چکیده
پالایش سیز روست نوینی است که از گیاهان برای ذوب آب‌های آلالودی به سرپ و کادمیم استفاده می‌شود. این روش در مقایسه با سایر روش‌های پالایش، بیشتر کم‌هزینه و ساده است. مدل‌های پالایش‌سیز برای شناخت بیشتر فرآیندهای حاکم بر پدیده پالایش و مدیریت خاک‌های آلالود به وسیله استفاده از روشهای پالایش‌سیز تقویم یافته‌اند. هدف از این پژوهش، مدلهای پالایش‌سیز خاک‌های آلالود به سرپ و کادمیم بود. بدین منظور، نظریه روشن بر ردیت و فشار خاک (دهم‌مانه برون‌چین خاک) و گیاه (ترخ جذب آلودگی به وسیله گیاه) در پرداز آلودگی‌ها ارائه شد. بدین منظور، خاکی (Barbara verna) و اسفنج (Spinacia oleracea L.) در آنها کشت گردید. گیاهان در پنجه بز زمانی برداشت شدند. غلظت کل سرپ و کادمیم در گیاه و خاک به ترتیب با روش اکسیداسیون تدریجی، اکسیداسیون با استفاده از 2 مولار عصاره‌گیر و با دستگاه‌های جذب اتمی و گذاری اندوزه‌گیر و استفاده از 98 درصد (R = 0.24) برای بروز زمان لازم برای پالایش سیز سرپ از خاک به دست آمد. با وجود این، مدل‌های ایجاد شده تثبیت پایدار به دست آوردند. نتایج نشان داد که همه‌مانه برون‌چین خاک برای سرپ و کادمیم از مدل خطر پیروی می‌کند. اگر خاک غلظت سرپ در خاک، توانایی با و استفاده در آلالود گروه ذوب پالایش داشته. چنان‌که در آلالودی کامپیوتر خاک این توانایی برای شاهی و استفاده نتایج بود. در پایان با ترکیب واکنش خاک (دهم‌مانه برون‌چین خاک) و واکنش گیاه (ترخ جذب ذرات از خاک به وسیله گیاه) به آلالودی سرب و کادمیم خاک، مدل‌های با کامپیوتری برای رشد آلالودی کننده مناسب باشد.

واژه‌های کلیدی: آلالودی خاک، پالایش سیز، سرپ، کادمیم، مدل‌سازی

مقدمه
آلالودی زیست‌بوم از مشکلات اساسی عصر حاضر به شمار می‌رود. برای رویارویی با این مشکل لازم است روشهای کم‌هزینه و به‌پایان پالایش‌سیزی مناطق با آلالود به کار رفته باشند. لیکن، اجرای بیشتر این کار، مزایایی از نظر حاضر و در حال حاضر استفاده خاک‌شناسی، دانشگاه تکنولوژی و کشاورزی است که از آنها استفاده می‌کنند.

1. دانشجوی سابق دکتری خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تکنولوژی و کشاورزی، تهران
2. دانشجوی خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تکنولوژی و کشاورزی، تهران

h.khodaverdliloo@umia.ac.ir

* : مسئول مکاتبات، پست الکترونیکی:
سرب، مس و نیکل مناسب نیست. این مدل‌ها برای پالایش سایر سرب و کادمیوم نودن. بکار برای پرآور و آلودگی محصولات زراعی در خاک‌های آلوده اجبار شده بودند. نتایج به نظر متفاوت می‌باشد که توپ نیاز به این مشاهده سایر طرح‌های گروهی کارآمدی‌تر است. گفته شده است (9). پاسخگویی از مواد (Phytoremediation) در پالادون و زیر بود.

مقدار جذب و اندازه آلی‌های از چگونه توسط گیاه، ارزشی عمل در شناخت بیشتر فاکتورهای پالایش سایر و ممبرین مناطق آلوده دارد. این مدل‌ها را می‌توان برای کاهش (Macroscopic) (ک ваکنش) کاملی از میانی روش‌های خرد و شلا در مدلهای ابنی جذب آب به وسیله گیاهان در ورود نشان دهی شود. می‌توان رایج سایر آلودگی خاک در کشاورزی، توسط همایی (2) و همایی و هکاران (11) ارائه شده است. این دو مدلهای از بهتر شناخت و مطالعه دقیق بیشتر جذب آب و یا عنصر توسیع گیاه کاربردی دارند. حال این در مدیریت یا برنامه‌ریزی‌های کلان و طراحی پالایش سایر مدل‌های کلان - که بیشتر به نتیجه فرایند می‌گذارند - ارزش بیشتری دارند. نتایج پژوهش‌های چند در مورد جذب اولین توسیع گیاهان، چه در حوزه مدل‌های خرد و چه در حوزه مدل‌های کلان، انجام گرفته است (17). پایبندی از این پژوهش‌ها به منظور پالایش سایر نوبات نگهدارن و برای تعیین چند عناصر غذایی توسط گیاهان اجرا شده است. (17).

مدل‌های توسیع کویابادی به نام (Coupled Transport of water, heat and solutes in Soil-Plant-Atmosphere Continuum)

برای انتقال توان آب، گرما و اصلاح در پوست‌نار خاک - گیاه - CTSPAC CTSPAC و نیاز در بخش غیرشیمیایی خاک بین هم. پیام، CTSPAC زیر مدل دارد: زیر مدل خاک و زیر مدل دیگر. زیرمدل خاک، انتقال توان آب، گرما و مواد شیمیایی را در بخش غیرشیمیایی خاک بین می‌کند. زیر مدل خاک با توجه به چیپ‌دگی‌های تغییر دهنده بخش غیرشیمیایی خاک مربوطه و بازه زمانی برای جریان و انقلب مول هم گیاه، اجرا و گرما در بخش غیرشیمیایی خاک دارد. زیر مدل گیاه، جذب ریشه‌های، انتقال در آلوده چوبی و آب و انقلاب مواد شیمیایی به وسیله گیاه را شرح می‌دهد. از آنجا که گیاهان از نظر هندسی، فیزیولوژیک و پیوسته پیشرفت از بخش غیرشیمیایی خاک مستحکم، این زیر مدل بسیار بیشتر از زیر مدل خاک است. در زیر مدل گیاه، گیاه به بخش هایی با ساختن مثالی‌ها بی‌پره‌بر و خارش از است. در سال‌های اخیر، پژوهشگر روش نیز استفاده از گیاهان برای زودهنگام آلودگی ها از خاک بین نهاده‌اند. (9) فاکتوری استفاده از گیاهان در پالادون و زیر بود.

فقط چنین بیان برای جنگل، ویژه‌گریز و خارش از است. در سال‌های اخیر، پژوهشگر روش نیز استفاده از گیاهان برای زودهنگام آلودگی ها از خاک بین نهاده‌اند. (9) فاکتوری استفاده از گیاهان در پالادون و زیر بود.
مواد و روش‌ها
همدمای برونژنیک کادمیم و سرب در خاک
یک سری محلول کادمیم و سرب به گونه‌ای تهیه گردید که 5000 میلی‌لیتر از آن‌ها غلظت‌های معادل صفر، 0.150، 0.500، 1.000 و 2.000 میلی‌گرم کربنات مس کادمیم خاک از سرب و 0.100، 0.250 و 0.500 میلی‌گرم کربنات مس خاک از کادمیم فراهم آورد. بدین مقدار، محلول‌های با غلظت صفر، 0.05 و 0.10 میلی‌گرم در لیتر از سرب و صفر، 0.05 و 0.10 میلی‌گرم در لیتر از محلول‌های معادل صفر کربنات کلسیم (CaCl₂ 2H₂O) غلظت (Background electrolyte) 2/1 مولار به‌دست آمد. برای به‌دست آوردن همدمای برونژنیک
معادل یک گرم خاک خشک توزیع و در لوله‌های سانترپوز درب‌دار بی‌لیتی انتیلی 50 میلی‌لیتر ریخته شد. به هر کدام از نمونه‌ها 25 میلی‌لیتر از محلول‌های با غلظت یاد شده از کادمیم و سرب اضافه گردید. نمونه‌ها به مدت 24 ساعت در دمای 27 درجه سانتی‌گراد در ترانش‌های گردانده شدند (۲۵). سپس، لوله‌ها به مدت 2۲ دقیقه به ۹۴ درجه سانتی‌گراد در فیلتر ۵۰۰۰ دور در دقیقه سانتترپوز شده و مانع روبه‌روی کاهش قرار داده و همچنین ۲۴ ساعت کریم (۲۳ و ۲۳) در این‌جا، غلظت گونه‌ها و سرب و کادمیم در محلول‌های به دست اماده‌اند به‌طور گسترده‌ای گزارش شده. در پایان با برآورش مدل همدمای برونژنیک خطی (Linear)
پالایش سبز کادام و سرب\nبرای پالایش سبز کادام و سرب، گیاهان اسفناج (Barbarea verna) و شاهی (Spinacia oleracea L.) کامل و فراهم‌آورندگی در حجم و اندازه کادام (کلید کادام) و سرب (نشانات سرب) برای آلودگی کردن جرم مشخصی از خاک محاسبه شد. سپس، حجم محاسبه شده نمک بیرا به یک کیلوگرم از خاک انرود شد و کامل‌الا باین مخلوط گردید تا پیش‌آهی معنی‌داری برای استفاده از این روش بتواند. بنابراین، خاک‌های تولید در زمین‌های تجدیدپذیر واقع در دانشگاه برازیلیا است. این خاک‌های برای خواص اراضی متنوع به عنوان خاک‌های خوب کردن شده‌اند.

مناسب‌ترین بافت خاک برای کشت استحصال و شاهی، لوم شی و کیسه‌ای است (1). خاکی که با یافته‌های کیسه‌ای غیر آلوده به کادام، سرب و سرب از عصر سالیک دیگر (برای دوری از خارج‌های ناخواسته در تجربه) و غیرشور (برای دوری از خارج‌های انتخاب گردید. همچنین نیاز کودی شاهی و استحصال محاسبه و با توجه علاوه کیسه‌ای نیاز گیاهان با خاک از تولید کمبود غذایی پیش‌گیری شد.

سطح آلودخاکی با نیاز به حداکثر غلظت مجاز کادام و سرب در خاک انگیزش شد به گونه‌ای که دانه‌هایی از غلظت صفر آن تا چندین برابر غلظت مجاز را پذیرفته‌اند. غلظت مجاز سرب و کادام در این پژوهش به ترتیب ۵ و ١۵۰ میلی‌گرم در کیلوگرم خاک در نظر گرفته شد (۸). غلظت‌های خاک برای کادام صفر، ۵، ۱۰، ۲۰، ۳۰، ۴۰ و ۵۰ و برای سرب صفر، ۱۵۰، ۲۵۰، ۳۰۰، ۵۰۰، ۶۰۰، ۸۰۰، ۱۰۰۰ و ۱۵۰۰ میلی‌گرم در
\[M_v = V(Sp_b + C_0) \]
که در آن،\(M \) کل جرم آلاینده در حجم \(V \) از خاک است. اگر نرخ بالایی سبز آلاینده را مقداری از آلاینده در نفس گرفته شود که گیاه در واحد زمان از واحد حجم بالایی آلاینده، آنگاه می‌توان نوشت:
\[\frac{dM_v}{dt} = \frac{d(V(Sp_b + C_0))}{dt} \Rightarrow \frac{dM_v}{dt} = (Sp_b + C_0) \frac{dC}{dt} \]
که در آن \(\frac{dC}{dt} \) نرخ بالایی سبز آلاینده و \(t \) زمان \((ML^{-3}T^{-1}) \) با هم ازتیاب می‌یابند.
\[K_{SD} = \frac{S}{C} \Rightarrow S = K_{SD}C \]
ضرب توزیع خاک از هم‌دمای برون‌چسبی خطی خاک بهدست می‌آید. با بازویی‌سی رابطه ۵ داریم:
\[\frac{d}{dt} = \frac{(K_{SD}p_b + C_0)}{dt} \Rightarrow \frac{dC}{dt} = (K_{SD}p_b + C_0) \frac{dC}{dt} \]
\[\Rightarrow \frac{dC}{dt} \Bigg|_{C=C_0} = \frac{K_{SD}p_b + C_0}{C_0} \]
اگر از معادله دیفرانسیل بالا از کران‌های \(t = 0 \) انگرال گرفته شود، داریم:
\[\frac{C}{C_0} = \frac{K_{SD}p_b + C_0}{C_0} \Bigg|_{C=C_0} \]
که در آن \(C_0 \) غلظت آلاینده در زمان آغاز بالایی، \(C_i \) غلظت مجاز آلاینده در خاک و \(t \) زمان لازم برای بالایی است.
\[\frac{t}{t} = \frac{K_{SD}p_b + C_0}{C_0} \]
جالب است که تغییرات \(C \) به تغییرات \(C \) نرخ بالایی سبز آلاینده تعادل می‌دهد. به گونه‌ای \(t \) نتایج صرف‌نظر، سه نتایج (مربوط به ارزیابی فضای مصرف، مربوط به سازگاری و مربوط به انرژی) به بهترین دانه‌هایی که دارای \(t \) رابطه ۸ زمان لازم برای بالایی آلاینده به دست آورده شد. اگر نرخ بالایی سبز آلاینده \(t \) تغییرات \(C \) به بازی‌سی داریم:
\[M = M_b + M_1 \]
که در آن \(M_b \) جرم آلاینده جذب شده در واحد حجم \((ML^{-3}) \) \(M_1 \) به ترتیب جرم آلاینده در فاز جامد و مابق خاک است. با استفاده از رابطه ۴ و بازویی آن داریم:
\[M = Vp_b + C_0 \]
که در آن \(V \) جرم آلاینده جذب شده در واحد حجم \((ML^{-3}) \) \(p_b \) جرم‌وزای ظاهری خاک، \(C_0 \) غلظت آلاینده در حجم خاک و \(t \) رطوبت \((L^{-3}) \) حجمی خاک است. اگر کل جرم آلاینده در حجم خاک از محاسبه شود، داریم:
زیر محاسبه شد:

\[
t_i^m = \begin{cases}
\frac{1}{n} \sum_{i=1}^{n} \frac{(C_{i+1}^m - C_i^m) \rho_b}{t_i^{m+1}} & \text{if } C_{i+1}^m > C_i^m \\
\frac{1}{n} \sum_{i=1}^{n} \frac{(C_i^m - C_i^{m+1}) \rho_b}{t_i^{m+1}} & \text{if } C_{i+1}^m \leq C_i^m
\end{cases}
\]

که در آن \(t_i^m \) مدت زمان لازم برای پالایش سیز آلانیدن از خاک بر حسب سال (n = 10) سطح اعمال شده آلوندگی سروب و کادمیم در خاک است به گونه‌ای که فاصله بین دو سطح آلوندگی خاک یک کلاس پداناشته شده است. سروم و کادمیم در خاک (mg kg\(^{-1}\)) (mg m\(^{-2}\)) مقدار کل سرب و کادمیمی است که باید پالایده شود تا خاک از سطح آلودگی +1 به سطح آلودگی 0+1 افزایش یابد.

به سرب کادمیمی و در سطح آلودگی 0+1 غلظت کل جمجمه آلودگی از خاک \(C_{a}^{0+1} \) و ضریب 365 در مخرج کسر برای تبدیل زمان از روز به سال است.

در پایان اعتبار مدل‌های ارائه شده برای برآورد مدت زمان لازم برای پالایش سروب و کادمیم با سلاح‌های کمیتی‌مقداری (Coefficient of Efficiency, \(R^2 \)) (Root Mean Square Error, RMSE) تابعه خطا (Coeficient of Determination, CD) و ضریب مدل‌سازی (Modeling Efficiency, EF) (Coefficient of Residual Mass, CRM)

\[
R^2 = 1 - \frac{\sum_{i=1}^{n} (T_i^p - T_i^p)^2}{\sum_{i=1}^{n} (T_i^p - \bar{T}_p)^2}
\]

\[
ME = \text{max} \left(\left| T_i^p - T_i^p \right| \right)^n
\]

\[
EF = \frac{n \left(\sum_{i=1}^{n} (T_i^p - T_i^0)^2 \right)^{\frac{1}{2}} - n \left(\sum_{i=1}^{n} (T_i^p - T_i^0)^2 \right)^{\frac{1}{2}}}{\sum_{i=1}^{n} (T_i^0 - T_i^0)^2}
\]

با قرار دادن این مقدار در رابطه 8 و بازیورسی آن داریم:

\[
f_C' = \frac{-k_r (K_{SDPb} + \theta) t_r (C - C_r)}{(K_{SDPb} + \theta) t_r} \Rightarrow t_r = \frac{(K_{SDPb} + \theta)}{k_r} (C - C_r)
\]

\[
\begin{align*}
\text{که در آن } & k_r \text{ ضریب وابستگی به گیاه خاک و اقلیم. (} \text{ML}^2 \text{T}^{-1} \text{)} k_r \text{ اگر } t_r = 0 \text{ را تابع مرتبه اول } C \text{ در نظر گرفتیم، آنگاه داریم:} \\
& \frac{dC}{dt} = \frac{k_r C}{(K_{SDPb} + \theta)} = \frac{k_r C}{(K_{SDPb} + \theta)} t_r \\
& \Rightarrow \ln \frac{C_f}{C} = \frac{k_r}{(K_{SDPb} + \theta)} t_r \\
& \Rightarrow t_r = \frac{(K_{SDPb} + \theta)}{k_r} \ln \frac{C_f}{C_r}
\end{align*}
\]

که در آن \(k_r \), ضریب وابستگی به گیاه خاک و اقلیم است.

\[
\begin{align*}
\text{ضریب } & k_r \text{ با روش } 12, 14 \text{ با روش } \text{M}^2 \text{T}^{-1} \text{ در } C, k_r, k_r \text{ به دست می‌آمد.}
\end{align*}
\]

مدت زمان انداره‌گیری شده پالایش سروب خاک نیز از رابطه
جدول ۱: نتایج تجزیه‌های فیزیکی و شیمیایی خاک استفاده شده در آزمایش‌ها

<table>
<thead>
<tr>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>ρb (gr cm⁻³)</th>
<th>θFC (cm³ cm⁻³)</th>
<th>ECE (dS m⁻¹)</th>
<th>pH</th>
<th>OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۸</td>
<td>۳۳</td>
<td>۹</td>
<td>۱ ۱/۴</td>
<td>۱۸</td>
<td>۷۶۸</td>
<td>۸۲</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

\[
\text{CRM} = \frac{\sum_{i=1}^{n} T_i^0 - \sum_{i=1}^{n} T_i^p}{\sum_{i=1}^{n} T_i^0}
\] \[[19]\]

\[
\text{CD} = \left(\frac{\sum_{i=1}^{n} (T_i^0 - T_i^p)^2}{\sum_{i=1}^{n} T_i^0} \right)^{1/n}
\] \[[20]\]

\[
\text{RMSE} = \left(\frac{\sum_{i=1}^{n} (T_i^0 - T_i^p)^2}{n} \right)^{1/2}
\] \[[21]\]

که به ترتیب مقدار برآورد شده و اندوزه‌گیری شده زمان پالایشی تعداد نمونه‌ها و حروف سرکش دادار مقدار میانگین است. حد پایینی ME و قدرین مقدار CD, R² و EF. EF و R² یک است. مقدار نشان دهنده ناکارآمدی مدل است. در حالت که مقدار RMSE نشان می‌دهد که مدل به چه میزان پیشرفت یا کمی از واقعیت، برآورد می‌کند. نسبت پراکنش مقدار برآورد شده و اندوزه‌گیری شده را نشان می‌دهد.

شکل ۱ مقدار میانگین تعداد نمونه‌ها و حروف سرکش دادار مقدار میانگین است. حد پایینی ME و قدرین مقدار CD, R² و EF. EF و R² یک است. مقدار نشان دهنده ناکارآمدی مدل است. در حالت که مقدار RMSE نشان می‌دهد که مدل به چه میزان پیشرفت یا کمی از واقعیت، برآورد می‌کند. نسبت پراکنش مقدار برآورد شده و اندوزه‌گیری شده را نشان می‌دهد.

جدول ۳ نتایج ارزیابی کمیتی اعتبار روابطی. مقدار ۱۶، ۱۲ و ۱۴ را در برآورد مدت زمان لازم برای پالایش سیستم سرب و کمپیوتر از خاک نشان می‌دهد. نتایج جدول ۲ نشان می‌دهد که رابطه ۱۳ کارایی بالایی در برآورد زمان پالایش سیستم سرب از

\[
R^2 = 1; EF = 1; CRM = 0; ME = 0; RMSE = 0; CD = 1
\]
شکل 1. هموگلوبین و ترکیبات تیونینی در سرب (الف) و کادمیم (ب) و برافازی مدل خطي بر مقادیر اندازه‌گیری شده سرب و کادمیم جذب شده در غلظت‌های مختلف محلول اعادلی

جدول ۲. مقدار ضرایب k1, k2, k3 برای پالایش سرب و کادمیم به وسیله شاهی و استانف

<table>
<thead>
<tr>
<th>فاز</th>
<th>گیاه</th>
<th>k1 (mg l-1Yr-1)</th>
<th>k2 (Yr-1)</th>
<th>k3 (mg2 l-1Yr1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>شاهی</td>
<td>0.9/30.15/10</td>
<td>0.7/30.15/10</td>
<td>0.4/30.15/10</td>
</tr>
<tr>
<td></td>
<td>استانف</td>
<td>0.6/30.15/5</td>
<td>0.4/30.15/5</td>
<td>0.2/30.15/5</td>
</tr>
<tr>
<td>کادمیم</td>
<td>شاهی</td>
<td>0.9/30.15/5</td>
<td>0.7/30.15/5</td>
<td>0.4/30.15/5</td>
</tr>
<tr>
<td></td>
<td>استانف</td>
<td>0.6/30.15/5</td>
<td>0.4/30.15/5</td>
<td>0.2/30.15/5</td>
</tr>
</tbody>
</table>

جدول ۳. نتایج آزمایش‌های اکسترا اعتبار روایت ۱۶، ۱۲ و ۱۴ در برآورده مدت زمان لازم برای پالایش سرب و کادمیم از خاک

<table>
<thead>
<tr>
<th>فاز</th>
<th>رابطه</th>
<th>ME</th>
<th>RMSE</th>
<th>CD</th>
<th>EF</th>
<th>CRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>رابطه ۱۰</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۱۲</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۱۴</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۱۶</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۱۸</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۲۰</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۲۲</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۲۴</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۲۶</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۲۸</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
<tr>
<td></td>
<td>رابطه ۳۰</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/99</td>
<td>0/6/9</td>
</tr>
</tbody>
</table>

کلمات کلیدی: آزمایش‌های اکسترا، اعتبار، روایت ۱۶، ۱۲ و ۱۴ در برآورده، مدت زمان لازم برای پالایش سرب و کادمیم از خاک.
نتایج جدول ۳-همچنین نشان می‌دهد که ارایه پیش‌فرض‌های متن با چگونگی تغییر توانایی گیاه در جذب آلودگی فلزات مسکن از خاک بیش از آن که در گروه ویژه‌گیاه گیاه باشد به نوبه فلز‌گیاه دارد. به دیگر سخن، نتایج تجربه حساسیت (Sensitivity analysis) نشان می‌دهد که در انتخاب شده نشان داد که تغییر ۱۰ درصدی ۶ رک نمایشگر KSD، ρb و KSD موجب تغییر در ۱۰ می‌شود. این نتایج نشان داد که مد حساسیت یکسان و چشمگیر بود و پارامتر نخست دارد، به نسبت به ۰ حساس نیست. لذا، فرض نتایج گرفتن ۰ پذیرفته است.

نتایج گیری
در پایان بر پایه نتایج این پژوهش به منظور برآورد و مدیریت زمین باید پایان‌پذیری سری خاک توسط شاخص و اسقفی در خاک و اسقفی در خاک می‌تواند با جریان ترجمه (که در مدل گنجاندن شباهت) از ریشه‌ها به موجب آمده در خاک از منطقه ریشه‌های گیاه خارج گردد. با وجود این، برای دست‌یافتن به پراوردهای کلی از زمین بالای شاخص کاده‌می در خاک می‌تواند با جریان ۱۰ استفاده کرده. و با وجود این، شاخص کاده‌می که از زمین بالای شاخص کاده‌می در خاک توانایی شاخص اساس در جذب آن تثبیت می‌ماند. به‌طور کلی، پیشنهاد دارد.

متن‌ای مورد استفاده
۱. میلی، م. ب. پریست. ۱۳۷۰. تولید، سبزی (ترجمه). مرکز نشر دانشگاه صنعتی اصفهان.
۲. همایی، م. ۱۳۸۱. واکنش‌های به شوری. انتشارات کتاب‌های ملل آیاپار و زندگی ایرانیان شماره ۵۸.