست محیطی در نتیجه دفن قهای آلی می‌باشد (۲۱).

در مطالعه معدنی شدن تیزروزون، مقدار تیزروزون معدنی رها شده به اثر تجزیه مواد آلی تعمیمی می‌شود که می‌تواند منonacci در شرایط مناسب و چرخش‌های مورد مقدار تیزروزون معدنی شده در مدت زمان اکتوپسیون تخمین زده. بنابراین معدنی شدن تیزروزون طبق معادله سیستمیک مرحله اول تخمین زده شد. انتخاب شناس داد که سرعت مقادیر شدن تیزروزون به مقدار تیزروزون قابل مقایسه شده و ریشه زمان وابسته است (۵۵). این نتیجه گیری شد که معدنی شدن تیزروزون آلی در شرایط بهینه دما و رطوبت از سیستمیک مرحله اول پروری می‌کند (۸ و ۳۵).

ال قاروس و همکاران (۱۱) چهار نوع خاک را به مدت ۱۶ هفته به روش استاندارد و استیمیاسی‌سازی انجامید (انکوپسیون) کرده و مقدار تیزروزون معدنی شده خالص را اندازه‌گیری کرده. برای تأمین نیازهای غذایی حال و آینده بشر مورد توجه خاص شده و سعی می‌شود تا منابع کشاورزی از جمله علم خاک بوده و محور عمده تحقیقات و بررسی‌ها ایجاد زیستهای و پیشرفت‌ها است که منجر به پایداری تولید کشاورزی می‌گردد (۲۹).
نتایج نشان داد بالاترین پنالتی معدنی شدن کوبنیوز در 241 میلی گرم کوبنیوز در کیلوگرم خاک، همراه با خاک، مربوط به خاکی بوده که سالهای زایده تحت کشت کاری نگذشته بود و کمترین مقدار پنالتی معدنی شدن کوبنیوز 120 میلی گرم کوبنیوز در کیلوگرم خاک، مربوط به خاکی بوده که لایه سطحی آن به وسیله فرمانی از بین رفته بود.

گوا و همکاران (16) مقادیر 0.04 و 0.06 تا 0.12 در هکتار

لجن فاضلاب را به خاک اضافه کردن و خاک را به مدت 12 هفته در دمای 30 درجه سانتی‌گراد انکوپاسیون کردن. مقادیر تجمعی کوبنیوز عضوی شده برای تیمارها به ترتیب $15/4$, $37/3$ و $5/1$ میلی گرم کوبنیوز در هر کیلوگرم به دست آمد.

و مقادیر مربوط به تیمار یک ترتیب $12/4$ و $0/03$ کوبنیوز در هر هکتار گزارش گردید.

با توجه به اینکه اضافه کردن کوبنیوهای آلی هم‌مانند لجن فاضلاب و کود‌گاوی به زمین‌های گزارشی در سالهای اخیر مورد توجه قرار گرفته است (10)، این تحقیق با هدف بررسی اثر کوبنیوهای آلی مختلف (لجن فاضلاب و کود‌گاوی)، سطوح مختلف کوبنیوهای آلی و اثر تجمعی و بایق‌مانده اعمال کوبنیوهای آلی مختلف بر پنالتی معدنی شدن کوبنیوز، عملکرد و زیاد و نیتریژن توسعه گیاهی در زیر انجام گردید.

مواد و روش‌ها

این تحقیق در مرزه تحقیقات دانشگاه صنعتی اصفهان (لورک) نجف آباد واقع در 40 کیلومتری جنوب غربی شهر اصفهان انجام شد. این خاک متعلق به فاصل قاین لومی می‌باشد. تربیت، نیتریک (fine loamy mixed, thermic, Typic Haplorguid) هایل آژنیت می‌باشد. برخی ویژگی‌های فیزیکی و شیمیایی خاک مرجع لورک در جدول 1 ارائه شده است. میانگین دمای سالانه هوا در اینجا، لورک نجف آباد $16/5$ درجه سانتی‌گراد و متوسط بارندگی 140 میلی‌متر می‌باشد. این خاک آلی (95) گرم بر کیلوگرم، معادل کربنی کلسیم) بوده مقدار ظرفیت زراعی و نظم پزمردگی دایم در این خاک به ترتیب $32/3$ و $10/0$ درصد

پنالتی معدنی شدن کوبنیوز در یک خاک آلی کم‌تیمار شده با دو نوع کود آلی

جرمی می‌باشد (10).

کربن دیاکسید CO_2 در برابر اثر دیگر فعال‌های کوه‌های آلی عنیاب که از رایانه سال 1788 آغاز شده یک خاکی به روشی که به بالاترین پنالتی معدنی شدن کوبنیوز دست یافته باشد در این تحقیق در دو هکتار شده است. در سال 1387 مقادیر مختلف کوه‌های آلی و لجن فاضلاب و 15 سانتی‌متری شده انجام شد. پس از برداشت نمونه‌های گیاهی در پایان دوره شده کوه‌های آلی به کربن‌های اضافه و تا معنی 20 سانتی‌متری با خاک مخلوط گردید. در یک از کرت ها ذرت (Zea mays L.) (نمونه) به عنوان (کشت بهره و به صورت اصلی کشت) شده. شهر ماه پس از سومین کوه‌هایی (بهار 1381)، نمونه برداری مرکب از معنی 10 سانتی‌متری خاک انجام شد. پس از برداشت نمونه‌های گیاهی در پایان دوره شده نمونه‌ها در آن به مدت 28 ساعت در دمای 70 درجه سانتی‌گراد خشک و عملکرد گیاه‌های نوزن حشک گیاه در واحد سطح تعیین گردید.

نمونه‌های خاک نیز بر اساس انتقال به از پایان طرح، هوا خشک و کوبیده و از کل 3 متری عبور داده شدند (4 و 8). در خاکی به مدت یک هفته در محیط آزمایشگاهی، به طور وسیعگانه ، و از 3 میلی‌متری عبور داده شدند (4 و 8). در خاکی به مدت یک هفته در محیط آزمایشگاهی، به طور وسیعگانه ، و از 3 میلی‌متری عبور داده شدند (4 و 8).

نمونه‌های خاک نیز بر اساس انتقال به از پایان طرح، هوا خشک و کوبیده و از کل 3 متری عبور داده شدند (4 و 8).
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه (1)

<table>
<thead>
<tr>
<th>Ece</th>
<th>pH</th>
<th>CEC</th>
<th>کربن آلی</th>
<th>رس</th>
<th>باتلاق خاک</th>
<th>سیلیت</th>
<th>شن</th>
</tr>
</thead>
<tbody>
<tr>
<td>dSm³</td>
<td></td>
<td>emol</td>
<td>g kg⁻¹</td>
<td>g kg⁻¹</td>
<td>m³ kg⁻¹</td>
<td>g kg⁻¹</td>
<td>g kg⁻¹</td>
</tr>
<tr>
<td>1/6</td>
<td>8.3</td>
<td>5</td>
<td>37/4</td>
<td>17</td>
<td>0.85</td>
<td>375/4</td>
<td>500/3</td>
</tr>
</tbody>
</table>

در عصاره اشباع Ece خاک در کل اشباع pH

جدول 2. برخی خصوصیات شیمیایی کودهای آلی مورد استفاده

<table>
<thead>
<tr>
<th>کودهای</th>
<th>چربی</th>
<th>واحد</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>کودهای</td>
<td>8/6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9/6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/6</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش فشرده‌سازی با یخبار آب (Steam distillation) اندزاه‌گری شد (31). مدل استفاده شده برای مطالعه پتانسیل معدنی شدن نیترورژن معادله نمایی رده اول که توسط استاندارد و اسپتار اثر گردد است (35).

\[N_{\text{min}} = N_o (1 - e^{-Kt}) \]

در این معادله، \(N_{\text{min}} \) عامل نیترورژن معدنی شده در زمان \(t \). \(K \) و \(N_0 \) به‌طور ترتیب پتانسیل معدنی شدن نیترورژن و سرعت معدنی شدن نیترورژن می‌باشند. مقادیر \(K \) و \(N_0 \) با استفاده از ترمافزار Curve Expert و با استفاده از روش آماری هدایت مجدد عوامل تعبیر گردید.

تجزیه و تحلیل آماری شامل تجزیه واریانس و مقایسه میان‌گیرین و تجزیه و تحلیل رگرسیون با استفاده از نرم‌افزار SAS انجام گردید.

نتایج و بحث

1. خصوصیات خاک مورد مطالعه و کودهای آلی برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد مطالعه در جدول 1 آورده شده است. باتلاق خاک، لوام رس سیلیزه، دمای pH آن در محدوده pH خاک‌های آهکی است. قابلیت هدایت الکتریکی آن نشان می‌دهد که خاک مورد توجه، جزء خاک‌های غیرشور محسوب می‌شود. فقدان اندک کربن آلی خاک، نشان می‌دهد که اثر افزایش در pH خاک در کل اشباع و اسپتار (35) استفاده شده. در این روش 30 گرم خاک هوا خشک و در کل شده با شن 20 مش اسید شوری شده با تنبیث 12.2 شن: خاک (به طور گسترده مجدد سپس مخلوط خاک و شن به لوشه آیشیوی انتقال یافته است. پیش از شروع انکوباسیون نیترورژن معدنی موجود در نمونه‌های خاک به وسیله 100 میلی لیتر محلول کلسیم کلسیم، که در مقادیر 10 میلی لیتری به لوشه آیشیوی اضافه گردید، از سیستم خارج شد. در ادامه 25 میلی لیتر محلول غلیظی بدون نیترورژن (محلول کم شال سولفات کلسیم 2 مولار، سولفات نیترورژن 0.02، مولار، فسفات دی هیدروژن کلسیم 0.05 مولار و سولفات پاتاس 0.5 مولار) برای چرخ اعصاری ضربه مصرف خارج شده در آیشیوی به خاک اضافه گردید و محلول اضافی به وسیله مکش 8/8 بار خارج گردید. لوشه آیشیوی در داخل انکوباسیون در دمای 35 درجه سانتی‌گراد، به مدت 22 هفته نگهداری شده و به روز به مدت 5 دقیقه برای انجام تهیه دریوش بالایی برداشت در قسمت پایینی رشته. عمل آیشیوی تا هفته دهم، هر 2 هفته یکبار پس از آن تا هفته پنجم و هر هفته دوم هفته یکبار با اضافه کردن 100 میلی لیتر محلول کلسیم کلسیم 0.01 مولار و اضافه کردن 25 میلی لیتر محلول قافیه نیترورژن انجام شد.

370
دانهده، قرار آن از نظر مواد آلی است. برخی خصوصیات شیمیایی کودهای آلی کاربردهی در جدول 2 نشان داده شده است. کودگاوا در مقایسه به کودگاوا دارای هندیکرکی pH بیشتری می‌باشد. لجن فاضلاب نسبت به کودگاوا دارای اسیدی‌تری است. لجن فاضلاب دارای مقدار تیترزون کل بیشتری نسبت به کودگاوا می‌باشد ولی کودگاوا دارای مقدار کربن آلی بیشتری است.

2. اثر نوع کود بر پتانسیل معدنی شدن تیترزون

در شکل 1 رونده معنی‌داری معدنی شدن تیترزون باعث هرکل از تیمارهای مربوط به کودگاوا و لجن فاضلاب می‌باشد. همان‌گونه که در جدول 2 مشاهده می‌شود، پتانسیل معدنی شدن تیترزون در لجن فاضلاب اندکی بیشتر از کودگاوا است. لیکن این تفاوت معنی‌دار نمی‌باشد. از آنجا که سطح ماده آلی در حساسیت مطالعه اندک است، به نظر می‌رسد که دلیل عدم کاربرد کود آلی در تیمار شاءد، پتانسیل معدنی شدن تیترزون در آن نسبت به تیمارهایی که کود آلی دریافت کردند پایینتر است. تا رفع آن که مقدار تیترزون موجود در لجن فاضلاب بیش از کودگاوا است، باید پتانسیل معنی‌داری معنی‌داری مشاهده نمی‌شود. این عدم تفاوت معنی‌دار بیانگر آن است که در کودگاوا و لجن فاضلاب مقادیر به دست آمده پتانسیل معدنی شدن تیترزون پس از یک نگه‌داری هوازی در 45 روز اختلاف ظنی ندارد. به عبارت دیگر، بررسی نتایج تفاوت نمی‌باشد که تیترزون دو کود، بخش نهایی تیترزون این دور کود اختلاف زیادی ندارند.

برخی محققین اثر لجن فاضلاب (24 و 25) و کودگاوا
مشخصات بالغات

جدول 3. میانگین ارتفاع مختلف دو نوع کود بر پتانسیل معدنی دندان نیتروژن (N0) عملکرد و جذب نیتروژن به وسیله

<table>
<thead>
<tr>
<th>نوع کود</th>
<th>لنج فاضلاب</th>
<th>کود گرای</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>180.5 a</td>
<td>185.8 b</td>
<td>186.6 a</td>
<td>180.5 b</td>
</tr>
</tbody>
</table>

*: میانگین ها ویا که در هر ستون در یک حرف مشترک هستند در سطح 5 درصد آزمون دانک تفاوت معنادار دارند.

نوع کود بر عملکرد گیاه درد می‌یابد (جدول 3). به عبارت دیگر در تنظیم تابع آزمون گیاهی می‌توان تا حدی از این پارامتر (عملکرد و جذب نیتروژن توسط گیاه ذرت) به‌جای یک‌دیگر استفاده کرد. تشکیل آن به‌کمک عملکرد ذرت و جذب نیتروژن از شاخ رنگی جوان (N0) به‌وسیله بر تشکیل بین آنها دلالت می‌کند. تشکیل انرژی حاکی از آن دارد که عملکرد گیاه ذرت در این مزرعه به شدت تحت تأثیر بخش فعال

شکل 1. اثر نوع کود و تعداد سال کوده‌ی بر مقدار تجمعی نیتروژن معدنی شده (N0) شاهد = B، کود گرای = C.

شکل 2. (مگاگرم بر هکتار)، 2 و 3 تعداد سال کوده‌ی

شکل 3. نیتروژن خاک یا نیتروژن لیبل خاک است و نشان می‌دهد که از مهم‌ترین آثار عملکرد کوده‌ای آن افزودن بخش فعال نیتروژن و در نتیجه تأمین دراز مدت نیتروژن گیاه است.

شکل 4. اثر سطح کود بر پتانسیل معدنی دندان نیتروژن

جدول 4. اثر سطح مختلف کودی بر پتانسیل معدنی شدن نیتروژن (N0) را نشان می‌دهد. همان طور که ملاحظه می‌شود.

372
پاناسی معدنی شدن نیتروژن در یک خاک آهکی تیمار شده با دو نوع کود آنی

عکس العمل جذب نیتروژن به سطح کود نیز در جدول ۴ نشان داده شده است. سطح ۱۰۰ مگاگرم بر هکتار بیشترین مقدار جذب نیتروژن را داشت که به صورت معناداری بیشتر از محاسبه درصدی بود. سطح ۲۵ مگاگرم بر هکتار نیز با تایمار ماده نشان داده نمود. مقایسه نشان داد که برای تاکید با تیمار درایفت کردن، درجه ی نشانده شده سطح معناداری را نشان داده که این نشان دهنده تأثیرات گذشته و جذب نیتروژن در جدول ۴ بود. اینن نشان دهنده نشان دهنده تأثیرات گذشته و جذب نیتروژن در سطح مختلف کودی‌های مانند این، نشان دهنده، این نشان نشان میدهد که تأثیرات گذشته این دو مشخص از نوع کود نیز مشاهده گردید.

اثر دفعات کودهای بر پاناسی معدنی شدن نیتروژن

اثر دفعات کودهای بر پاناسی معدنی شدن نیتروژن (N) در جدول ۵ دیده می‌شود که در تیمار سه بار کود داده شده به صورت معناداری بیشتری از مدول کود داده شده می‌باشد. در حالی‌که بین تیمارهای یک و دو سال کود داده شده تفاوت معناداری بین نمی‌شود. نتایج گوناگون این بین تیمارهای یک و دو سال کود داده شده نشان دهنده که بار کود درایفت کردن نیز تفاوت معناداری مشاهده نشد. مقایسه تأثیرپذیری این معدنی شدن نیتروژن از تکرار سال‌های کودهای که از استان و دو تفاوت اساسی بین این دو مشخص است. چنان‌که از این توضیح داده شده با افزایش دفعات کودهای نیتروژن کل خاک متغیر با دفعات کودهای افزایش حاصل می‌کند و این افزایش بایستی به سطح قیل و بعد از آن تا تعامل مورد معنی‌دار است. حال این که رفتار N به گونه‌ای است. عدم وجود تفاوت معنادار بین تیمار شاهد و تیماری که در نخستین سال کودهایی که یکبار کود دریافت کرده نشان دهنده سطح پاناسی معدنی شدن نیتروژن را گویایی به علل نیتروژن است. با گذشت زمان به سطح تیمار شاهد نشان دهنده نشان دهنده بنا بر تفاوت معناداری بین نیتروژن کل در تیمار شاهد و تیمار یکبار کود خورده را با بنا بر نیتروژن موجود در گیاه‌های غیر قابل تجزیه (با به بهترین تجربه) نسبت داد که حتی در پک‌های طول‌سالانه و تعادل برک، پاسخ معنی‌داری به سطح تفاوت کود گیاه نشان می‌دهد.

اثر سطح کودی بر وزن گیاه گیاه درخت کاک‌رود ۱۰۰ مگاگرم بر هکتار بیشترین مقدار عملکرد را دارد. این که به طور معنی‌داری بیشتر از عملکرد پس از کاهش ۲۵ مگاگرم بر هکتار می‌باشد. تیمار ۲۵ مگاگرم بر هکتار با تیمار تاکید شده تفاوت معناداری سطح نشان داده که این از افزایش نشان داده که این افزایش کردن نیز تفاوت معناداری مشاهده نشد. این نشان دهنده، این نشان نشان میدهد که تأثیرات گذشته این دو مشخص از نوع کود نیز مشاهده گردید.
جدول 4. اثر سطح مختلف دو نوع کود پنیسل معدنی شدن نیتروژن (N₀)، عاملکرد و جذب نیتروژن به وسیله درت (اعلام جدول میانگین اثر کود گاوی و لجن فاضلاب است).

<table>
<thead>
<tr>
<th>سطح کود</th>
<th>جذب نیتروژن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>N₀ (mgN kg⁻¹ soil)</th>
<th>وزنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>27/2 b</td>
<td>1/4 a</td>
<td>180/3 c</td>
<td></td>
</tr>
<tr>
<td>19/7 b</td>
<td>14/2 b</td>
<td>221/7 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55/4 a</td>
<td>22/2 a</td>
<td>37/6 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 5. اثر تعداد سال کوددهی پنیسل معدنی شدن نیتروژن (N₀)، عاملکرد و جذب نیتروژن به وسیله درت (اعلام جدول میانگین اثر کود گاوی و لحن فاضلاب است).

<table>
<thead>
<tr>
<th>سال کوددهی</th>
<th>جذب نیتروژن (kg ha⁻¹)</th>
<th>عملکرد (Mg ha⁻¹)</th>
<th>N₀ (mgN kg⁻¹ soil)</th>
<th>وزنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیک سال کوددهی</td>
<td>27/2 b</td>
<td>1/4 a</td>
<td>180/3 c</td>
<td></td>
</tr>
<tr>
<td>سال کوددهی</td>
<td>19/7 b</td>
<td>221/7 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سه سال کوددهی</td>
<td>55/4 a</td>
<td>22/2 a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : میانگین هایی که در هر ستون در یک هر مشترک هستند در سطح 5 درصد آزمون دانک تفاوت معنی دارند.

1. واحدهای تیمار به کمک آزمایشگاه کود آلی مکاگرم به هکتاً می‌باشد.

به طور مشابه بین تیمارهای که یک کبکر و دوبار کود داده شده‌اند نیز قابل روند است. این یافته تأییدی بر تأثیر فرآیند لیوبرژ و همکاران (14) است که اظهار داشتند با گذشت زمان مقدار نیتروژن لیبرژ را به کاستی می‌گذارند. در حقيقی حاضر نشان می‌دهند که گذشت سال در اثر کوددهی فعال به کمک بر دوبار کود خودرده معنی داری بین تیمار شاهد و تیمار یک کبکر کود خورد مشاهده نمی‌شود. این یافته به دلیل اهمیت‌پذیری بخش فعال (لیبرژ) نیتروژن آلی به وسیله الگوی رفتار آن از نیتروژن کل خاک را نمایان می‌سازد. یا درآوری می‌گرد که اگرچه نیتروژن کل خاک شاخص ارزش‌شناسی است، لیکن فاقد نتیجه‌بندی‌های باعث بین تیمارهای که در زمان‌های مختلف کوددهی شده، را امکان‌پذیر را لذا احتمالاً تأثیرات تجمعی کوددهی را بر گیاه به خوبی نشان نمی‌دهد.

مامو و همکاران (24) نیز نشان دادند که کاربرد متوازی کمبوست به مدت سه سال، معنی‌دار شدن نیتروژن را لذا...
ینمیل معدنی شدن نیتروژن در یک خاک آهکی تیمار شده با دو نوع کود آنی

شکل ۲. رابطه بین عملکرد گیاه درخت (۷) و پاتنیل معدنی شدن نیتروژن (N0)

زنت (۳۳) نشان دادند که کاربرد کمپوست لجن فاضلاب در دو مدل ملایمی غلظت نیتروژن در گیاه درخت افزایش می‌دهد. اثر دفعات کوددهی بر جذب نیتروژن توسط گیاه دیده شد. مانند آنچه پیش از این درباره تأثیر نوع و سطح کود گفته شد، تشکیل الگوی تغییرات عملکرد درخت و جذب نیتروژن را نشان داد (جدول ۵).

۹. همبستگی‌های ساده خصی بین پارامترهای گیاهی و پارامترهای سیستمیک معدنی شدن نیتروژن

عملکرد گیاه درخت رابطه معنی‌داری با مقدار ذرت N0 (r = ۰.۵۳/۰.۳۷/۰.۳۷) و حاصل ضرب N0 و تعداد گیاه درخت N0 (r = ۰.۳۷/۰.۳۷) نشان می‌دهد (شکل ۲). نتایج نشان دادند که همبستگی بین شدت N0 و تعداد گیاه درخت نیتروژن (مقدار ذرت N0) و (مقدار ضرب N0) با استفاده از نهایی وارد مدل شوند. از این نتایج، می‌توان به این نتایج پارامترها به نهایی وارد مدل اشاره کرد که کاهش درخت N0 از آنکه در نتایج حاصل ضرب و پارامتر N0 کاهش به دمای مقدار ذرت N0 و (مقدار ضرب N0) رهاسازی نیتروژن معدنی است، اطلاعات پیش‌تری نسبت به پیش‌تری (N0) در اختیار محققان قرار می‌دهد. برخی نتایج پیش‌تری نسبت به پیش‌تری (N0) پژوهشگران معقدانی پارامتر K برای تیمارهای که نهایی متفاوت هستند اطلاعات صحیح به دست نمی‌دهد لذا آن را به جای مقایسه پارامتر K مقایسه حالت ضرب
سلام

سیاست‌گذاری

هر یک انجام این تصویب باید از بازاریابی پزوهشی دانشگاه صنعتی اصفهان یک‌چهارم ماه که بین وسیله‌های قادرانه یک گروه از جناب آقای مهندس صدر ارشد ایرانی نیز به دلیل همکاری ایشان در آزمایشگاه سیاست‌گذاری می‌شود.

شکل ۲. رابطه بین حجم نیتروژن توسعه گیاه ذرت (Np) و پتانسیل معدنی شدن نیتروژن در ثابت سرعت معدنی شدن (K).

شکل ۵. رابطه بین چرب نیتروژن توسعه گیاه ذرت (Np) و حاصل ضرب پتانسیل معدنی شدن نیتروژن در ثابت سرعت معدنی شدن (K).

منابع مورد استفاده

1. براهیمی، ن. ۱۳۸۵. بررسی اثر کودهای آلی بر خصوصیات شیمیایی خاک و جذب عناصر بهوسیله ذرت و گندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
2. خدیوی، ا. ۱۳۸۶. اثر کودهای آلی بر اشکال شیمیایی عناصر سنگی و جذب این عناصر توسعه گندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
3. ملکونی، م. ز.، همایی. ۱۳۸۶. حاصلخیزی خاکهای مناطق خشک (مشکلات و راه حلها). انتشارات دانشگاه تربیت مدرس، تهران.