شیبه سازی، روانان و رسوبر با استفاده از مدل EUROSEM در زیر حضوه سولیجان

(آیزون کارون شمالي)

احمد جلالیان، مهدی امیر پور رضایی، بهزاد قربانی، شمس الله ایوبی

(تاریخ دریافت: 84/6/11 تاریخ پذیرش: 84/6/18)

چکیده

فرساشی خاک یکی از تهیه‌های مهم برای تولید کشاورزی و کیفیت محیطی به خصوص کیفیت آب و خاک است. برای انجام برنامه‌ریزی در یک حضوه ایزون کارون شمالي تا اطلاعات کافی از مقدار دهلدرفت خاک و میزان روانان در دسترس پاشیده نیست. در این مقاله بررسی کارایی مدل EUROSEM در شیبه سازی روانان و رسوبر در حضوه سولیجان و نتایج درصد کارایی و رفتاری می‌باشد.

مقدمه

یکی از مهم‌ترین و مهم‌ترین منابع پژوهش در زمینه فرساشی خاک، خاک‌سازی، روانان و رسوبر و زیر حضوه سولیجان می‌باشد. در این حضوه، مطالعه ایزون کارون شمالي با توجه به مجله‌های مختلف آزمایشگاهی به درصد کارایی و رفتاری در دسترس پاشیده.

مطالعه‌ای از طرفین و سیاتیون منابع پژوهش در زمینه فرساشی خاک، خاک‌سازی، روانان و رسوبر و زیر حضوه سولیجان می‌باشد. در این حضوه، مطالعه ایزون کارون شمالي با توجه به مجله‌های مختلف آزمایشگاهی به درصد کارایی و رفتاری در دسترس پاشیده. در این حضوه، مطالعه ایزون کارون شمالي با توجه به مجله‌های مختلف آزمایشگاهی به درصد کارایی و رفتاری در دسترس پاشیده.
مقدمه

فرسایش خاک یکی از مهم‌ترین مسائل اقتصادی، اجتماعی و زیست‌محیطی جهان است. فرسایش خاک یکی از پدیده‌هایی است که بسیاری از روش‌های فعالیت‌های غیرنظامی و میانگین‌های تکراری برخی از جنبه‌های شیبی و شیب‌های طرافی‌بندی شده است. و در نقاط مختلف دنیا مورد ارزیابی و استفاده قرار گرفته است.

آب‌الوح و همکاران (8) مدل فرسایش خاک ارزیابی قرار داده‌اند. یک پژوهشی که آنجا نشان داد که این مدل قادر است رواناب و هدرفته خاک را به‌طور خوبی شیبی سازی نماید. در راه حل بردکاری، این مدل را در حوزه C5 از الگوهای ایالات متحده مورد بررسی قرار دادند. آنها منحنی رواناب-زمان را با اصلاح چیندهی خاک و ضریب زیر بالا بردن و استریس کردن (5). نتایج این پژوهش نشان داد که مدل، کل رواناب و هدرفته خاک را به‌طور خوبی شیبی سازی می‌کند. در شیبی سازی شکل منحنی رواناب-زمان و منحنی رسوب-زمان ناموفق بوده است.

کویتسون و ووردیگر (15) مدل RA در حوزه C5 از مدل ترمینی و بولتونی مورد ارزیابی قرار دادند. مطالعات آنها نشان داد که مدل ترمینی بالاست و در برابر رواناب و هدرفته خاک در منطقه کوهستانی دار (15). و همکاران (18) ضمن ارزیابی مدل در مرکز، کاستاریکا و تیکاراکونه نشان داد که مدل رواناب و هدرفته کل را به‌طور خوبی شیبی سازی کرده است.

Farsh GAS یکی از اهم‌ترین مسائل اقتصادی، اجتماعی و زیست‌محیطی جهان است. فرسایش خاک یکی از پدیده‌های غیرنظامی و میانگین‌های تکراری برخی از جنبه‌های شیبی و شیب‌های طرافی‌بندی شده است. و در نقاط مختلف دنیا مورد ارزیابی و استفاده قرار گرفته است.

فرسایش خاک یکی از مهم‌ترین مسائل اقتصادی، اجتماعی و زیست‌محیطی جهان است. فرسایش خاک یکی از پدیده‌های غیرنظامی و میانگین‌های تکراری برخی از جنبه‌های شیبی و شیب‌های طرافی‌بندی شده است. و در نقاط مختلف دنیا مورد ارزیابی و استفاده قرار گرفته است.

فرسایش خاک یکی از مهم‌ترین مسائل اقتصادی، اجتماعی و زیست‌محیطی جهان است. فرسایش خاک یکی از پدیده‌های غیرنظامی و میانگین‌های تکراری برخی از جنبه‌های شیبی و شیب‌های طرافی‌بندی شده است. و در نقاط مختلف دنیا مورد ارزیابی و استفاده قرار گرفته است.
شیب سازی روناب و رسوب با استفاده از مدل EUROSEM در زیر وضوح سولیجان ... تابیت پژوهش‌های آن‌ها نشان‌دهنده کارایی مناسب مدل در پیش بینی روناب، رسوب کل و دیگر اوج روناب می‌باشد، یا بتوان به این که مطالعات محدودی در زمین اریزی با این مدل صورت گرفته و همچنین نتایج متفاوت حاصل شده است. این مطالعه به مظروف بررسی کارایی مدل EUROSEM در شبیه سازی روناب و رسوب بر اساس اندازه‌گیری میزان فرسایش و روناب واقعی در منطقه سولیجان واقع در استان چهارمحال و بختیاری می‌باشد.

مواد و روش‌ها

موضوع جغرافیایی منطقه مورد مطالعه
منطقه مورد مطالعه یکی از زیر حوضه‌های آب‌های خیر کاران شمایی می‌باشد که در استان جهرم می‌باشد. شهرستان سروج در مجاورت رودهای سولیجان واقع شده است. عرض جغرافیایی منطقه بین ۲۷°۰۱′ و ۲۷°۵۱′ شمال و طول جغرافیایی آن بین ۲۴° ۳۱′ و ۲۴° ۴۱′ شرقی قرار دارد. مساحت زیر وضوح ۲۰ هکتار و طول آهکی اصلی آن ۹۱۰ متر است. نسبت متوسط آن ۳۸ درصد و ارتفاع متوسط آن از سطح دریا ۲۷۴۶ متر است. کاربرد های موجود در زیر وضوح شامل بر سر کاربری مرتع، دیم و دیم‌خدا شده می‌باشد. یک کیاسی طبیعی منطقه شامل گون (Anthemis spp.), اویشن (Astragalus spp.) و ارهنجیم (Erangium spp.) می‌باشد. اقلیم منطقه معتدل سری با ناب‌سانته‌های خشک و خشک و متوسط بارندگی سالانه منطقه ۲۱۰ میلی‌متر است.

EUROSEM

توصیف مدل
با استفاده از مدل EUROSEM مدل فرسایش، روناب و جریان رسوب در سطح خاک را شبیه سازی می‌کند. میزان دیسپلرسی از مدل توان جرم دیمانویک به شکل زیر محاسبه می‌شود:

\[
\frac{\partial (AC)}{\partial (QC)} + \frac{\partial (QC)}{\partial x} - e(x, t) = q_s(x, t)
\]

که در این رابطه C، غلظت رسوب (m³/m²)، و A، سطح مقطع (m²) غلظت رسوب q_s(x, t) C غلظت رسوب (m³/m²)، و A، سطح مقطع (m²) غلظت رسوب q_s(x, t)
شکل ۱. الگوریتم مدل EUROSEM

شکل ۲. موقعیت چهارگانه زیرحوضه مورد مطالعه در حوضه آبخیز کارون شمالی
ب) ویژگی‌های پوشش گیاهی دارای چنین مرحله‌هایی است که، اگر نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی برابر با ترکیب، کاهش می‌یابد و نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

2) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

3) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

4) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

5) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

6) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

7) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

8) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

9) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

10) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

11) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

12) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

13) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

14) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

15) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

16) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

17) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

18) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

19) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.

20) مقدار نسبت بین چگالی جمع‌آوری شده و مقدار پوشش گیاهی مانعی نیست. بنابراین، باید از این نکته حمایت کنیم.
شکل 3. واحد بندی زیر نوشتار مورد مطالعه (الف) و فلورچارท واحدهندي (ب)

اندازه‌گیری رواناب و رسوب واقعی
برای به دست آوردن رواناب و رسوب واقعی، یک سریز مثلثی شکل در نقطه کنار جریان ضریب عطف شده در باور آورده تقریب ابعاد سریز، از رواناب تخمینی محاسبه شده به روش استدلالی (6) استفاده شد. پس از اندازه‌گیری مقدار ارتفاع آب روی تاج سریز و استفاده از رواناب زیر دنبال رواناب در هر زیگیار تعیین شد (6).

\[Q = \frac{0.644 (L^{0.5} - H^{0.5})}{H^{0.5}} \]

که در این رابطه L طول سریز H ارتفاع آب روی تاج سریز Q یک هی‌لتر بر ثانیه می‌باشد. از رواناب عبوری از سریز در ابعاد 10 و 30 سانتی متر در واحد زمینی رگیار، نموهای دریایی و پس از خشک کردن غلتخت و دنبال رواناب در واحد زمینی‌بندی، محاسبه گردید.

اشباع با ایجاد گشتاور و با سرعت 12-6 درجه در دقیقه صورت گرفت. مقاومت برخی خاک در حال اشباع عامل چسبندگی خاک می‌باشد.

\[\tau = C + \delta_{1}, \tan \phi \]

(7)

با توجه به اینکه در پری‌های تنش عمودی نداریم (\(\delta_{1} = 0 \)), مقدار مقاومت برخی (2) عامل چسبندگی خاک در حالت اشباع (C) می‌باشد. برای اندازه‌گیری فاکتور جداکننده (Detachment) یا به‌ویژه قطرات خاک به وسیله قطرات باوار، از دستگاه جام نفاجی (Splash Cup) استفاده شد. مقادیر اندازه‌گیری شده با جدول راهنما مدل تبدیل شدند (14).

دل) شرایط سطح خاک
برای توصیف سطح زمین از پارامترها زیری EUROSEM مدل در جهت نسبی، عامل عقب اندازه‌گیری نفوذ، ضریب زیر، مانیلگ، درصد سروریه و درصد شیب استفاده شدند (13). فاکتور عقب (Infiltration Recession Factor) اندازه‌گیری شد و متوسط اختلاف ارتفاع پستی و پنل‌های زمین می‌باشد. این پارامتر با استفاده از مت نواری تعیین گردید. مقدار زیر سطح خاک نیز به وسیله نجرنیمسایش با طول 100 سانتی‌متر محاسبه شد. برای تعیین مقدار سنگین‌گیری از باز کردن سطح خاک نمونه‌های برداشت‌شده و درصد حجمی ذرات

384
بررسی آنالیز حساسیت و کاراکتر مدل

برای بررسی کارایی مدل و مقایسه خروجی های مدل با مقادیر اندانگر تری شده رسوپ و رواناب از ضریب تشخیص (R²) استفاده گردید. (۱۶) میزان تغییر خروجی های مدل (هدررفت، بار رسوپ و سایر خروجی های مدل) به ایجاد تغییر در میزان ورودی های مدل را از آنالیز حساسیت می گویند. جهت انجام آنالیز حساسیت مدل از روش ساده استفاده گردید (۷ و ۱۵). آنالیز حساسیت مدل با ۱۲ ردص دارایی و کاهش پارامترهای دینامیک و مشاهده درصد تغییر خروجی های مدل انجام شد.

نتایج و بحث

شیب سازی مدل شامل سه مرحله مهم پارامتر سنجه (Calibration)، پارامتر سنجه (Parameterization) و ارزیابی (Validation) اعتبار است. در این بخش به ترتیب مراحل شیب سازی مدل در زیر بحث مورد مطالعه ارائه شده است.

پارامتر سنجه

پارامتر سنجه عبارت است از جمع آوری، انتخاب یک محاسبه و تصمیم دادن به ورودی به مدل است. منشأه‌های هندسی، خاکشناسی و پوشش گیاهی انتخاب گری شده جهت ورودی به مدل به ترتیب در جدای ۱، ۲ و ۳ ارائه شدند.

نتایج و استجای مدل

برای شیب سازی رواناب و رسوپ لازم است تا استجای مدل صورت گیرد. برای استجایی مدل از معیار ضریب تشخیص استفاده گردید. محاسبه و استجایی شده رواناب-زمان (هدررفت) برای رخداد می‌باید در شکل ۴ (الف و ب) ارائه شده است. استجایی مدل با استفاده از رخداد ۲۶ فروردین ۱۳۸۲ صورت گرفت. مпланطور که موردنظیری مشاهده می‌شود در این رخداد به دو مرحله است‌تعییه و تعییه و تغییر در پارامترهای همبستگی زیادی بین مقادیر اندیشگر گری و مقدار معادلی زده شده و به سیستم مورد وجود ندارد (R²<۰.۳۸) با اینکه مانند اندازه بهتر ترای رواناب پیش پیش در به وسیله

مدل از نتایج آنالیز حساسیت استفاده گردید. نتایج آنالیز حساسیت نشان داد که واکنش‌های رواناب کل و حداکثر دی‌بی رواناب به پارامترهای هدایت هیدرولیکی اشکال خاک و حکمت مونیتیک و رطوبت اولیه خاک از سایر عوامل می‌باشد. این نتیجه بهتر با تخمین مول و همکاران (۱۰) در هندسه نشان داد که بیشترین حساسیت کل هدایت خاک به ضریب زیری مانیتیک و کمترین حساسیت آن به جاده‌پردازی ذرات خاک به وسیله به وسیله بیان می‌باشد. این از نتایج قابل ذکر این تعقیب در مقایسه با سایر پژوهش‌ها (۶، ۴، ۳ و ۲) است که حساسیت مدل EUROSEM نسبت به موقتی و این پایداری. در شکل ۴، مقاله مورد انتقاد آنالیز حساسیت قبل از مراحل و استجایی و استجایی مدل آب‌‌یران می‌باشد. به‌هوری اثبات ملثی و استجایی رسوپ-زمان مشاهده شده باید مانگ شیب سازی به وسیله مدل با کاهش ضریب زیری مانیتیک شیاری و اثرات سایر بیماری و مانیتیک خاک به
جدول 1. مشخصات هندسی اندازه‌گیری شده در زیر حوضه مورد مطالعه و پارامترهای ورودی در وادهای مختلف زیرحوضه

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>شماره واحد در زیرحوضه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>XL(m)</td>
<td>90</td>
</tr>
<tr>
<td>W(m)</td>
<td>10</td>
</tr>
<tr>
<td>CLEN</td>
<td>1</td>
</tr>
<tr>
<td>RFR(cm²/cm²)</td>
<td>1</td>
</tr>
<tr>
<td>RECS(mm)</td>
<td>1</td>
</tr>
<tr>
<td>ROC(v/v)</td>
<td>1</td>
</tr>
<tr>
<td>SIR(mm/hr)</td>
<td>1</td>
</tr>
<tr>
<td>SPLTEX</td>
<td>1</td>
</tr>
<tr>
<td>SPRIL(mm/hr)</td>
<td>1</td>
</tr>
<tr>
<td>DEPNO</td>
<td>1</td>
</tr>
<tr>
<td>RLLW(m)</td>
<td>1</td>
</tr>
<tr>
<td>BW(m)</td>
<td>1</td>
</tr>
<tr>
<td>ZL</td>
<td>1</td>
</tr>
<tr>
<td>ZR</td>
<td>1</td>
</tr>
<tr>
<td>NU</td>
<td>1</td>
</tr>
<tr>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>NL</td>
<td>1</td>
</tr>
<tr>
<td>NC1</td>
<td>1</td>
</tr>
<tr>
<td>NC2</td>
<td>1</td>
</tr>
<tr>
<td>NELE</td>
<td>1</td>
</tr>
</tbody>
</table>
جدول ٢. مشخصات‌های خاک‌شناسی اندازه‌گیری شده در زیب حوضه موردنظره و پارامترهای ورودی در واحدهای مختلف زیب حوضه

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>POR</td>
<td>0</td>
</tr>
<tr>
<td>Dₐ(µ)</td>
<td>0.05</td>
</tr>
<tr>
<td>DERO(m)</td>
<td>0</td>
</tr>
<tr>
<td>RHOS(kg/m³)</td>
<td>0</td>
</tr>
<tr>
<td>FMIN(min/h)</td>
<td>0</td>
</tr>
<tr>
<td>G(mm)</td>
<td>0</td>
</tr>
<tr>
<td>THI(v/v)</td>
<td>0</td>
</tr>
<tr>
<td>THMAX(v/v)</td>
<td>0</td>
</tr>
<tr>
<td>EROD(g/l)</td>
<td>0</td>
</tr>
<tr>
<td>COH(kPa)</td>
<td>0</td>
</tr>
<tr>
<td>MANN(IR)</td>
<td>0</td>
</tr>
<tr>
<td>MANN(RL)</td>
<td>0</td>
</tr>
<tr>
<td>PAV</td>
<td>0</td>
</tr>
</tbody>
</table>

FMIN: حداکثر سطح تصفیه‌گر خاک
POR: میزان برآورد خاک
Dₐ(µ): میزان متوسط قطر ذرات خاک
DERO(m): حداکثر سطح تصفیه‌گر خاک
RHOS(kg/m³): یونیت مولکولی حرارت خاک
FMIN(min/h): دما حداکثر سطح تصفیه‌گر خاک
G(mm): حداکثر میزان قطر ذرات راکدی خاک
THI(v/v): حداکثر وضعیت خاک
THMAX(v/v): حداکثر وضعیت خاک
EROD(g/l): حداکثر وضعیت خاک
COH(kPa): حداکثر وضعیت خاک
MANN(IR): حداکثر وضعیت خاک
MANN(RL): حداکثر وضعیت خاک
PAV: حداکثر وضعیت خاک

جدول ٣. مشخصات پیوندی پوشش گیاهی اندازه‌گیری شده در زیب حوضه موردنظره و پارامترهای ورودی در واحدهای مختلف زیب حوضه

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVER</td>
<td>0</td>
</tr>
<tr>
<td>PLANGLE(°)</td>
<td>0</td>
</tr>
<tr>
<td>PLANTH(cm)</td>
<td>0</td>
</tr>
<tr>
<td>SHAPE</td>
<td>0</td>
</tr>
<tr>
<td>DINTER(mm)</td>
<td>0</td>
</tr>
<tr>
<td>PLANTBASE(m²)</td>
<td>0</td>
</tr>
</tbody>
</table>

COVER: نسبت پوشش گیاهی در سطح
PLANGLE(°): ارتفاع گیاه
PLANTH(cm): طول گیاه
SHAPE: شکل گیاه
DINTER(mm): قطر پایه گیاه
PLANTBASE(m²): مساحت پوشش گیاه

شکل ٤. منحنی وابستگی به برای مدل EUROSEM قبل (الف) و بعد (ب) از استوکس بیه وسیله رخداد ٤٥ لیتره در حوضه سولیجان
جدول ۲. نتایج و استناجی مدل Eurosem به وسیله رخداد ۲۴ فوروردین ۱۳۸۲ در حوضه سولیجان

<table>
<thead>
<tr>
<th>فاکتور مورد استنای</th>
<th>اوج دیس رسوپ (g/min)</th>
<th>اوج شدت رواناب (l/min)</th>
<th>کل رواناب (t/ha)</th>
<th>کل رواناب (m³/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مشاهده شده</td>
<td>114/7</td>
<td>213/92</td>
<td>20/15</td>
<td>10/79</td>
</tr>
<tr>
<td>شبه سازی شده</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۵. منحنی و استنایی رسوب - زمان برای رخداد ۲۴ فوروردین ۱۳۸۲ قبل (ب) و بعد (ب) از استنایی به وسیله مدل Eurosem در حوضه سولیجان

نتایج حاصله به نتایج فولی و همکاران (۱۶) و حمیدپور (۴) متفاوت است که به نظر می‌رسد عمدتاً ناشی از تفاوت در مشخص‌های هندسی حوضه و تداخل‌های حضور و تکنیک‌های صنعتی بود.

از ارتباط اعتبار مدل

پس از اعمال تغییرات لازم بر مدل بر اساس نتایج استنایی، با استفاده از فرآیند ارتباط اعتبار مدل چگونگی شیب سازی رخدادهای آینده به وسیله مدل و استنایی شده در منطقه معین می‌گردد. اگر مدل شیب سازی خوبی در این مراحل داشته باشد، این مدل قادر است رخدادهای آینده را به خوبی نماید (۲). برای شیب سازی رواناب و رسوب از رخداد ۲ ارتباط سال ۱۳۸۷ استفاده گردید.

منابع:

۱۴. شیب سازی شده

۱۵. مشاهده شده

۱۶. منحنی طور که نتایج شکل ۵ نشان می‌دهد زمان رسیدن به اوج رواناب این باید شدت و واقعی به ترتیب ۳۰ و ۴۲ دقیقه پس از شروع بارندگی می‌باشد. مدل توانسته است کل رواناب و اوج رواناب را به خوبی نماید و به اوج رواناب ضعیف عمل کرده است. نتایج سایر محققین (۱۰ و ۱۱) نیز نتایج حاصله همخوانی دارند. همچنین بر اساس شکل ۵ زمان رسیدن به اوج رسوب واقعی و شیب سازی شده به ترتیب ۱۵۵ و ۱۴۰ دقیقه است که نشانه‌دهنده آن است که مدل توانسته این زمان را نسبتاً مناسب شیب سازی نماید.

388
شیب سازی رواناب و رسوب با استفاده از مدل EUROSEM در زیرخورش مدیان... شکل 7. منحنی ارژایی انتخاب منحنی رسوب - زمان پرای رخداد 2 اردیبهشت 1382 به وسیله مدل EUROSEM

شکل 6. منحنی ارژایی انتخاب منحنی رواناب - زمان پرای رخداد 2 اردیبهشت 1382 به وسیله مدل EUROSEM

جدول ۵. نتایج ارژایی انتخاب مدل پرای رخداد 2 اردیبهشت 1382

<table>
<thead>
<tr>
<th>فاکتور مورد ارزیابی</th>
<th>اوج دی ی رسوب (g/min)</th>
<th>اوج شدت رواناب (l/min)</th>
<th>كل رواناب (t/ha)</th>
<th>كل رسوب (m³/ha)</th>
<th>مشاهده شده</th>
<th>مشاهده شده</th>
<th>شبیه سازی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>472/5</td>
<td>59/91</td>
<td>12/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>460/8</td>
<td>54/90</td>
<td>11/37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

خبی شبیه سازی نماید و لی در شبیه سازی دبی اوج رسوب ناموفق عمل را از است. همچنین در شبیه سازی نمایش در شبیه سازی زمان رسیدن به دبی اوج رسوب و اوج رواناب دیگر نمایش در شبیه سازی زمان نماید. این نتایج گیبری نشان دهنده شرایط سازی محققین (۴۰ مطابق دارد. گزارش‌های مورگان و همکاران (۱۴) و همکاران (۱۸) نیز نشان می‌دهد که مدل، که هدف را دارد با نتایج شبیه سازی دیگر رواناب و زمان رسیدن به دبی اوج رسوب شبیه سازی می‌نماید.

نتیجه‌گیری

نتایج این پژوهش نشان داد که مدل در EUROSEM نیازی به رواناب و زمان دارد که مدل در زیرخورش مورد مطالعه برای پیش بینی رواناب کل و حداکثر دبی رواناب نسبت به پارامترهای هیدرولوژیک اشاع خاک، حرکت مویینگی و رطوبت اولیه و خاک بیش از سایر

شکل هیدروگراف را شبیه سازی نماید. مقدار ضریب تغییر معادل 0/64 که در سطح احتمال 99 درصد معنی‌دار است گواهی این مدعایت. همچنین مدلهای شبیه‌سازی کل رواناب و دبی اوج رواناب (جدول ۷) به خوبی عمل کرده است. ولی همانطور که شکل 6 نشان می‌دهد در شبیه‌سازی زمان شروع رواناب و زمان رسیدن به اوج رواناب ناموفق بوده است. مطالعات کویتونو و مورگان در اوکلاهما (۱۶) و خاک مرتفع این مطلوب می‌باشد. هرچه و همکاران (۱۸)، قربانی (11) و کویتونو و روودورگر (15) نیز نشان داده که مدل EUROSEM نمی‌تواند به خوبی زمان شروع رواناب را شبیه سازی نماید.

منحنی رسوب - زمان که مورد ارزیابی انتخاب قرار گرفته، برای رخداد 1382 اردیبهشت 1382 در شکل 7 ارائه شده است. همچنین خلاصه برخی نتایج در جدول 5 آمده است. همان طور که نتایج نشان می‌دهد مدل توانسته است کل رسوب را به
منابع مورد استفاده

1. بازی بوری, م.1372. فیزیک خاک. جاب پنجم, انتشارات دانشگاه تهران.
2. حیبیان دهکردی, ر.1381. ارزیابی عملکرد سازه در بالا و کاهش ردهای و فرسایشی، استفاده از مدل EUROSEM
3. حسینی ناج, ع. و کوچکی (مترجم).1375. مدیریت باتری خاک: انتشارات جهاد دانشگاهی مشهد.
4. حنیفی پور, ر.1383. شبیه‌سازی خاک با استفاده از مدل EUROSEM در زیر حوضه باران واقع در استان کهگیلویه و بویراحمد. پایان نامه کارشناسی ارشد خاک‌شناسی, دانشگاه شهید چمران اهواز.
5. خلیل قنجم, ب.1381. ارزیابی مدل محاسبه فرسایش خاک (EUROSEM) در خاک‌های طبیعی از جمله خاک‌های چاه‌زایی, دانشگاه صنعتی اصفهان.
6. رفاهی, ح.1375. فرسایش آب و کنترل آن. انتشارات دانشگاه تهران.
7. قربانی, ب.1380. روشهای کاربردی تغییر نفوذی‌پذیری خاک تحت شرایط آبیاری وابسته به نیروی شمایر.1