چکیده
پالایش سپر روتوئیستی است که از گیاهان برای زدودن آلودگی‌ها از خاک آلوده به سرب و کادمیم استفاده می‌شود. این روش در مقایسه با سایر روش‌های پالایش، میزان کم‌هزینه و ساده‌است. مدل‌های پالایش سپر برای شناخت پیش‌بینی‌های آلودگی‌های تلویزیونی، غلظت خاک تولید و با توجه به بقیه خاک‌های آلوده به سرب و کادمیم، با توجه به منظور، نظریه تونی بر سطح و رفتار خاک (هم‌داختن برون جذبی خاک) و گیاه (نرخ جذب آلوده به وسیله گیاه) در برای آلودگی‌ها ارائه شده، مدل منظور، خاکی و استفاده (Barbarea verna) با پاتولومی با غلظت‌های مختلف آلودگی به کادمیم و آلودگی به سرب و کادمیم در آنها کشت گردید. گیاهان در پنج بار زمانی برداشت شدند. غلظت کلی سرب و کادمیم در گیاه و خاک به ترتیب با روشن اکسیداسیون سرب و اکسیداسیون کادمیم به سه تیتریک و 2 مولاری عصاره‌گیری و یا دستگاه‌های جذب کامیابی از دیدگاه‌های اندوزده‌گیریند. مدل‌های ارایه شده، با استفاده از آزمایش‌گاهی و استحکام گردیدن و کارایی آنها با ملاک‌های کمی آزموده شدند. نتایج نشان می‌داد که همدما بر پر جذبی خاک برای سرب و کادمیم از مدل خفی پرپلاکی کند. با افزایش غلظت سرب در خاک، توانایی شاهی و استفاده در زدودن الودگی افزایش شد. لینک در آندورگی کادمیم خاک این توانایی برای شاهی و استفاده تابی بود. در بیانی با ترتیب واکنش خاک (هم‌داختن برون جذبی خاک) و واکنش گیاه (نرخ جذب فاز از خاک به وسیله گیاه) به آلودگی سرب و کادمیم خاک، مدل‌های با کارایی بالا (R² > 0.84) برای برآورد زمان لازم برای پالایش سپر سرب از خاک به بسته معنی‌دار. با وجود این، مدل‌های ارایه شده تنها برای به دست آوردن برآوردی کلی از زمان لازم برای پالایش سپر کادمیم از خاک توانایی نشان دادند (R² ≤ 0.5).

واژه‌های کلیدی: آلودگی خاک، پالایش سپر، سرب، کادمیم، مدل‌سازی

مقدمه
آلودگی زیست‌بوم از مشکلات اساسی عصر حاضر به شمار می‌رود. برای رفع این مشکل لازم است روش‌های کم‌هزینه برای پالایش مناطق آلوده به سرب و کادمیم مورد نظر باشند. در حال حاضر استفاده خاک‌شناسی، دانشگاه کشاورزی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران و در حال حاضر استادیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران

1. دانشجوی سابق دکتری خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
2. دانشیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران

h.khodaverdiloo@urmia.ac.ir

* مسئول مکاتبات: پست الکترونیکی: ir
فتواری‌ها بسیار پرزهرن و خارا زا ایست. در سال‌های اخیر، پژوهشگران روشن نخورند این استفاده از گیاهان برای زدودن آلودگی‌ها از خاک بیان‌نیت عهده‌دارند (9). فتواری استفاده از گیاهان در باليون زیست‌مواد (پالایش‌سیر) (Phytoremediation) گرفته است (9).

مدلهای جذب و اندوزه آلودگی‌ها از خاک توسط بیوشیمی:

آزمایش عمده در شناخت بیوشیمی‌پالایش‌سیر و مدیریت ماحول آلودگی‌های زودون مدل‌های جذب آب به وسیله گیاهان در وجود شرایط مختلف، یعنی مدل‌های مکانیستیک (Mechanistic) و مکانیکی (Macroscopic) گروه بزرگی از مدل‌های بیوشیمی‌پالایش‌سیر که بیشتریهای بین این دو مدل‌ها (11). آن‌ها شکل‌های مختلفی از خاک، از جمله کاربردی و باعث شده است. این تیپ مدل‌ها در آزمایش‌های جذب آلودگی‌ها مورد استفاده قرار می‌گیرند. این مدل‌ها به‌طور کلی از مدل‌های مکانیستیک (Mechanistic) و مکانیکی (Macroscopic) تشکیل شده‌اند.

برنامه‌ریزی‌های کلال و طراحی پالایش‌سیر مدلهای کلان – که بیشتر به ترکیبی از دو مدل این مدل‌های پالایش‌سیر می‌گردد. آزمایش بیشتری در مدل‌های جذب و اندوزه آلودگی‌های خاک در آزمایش‌های کلان، انجام گرفته است (9). بررسی از این پژوهش‌ها به محدودیت‌ها و محدودیت‌های گیاهان آلودگی‌های زودون و برای تعیین جدید عناصر غذایی توسط گیاهان انجام شده‌اند (17).

مدل‌های جذب و اندوزه آلودگی‌ها از خاک توسط بیوشیمی:

برای انقاص توأم آب، گرمای و انقاص در بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت می‌شود. مدل‌های بیوشیمی‌پالایش‌سیر (پلانتیک) (Coupled Transport of water, heat and solutes in Soil-PlantAtmosphere Continuum) مدل‌های جذب و اندوزه آلودگی‌های خاک، بیان‌نیت M
مدل‌های تجزیه مناسبی را نیز نشان داده، بنابراین، ایجاد مدل‌های ساده و کارآمد برای مدل‌سازی و طراحی پلاسیس‌سیر تاکنی بی‌توجهی مانده و پژوهش‌های مناسبی مطلوبی نکرده است. هدف از این پژوهش مدل‌سازی پلاسیس‌سیر خانه‌های آدوم به کامپیوتر و سرب بود. به‌طور محدود، نظریه نویسی قاری رفتار خان و کیهان در برای آلاینده پسندشانه در این نظریه، هم‌دامنه برون‌زدی (Adsortion isotherm) خان بین‌گر رفتار خان در برای آلاینده و تغییرات نرخ جدای به آلاینده به وسیله کیهان بازتاب رفتار گیاه در برای آلاینده در نظر گرفته شد و مدل‌های ساده‌ای برای برنامه زمان لازم برای پلاسیس‌سیر آلاینده به دست آمد.

مواد و روش‌ها
همدامی برون‌زدی کامپیوتر و سرب در خاک 300 میلی لتر از آن‌ها غلظت‌های معادل صفر، 0.25، 0.5 و 0.75 میلی‌گرم خاک از سرب و فرآم. 100 میلی‌گرم کلرور کلسیم (CaCl2) با غلظت (Background electrolyte) 0/1 مولار تهیه شد. سرب به دست آورده همأفرمی برون‌زدی معادل یک گرم خاک خشک توزین و در لوله‌های سانتی‌پور در یک دار بی‌نیتی و آینه‌بندی شده. هر کدام از نمونه‌ها میلی لتر از محلول‌های با غلظت یاد شده از کامپیوتر و سرب اضافه گردید. نمونه‌ها به مدت 24 ساعت در دمای 17 درجه سانتی‌گراد در تک کندن داده داده شدند (25). سپس، لوله‌ها به مدت 24 دقیقه سرب 5000 دور در دقیقه سانتی‌پور شده و منبع روزی با کاغذ صاف و دو آسانس کردم (3) در آپارتمان، غلظت سرب و کامپیوتر در محلول‌های به دست آمده اندازه گیری شد. در یک پیچان با پر شر (Linear) مدل هم‌دامنه برون‌زدی خطی (Linear) 216

بافت و عملکرد مشابه تقسیم شده است. این زیر مدل‌های جدید
فرش دار از جمله سرگیر گرگ‌های خاک و به‌طور مکانیکی با
شباهت هندسی دارند، یخ چسبی ریختگی سازمانی که در هر
پژوهش باید تغییر شود و نه در این مورد استفاده
فیزیولوژیک و ریختگی مشخص است. این نتایج (۱۹) به با کار گرفتن
مدل نیکیوستی (CTSPAC) در باربیر والاسیسر
(۲۰) دیانتی و قلمه‌ای نبردی یک‌دوره شد که به دلیل
گنجان‌های نسوز پلاسیس سیر آلاینده در بسیاری‌ها به گیاهان بانده
در این مدل، تعیین پارامترهای آن بسیار دشوار است. افزون بر
این، ویلکستون در مدل تعریف شده این CTSPAC
بی‌بودن، برای حل مسائل مزرعه‌گر نکن‌اندیت بانف.

لیترین و فیلیپس (۲۲) مدل برای جدید و اندازه
کامپیوتر به وسیله گیاهان نوسه‌داده است. این آمار داشته که به‌طور
جگت‌گذاری نظری جذب بر پایه تابع میترال (Miterlich function)
کمبود داده‌های مناسب، بهترین برآوردها از داده‌های تجربی که
تنها از توابع خاک استفاده می‌کند. به دست آمده است
(۲۳) از جمله کامپیوتر بازر مدل‌های
مکانیکی موجود. لزوم اندازه‌گیری دیوار و پره‌نه در
روی ریشه‌هرست که از کامپیوتری آن‌ها برای برآوردها مزرعه‌ای
می‌گردد. تحقق نیاز مدل‌های مکانیکی و پی
واقعی گواهی (Realistic models) برای داده‌های تجربی رضایت‌بخش
(۲۴) نیست. این مدل تلاش‌های بیشتر برای وارد کردن
می‌باشد. بیشتری که گانتون کامپیوتر
(برای نمونه، یک نمایش ریشه‌ها. دمای خاک، احیای پذیری
گونه‌های مختلف آلاینده‌ها) انجام گیرد. از سوی دیگر، حتی با
این پنداشت که همه عوامل موتور در فرایند بارز و اندازه
آلاینده مدل گنجان‌دهش و برای برای خاک‌ها،
گونه‌ها و زننده‌های کاری و آلاینده‌های گوناگون تعمیم باید
در واقع، گانتون نشان می‌رسد از عوامل کلیدی مورد نیاز برای ایجاد
مدل‌های مکانیکی جامع برای جذب فلزات سنگین اندک
است و تغییر اندازه آلاینده اندامگیری شده، امکان ایجاد
شده جذب سرب و کادمیم در غلظت‌های مختلف محلول

\[S = K_{SD} \]

در رابطه با این، مقدار آلودگی جذب شده در صورت غلظت محلول‌های ترکیبی \((mg/l)\) است.

پالایش‌ساز کادمیم و سرب

برای پالایش ساز کادمیم و سرب، گیاهان اسافاج (Barbara verna) و شاهی (Spinacia oleracea L.) گردد. برای پایه تیات زرووشته‌های پیشین اسافاج در جلد و اندازه کادمیم و سرب در سن با تغییرات مختلف نشان داده است (15، 20 و 21). شاهی (Brassicaeae) نیز گیاهی از خانواده براسیکاسیا در زندان فلزات سبکی از خاک سپر و توانایی پذیراست.

مناسب‌ترین بافت خاک برای کاشت اسافاج و شاهی، نمونه‌های گیاهی از ناحیه شیپگیر شده و رشد گیاهان را در آزمون‌های الزامی افزایش می‌دهد.

مربع سرب و کادمیم در غلظت‌های مختلف محلول

\[K_{SD} \] (mg/l)
مدلسازی پالایش سیز خاک‌های آلوده به سرب و کادمیم

\[M_v = V(Sp_b + C_0) \]

که در آن، \(M \) کل جرم آلاینده در حجم \(V \) از خاک است. اگر نرخ پالایش سیز آلاینده را مقداری از آلاینده در نظر گرفته شود که یک هیچ و/or دیگر جرم خاک می‌باشد، آنگاه می‌توان نوشت:

\[V_n = \frac{dM_v}{dt} = \frac{d(V(Sp_b + C_0))}{dt} \rightarrow n = \frac{d(Sp_b + C_0)}{dt} \]

\[(L^3 M^{-1}) \]

که در آن \(n \) نرخ پالایش سیز آلاینده و \(t \) زمان (ML\(^{-1}\)).

\[K_{SD} = \frac{S}{C} \Rightarrow S = K_{SD} C \]

ضریب توزیع خاک از هم‌های برون چسبیده خطی خاک به‌دست می‌آید. با استفاده از رابطه ۵ داریم:

\[n = \frac{d(K_{SD} p_b C + C_0)}{dt} \Rightarrow n = (K_{SD} p_b + 0) \frac{dC}{dt} \]

\[(V) \]

\[\frac{dC}{dt} = \frac{K_{SD} p_b}{(K_{SD} p_b + 0)} n \]

\[(\text{در نظر گرفته شود، داریم:}) \]

\[C = C_t \text{ تا } t = 0 \]

\[C = C_t \text{ اگر از معادله دیفرانسیل بالا از کران‌های} \]

\[\text{در نظر گرفته شود، داریم:} \]

\[M = M_0 + M_1 \]

\[(\text{که در آن} \) \]

\[M_0 \text{ به ترتیب جرم آلاینده در} \]

\[M_1 \text{ و} \]

\[(\text{می‌باشد)} \]

\[\text{از جامد و مایع خاک است. با بسط عبارت‌های رابطه} \]

\[(\text{و بازنویسی آن داریم:}) \]

\[S \geq \rho_b + C_0 \]

\[(\text{که در آن} \) \]

\[S \geq \rho_b + C_0 \text{ جرم آلاینده جذب شده در واحد حجم} \]

\[C \text{ می‌باشد) \]

\[(\text{جرم ویژه ظاهری خاک} (\text{ML}^{-1}) \rho_b \text{ به جرمی}} \]

\[(\text{در حجمی خاک است. اگر کل جرم آلاینده در حجم} V \text{ از محاسبه شود، داریم:}) \]

\[\text{نوع شوید. بنابراین، نرخ پالایش سیز آلاینده مقیاس‌یابی ثابت می‌باشد. بعنی:} \]

421
تیمار محاسبه شده:
\[t_i^m = \begin{cases} \frac{1}{r} \sum_{j=2}^{n} \left(C_{i+1}^j - C_i^j \right) \rho_b t_i^{j+1} \quad \text{if} \quad C_{i+1}^j \leq C_a \\ * \end{cases} \]

که در آن \(t_i^m \) مدت زمان لازم برای بازی‌سازی سیر اتانول از خاک بر حسب ساعت است. \(\rho_b \) سطوح اعمال شده آلودگی سرب و کادمیم در خاک است. \(C_i^j \) و \(C_{i+1}^j \) میانگین نرخ اندازه‌گیری شده توسط آلودگی کادمیم و سرب در سطح خاک،

\(C \) مقدار کل سرب یا کادمیمی است که با باد باقی می‌ماند. \(C_a \) مقدار کلی سرب در آلودگی 1+1 به سطح آلودگی 1+1 بیشتر است. \(m \) میانگین نرخ اندازه‌گیری شده توسط آلودگی کادمیم و سرب در سطح خاک. \(m^d \) مقدار کلی سرب یا کادمیمی است که با باد باقی می‌ماند. \(m^d \) مقدار کلی سرب و کادمیمی است که با باد باقی می‌ماند.

در پایان اعتبار مدل‌های ارائه شده برای برآورد مدت زمان لازم برای بازی‌سازی سرب و کادمیم با مراجعه کردن ضریب کارایی (Coefficient of Efficiency, R²) مرتبه‌ی خطای جذر میانگین، ضریب کارایی (Root Mean Square Error, RMSE) ضریب تبیین (Coefficient of Determination, CD) مدل میانگین ضریب مقدار بایان‌شده (Modeling Efficiency, EF) از ارائه‌شده در (11) و (18).

\[R^2 = 1 - \frac{n}{n-1} \left(\frac{\sum_{i=1}^{n} (T_i^p - \bar{T}_i^p)^2}{\sum_{i=1}^{n} (T_i^0 - \bar{T}_i^0)^2} \right) \]

ME = max \left(\frac{\sum_{i=1}^{n} (T_i^p - \bar{T}_i^p)^2}{\sum_{i=1}^{n} (T_i^0 - \bar{T}_i^0)^2} \right) \]

\[EF = \frac{\sum_{i=1}^{n} (T_i^0 - \bar{T}_i^0)^2}{\sum_{i=1}^{n} (T_i^0 - \bar{T}_i^0)^2} \]

که در آن \(T_i^0 \) مدل دادن به اندازه‌گیری فاصله و بازی‌سازی آلودگی (ML\(T^1 \)) کی \(k_1 \) در آن، ضریب وابستگی به گیاه، خاک و اقلام است. اگر \(r \) را تابع مربوط به \(C \) در نظر بگیریم، آنگاه داریم:

\[\frac{\Delta C}{\Delta t} = k_1 C \implies r = -k_1 C \]

که در آن \(r \) تابع مربوط به \(C \) در \(C \) در نظر بگیریم، آنگاه داریم.

\[\frac{\Delta C}{\Delta t} = k_1 C \implies r = -k_1 C \]

که در آن \(r \) تابع مربوط به \(C \) در \(C \) در نظر بگیریم، آنگاه داریم.

\[\frac{\Delta C}{\Delta t} = k_1 C \implies r = -k_1 C \]

که در آن \(r \) تابع مربوط به \(C \) در \(C \) در نظر بگیریم، آنگاه داریم.

\[\frac{\Delta C}{\Delta t} = k_1 C \implies r = -k_1 C \]
جدول 1. نتایج تجزیه‌های فیزیکی و شیمیایی خاک استفاده شده در آزمایش‌ها

<table>
<thead>
<tr>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>ρb (gr cm⁻³)</th>
<th>θFC (cm³ cm⁻³)</th>
<th>ECE (dS m⁻¹)</th>
<th>pH</th>
<th>OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>23</td>
<td>9</td>
<td>0/4</td>
<td>0/18</td>
<td>0/9</td>
<td>82</td>
<td>5</td>
</tr>
</tbody>
</table>

* ρb: جرم ویژه‌های خاک، θFC: رطوبت حجمی خاک در نقطه‌ی ظرفیت زراعی، ECE: هدایت الکتریکی در عصاره خاک انتساب، pH: واکنش گل اشباع، OM: ماده آلی خاک.

نتایج و بحث

جدول 1 مقدار عدیدی ویژگی‌هایی از خاک که در فرمول‌نگاری فرض ارائه شده این پژوهش کاربرد دارند و یا به عنوان پیش‌فرض در انتقال معادله‌ها این فرض‌ها دقیقاً مشاهده شده‌اند را نشان می‌دهد.

بر یک نتایج جدول 1 خاک استفاده شده در این پژوهش، خاک با بافت لوم شی، با ماده آلی اندک، غیرشروع برای کیاهان اسفنج و شاهی و با واکنش قلبی ضعیف است. رطوبت خاک در طی آزمایش‌های غلخانی قطعی ثابت و برای با رطوبت ظرفیت زراعی نگه داشته شده است.

شکل 1 مقدار اندرازه‌گیری شده هم‌دامای برون‌جذب سرب و کادامی و نتایج برآورد مدل خطی را با آن‌ها نشان می‌دهد. شکل 1 پاینمگ یک درصد مناسب مدل خطی بر هم‌دامای برون‌جذب سرب و کادامی است. مقدار ضریب برای KSD برون‌جذب سرب و کادامی نشان دهنده نامناسبی سازی هدایت مجموع معنی‌دار خطا به ترتیب 27/47 و 23/17 به دست آمد.

در روابط 10 و 11 مقدار رطوبت حجمی خاک ρb عادی رطوبت ظرفیت زراعی خاک ρb با برای ρb در نظر گرفته شد.

جدول 2 مقدار ضرایب k, k₀ و k₁ در روابط 10 و 12 و 14 را برای سرب و کادامی و گیاهان شاهی و اسفنج نشان می‌دهد.

جدول 3 نتایج ارزیابی کمی اعتبار روابط 10, 12 و 14 را در برآورد مدل میزان لازم برای پالایش سرب و کادامی از خاک نشان می‌دهد. نتایج جدول 3 نشان می‌دهد که رابطه 12 کارایی بالایی در برآورد میزان پالایش سرب از CRMs است.
شکل 1. همدماي برانجه سرب (الف) و کادمیم (ب) و برآش مدل خطي بر مقدار اندازهگيري شده سرب و کادمیم چذب شده در غلظت های مختلف محلول تعادلى

جدول 2. مقدار ضرایب k_1, k_2 و r برای پلايش سرب و کادمیم به وسیله شاهي و استناغ

<table>
<thead>
<tr>
<th>فلز</th>
<th>گياه</th>
<th>k_1 (mg l⁻¹Yr⁻¹)</th>
<th>k_2 (Yr⁻¹)</th>
<th>r (mg² l⁻²Yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>شاهي</td>
<td>$0.00906*10^{-1}$</td>
<td>$0.0775*10^{-1}$</td>
<td>0.00043</td>
</tr>
<tr>
<td></td>
<td>استناغ</td>
<td>0.010</td>
<td>0.080</td>
<td>0.00043</td>
</tr>
<tr>
<td></td>
<td>استناغ</td>
<td>$0.00906*10^{-1}$</td>
<td>$0.0775*10^{-1}$</td>
<td>0.00043</td>
</tr>
<tr>
<td></td>
<td>شاهي</td>
<td>$0.00906*10^{-1}$</td>
<td>$0.0775*10^{-1}$</td>
<td>0.00043</td>
</tr>
<tr>
<td></td>
<td>استناغ</td>
<td>0.010</td>
<td>0.080</td>
<td>0.00043</td>
</tr>
<tr>
<td>كادمیم</td>
<td>شاهي</td>
<td>$0.00906*10^{-1}$</td>
<td>$0.0775*10^{-1}$</td>
<td>0.00043</td>
</tr>
<tr>
<td></td>
<td>استناغ</td>
<td>0.010</td>
<td>0.080</td>
<td>0.00043</td>
</tr>
</tbody>
</table>

جدول 3. نتایج ارتباطی کمی اعتبار روابط 10، 12 و 14 در برآورد مدت زمان لازم برای پلايش سرب و کادمیم از هاک

<table>
<thead>
<tr>
<th>فلز</th>
<th>گياه</th>
<th>رابطه</th>
<th>R^2</th>
<th>ME</th>
<th>RMSE</th>
<th>CD</th>
<th>EF</th>
<th>CRM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>رابطه 10</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 12</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 14</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 16</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 18</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 20</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 22</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 24</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رابطه 26</td>
<td>0.999</td>
<td>0/498</td>
<td>0/498</td>
<td>0/95</td>
<td>0/95</td>
<td>0/10</td>
</tr>
</tbody>
</table>

424
نتایج جدول ۳ همچنین نشان می‌دهد که ارتباط بین نسبت توانایی گیاه در جذب آلودگی فلزات سطحی از خاک بیش از آن که در گروه ویژه‌گاهی گیاه باشد به نسبت فلز‌بستگی دارد. به دیگر سخن، نوع فلز تبعیض کننده اصلی بیانگر فرض‌هایی در این مطالعه است. (Sensitivity analysis)

منابع مورد استفاده
1. میلی، م. و پرآسته. ۱۳۶۷. تولید سیری (ترجمه). مرکز نشر دانشگاه صنعتی اصفهان.
2. همایی، م. ۱۳۸۱. و اکتشافات کیهانی، انتشارات کتاب، میلی ابزاری و زرکس ایران، شماره ۸۸.

315
and forage maize from a sewage disposal farm. Soil Use and Manage. 19: 19-27.
A. Marani (Ed.), Advances in Environmental Modeling.
Exp. Sta., Station Bulletin 676. Oregon State University, Corvallis, Oregon, USA.
continuum. J. Hydrol. 266: 66-82.
USA.
Processes. Lewis Publishers, Boca Raton, USA.
84: 121-157.