چکیده
پالایش‌سیز روش نوینی است که از گیاهان برای زودرس آلبودگی‌ها از خاک آن‌ها بهره می‌برد. این روش در مقایسه با سایر روش‌های پالایش، بیشتر کم‌حرکتی و ساده‌است. مدل‌های پالایش‌سیز برای شناسایی و دستیابی به حاکم بر پدیده پالایش و مدیریت خاک‌های آن‌ها اهمیت بیشتری دارند. بررسی مدل‌های نشان می‌دهد که تاکنون به دلیل پیچیدگی پیامدهای خاصی، نیاز به مدل‌های آگاهی‌دار شماری برای پالایش‌سیز تاکنون پاسخ‌گویانه‌هایی در این بخش نیافته‌اند. هدف از این پژوهش، مدل‌سازی پالایش‌سیز خاک‌های آلبودگی‌ها به سبب و کادمیوم بود. برای این منظور، نظریه نوینی بر محل رفتار خاک (همدام پرون جذب خاک) و گیاه (پرخ جذب آلودگی به سیستم گیاهی) در پالایش‌سیز آرایه‌شده شد. این نظریه بر فراکسیون و اسکافاژ (Barbara verna) و اکسفاژ (Spinacea oleracea L.) ترتیب با روش اکسپرسیون تر و اکسپرسیون با اسید نتیجه‌گذاری 2 مولار عصاره‌گذاری و دستگاه‌های جذب اتمی و کوره گرافیتی اندازه‌گیری شد. مدل‌های ارایه‌شده، به‌استفاده از گام‌های آزمایشگاهی و ارائه گردید و کارایی آن‌ها با اکسفاژی کمی آزموده شد. نتایج نشان داد که همانند پرون جذب خاک برای سرب و کادمیوم از مدل خطی پیروی کنن. با افزایش غلتگی سرب در خاک، توانایی شاهی و اسکافاژ در زودرس آلبودگی بروز مشاهده شد. لینک در آلبودگی کادمیوم خاک این توانایی برای شاهی و اسکافاژ نبود. در پایان با ترکیب واکنش خاک (همدام پرون جذب خاک) و واکنش گیاه (پرخ جذب فلس از خاک به سیستم گیاهی) به آلودگی سرب و کادمیوم خاک، مدل‌های با کارایی بالا (R²> 0/88) برای پرورش زمان لازم برای پالایش‌سیز سرب از خاک به دست آمد. با وجود این، مدل‌های ارایه‌شده نه تا پایان به دست آورده برورود کلی از زمان لازم برای پالایش‌سیز کادمیوم از خاک توانایی نشان دادند (R²≈ 0/60) .

واژه‌های کلیدی: آلودگی خاک، پالایش‌سیز، سرب، کادمیوم، مدل‌سازی

مقدمه
آلودگی زیست‌نظام از مشکلات اساسی عصر حاضر به شمار می‌رود. برای رویارویی با این مسئله لازم است روشن کردن برای پالایش‌سیز مناطق آلوده داشته باشیم. تاکنون شماری از آزمایش‌های مختلف برای حل این مشکل به کار رفته‌اند.

1. دانشجوی سایلی دکتری خاکشناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران و در حال حاضر استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
2. دانشیار خاکشناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
3. h.khodaverdiloo@umia.ac.ir

Downloaded from iopp.iut.ac.ir at 3:06 IRDT on Sunday August 4th 2019
فناوری بسیار پربرهمی و خصوصاً است. در سال‌های اخیر، پژوهشگران روش‌هایی با استفاده از گیاهان برای زدودن آلودگی هوا از خاک نیاز به نهاده‌های (9). فناوری استفاده از گیاهان در بالون‌های زیست‌ساز "پلاستیک" (Phytoremediation) گرفته است (9).

مدلهای جذب و اندازه‌الاکسیده از خاک توسط گیاه، ارزشی عمده در شناخت پیست پندایده پلاستیک و مدرک‌های آن‌ها در مدل‌های مایع جاذب آب به وسیله گیاهان و تجویز نشان به عنوان رایج ترین آلودگی خاک در کشاورزی، توصیف هماهنی (2) و همکاران (111) (ارائه شده است. این بین، مدل‌های خرد (که پیشتر به فراپتیک موثر بر پدیده جذب می‌پردازند) پیشتر در شناخت و مطالعه دقیق بی‌درد حداکثری جذب آب و یا عنوان توسط گیاه کاربرد دارد. حال آن که در مدیریت و برنامریزی‌های کلان و طراحی پلاستیک مدل‌های کلان - که پیشتر به نتیجه‌گیری مرگ‌های تهیه می‌گردد - ارزش پیشتری داردند. تاکنون پژوهش‌های و چند در مورد جاذب اصل توصیف گیاهان، جهت در حوزه مدل‌های خرد و به در حوزه مدل‌های کلان، انجام گرفته است (7). (117). پیش‌بینی از این پژوهش‌ها به منظور پلاستیک نیوپتکن و برای تیون جذب عناصر غذایی توسط گیاهان ایجاد شده‌اند (17).

مدل رابطی بیکه‌سی (Coupled Transport of water, heat and solutes in Soil-Plant-Atmosphere Continuum)

برای انتقال نواحی آب، گرمای و اصلاح در پیستار خاک - گیاه- نیاز در بخش غیرآبی خاک بین انسداد دارد. مدل زیر مدل‌های دارد: زیر مدل خاک و زیر مدل گیاه. زیرمدل خاک، انتقال نواحی آب، گرمای و مواد شیمیایی را در بخش غیرآبی خاک بین می‌کند. زیر مدل خاک با توجه به بیچرده‌های تغییردر بخش غیرآبی خاک سه ممکن‌های وابسته به زمان بروز و انقلاب هم‌زمان آب، اصلاح و (Time-dependent) گرمای خاک در بخش غیرآبی خاک دارد. زیر مدل گیاه، بخش بسیاری از انتقال قهوی و آب و انقلاب مواد شیمیایی به وسیله گیاه را شرح می‌دهد. از ناحیه که گیاهان از نظر هندسی، فیزیولوژی و پیوندی بیشتر با خاک او بخش غیرآبی خاک می‌باشد، این زیر مدل بسیار بیشتر از زیر مدل خاک است. در زیر مدل گیاه، گیاه به بخش همبسته با ساخته‌است، یعنی انتقال

پرگنس (14) مدلی برای جذب سرب و کادمی در زمین‌های کشاورزی با نهاده‌ای است. این مدل، نهایی مفهومی بوده و اساس مدل‌های دیفرانسیل جریان (Conceptual model) حاک بر انتقال اصلاح در خاک بنا نشده بود. همکاران (12) مدلی برای جذب کادمی، مس، نیکل، سرب و روی به وسیله کندس و درخت‌های از مزارع آبیار نشده با پیش‌بینی کردند. این مدل، غلظت‌یافته شده در مزارع کشاورزی گیاهی را از غلظت‌های ان دارد. (پیش‌بینی) خاک برآورد می‌کند. این مدل در مورد کادمی و روی برآورد‌های رضایت بخش داشت. لینک برای...
مواد و روش‌ها
همدانی برون‌جزی کادمیوم و سرب در خاک
یک سری محلول کادمیوم و سرب به‌صورت هنگام گردیده که 3000 میلی لیتر آنها غلظت‌های معلام صفر، 0.150، 0.080، 0.050 و 0.010 میلی گرم سرب و 0.050، 0.030، 0.020 و 0.010 میلی گرم کانی از کادمیوم در این محلول فراهم آورد. بدین منظور، محلول‌های با غلظت صفر، 1، 2، 1/2، 1/4، 1/8، 1/16، 1/32 و 1/64 میلی گرم در لیتر از سرب و صفر در محلول زمینه کلرید کلسیم (CaCl2) با غلظت (Background electrolyte) 0.01 مولار تهیه شد. برای به‌دست آوردن همدانی برون‌جزی، مصالح یک گرم خاک خشک توزیع و در لوله‌های سانتریفوژ درب در پایه ای‌تینی 50 میلی لیتر ریخته شد. به هر کدام از نمونه‌ها 25 میلی لیتر از محلول‌های با غلظت یاد شده از کادمیوم و سرب اضافه گردید. نمونه‌ها به مدت 24 ساعت در دما 27 درجه سانتی‌گراد در تکانه داده شدند (25). سپس، لوله‌ها به مدت 2 دقیقه به سرعت 5000 دور در دقیقه سانتریفوژ شده و مانع روی با کاغذ صافی و 10 صاف‌کردن در پایان، غلظت سرب و کادمیوم در محلول‌های به دست آمده اندازه‌گیری شد. در پایان با یک روش لینی (Linear) مدل هم‌دانی برون‌جزی خطا (Line of best fit) کورت و عملکرد مشابه تقسیم شده است. این زیر مدل چندین فرضی برل جمله سه گروه برای که در خاک و گرده‌باره‌ای برای شیمیایی دارند. با روش‌های تراکم انالوگ در هر پژوهش باید عبنان، سه گروه برای تلاطم با سادگی و مدل نیروی فیزیولوژیک و ریخته مشخصی (ویتانگ) (19) با به کار گرفتن CTSPAC مدل تک‌بعدهای در برخوردار پالاسی سی‌سی‌وی (20) در نظر گرفته شده که پالاسی سی‌سی‌وی CTSPAC در مدل تعویضی CTSPAC مدل مداری به‌کار بردن 24-دی‌اکسین با قلمه‌ای برای یادار شدن، به دلیل اینکه در سیستم‌های کادمیوم در سیستم‌های طبیعی بر اساس است. از این به عنوان CTSPAC مدل بیشتر استفاده می‌شود.

باید بودن برای حل مسائل مزرعه‌ای تاکارآمد باشد.

نویسین و فیلیپس (24) مدل برای جذب و اندازه‌گیری کادمیوم به وسیله گیاه پودر نشان داده. این اثر از گذشته که هر چند کمکی نظری جذب با پایین تا باین می‌باشد (Muterlich function) کمبود داده‌های مناسب، بهترین برآورد سرب هم‌دانه‌تر از داده‌های جغرافیایی در محیط تهیه شده است. مدل CTSPAC با محاسبه خود توانایی نتایج مدل‌های مکانیکی و یا (25 – 3/25) از جمله کانسپت‌های پیشرفته‌تر مکانیکی مورد استفاده قرار می‌گیرد. کمک می‌کند بر اساس نتایج و یا مدل‌های CTSPAC به‌کار بردن روش‌های طبیعی برای تولید ویژگی‌های کادمیوم مختلف‌الاچی (25) انجام گردید. این نشان‌دهنده که هم‌دانه‌تر در فرآیند جذب و اندازه‌گیری آلاینده با مدل CTSPAC جمع برای جاذب فلزات سنگین اندک است و شمار اندازه‌داده‌های اندازه‌گیری شده، امکان ایجاد
پالایش سیز کادمیوم و سرب

برای پالایش سیز کادمیوم و سرب، گیاهان اسفنج (Barbarea verna) و سرب، گیاهان اسفنج انتخاب (Spinacia oleracea L.) و کادمیوم انتخاب (Helianthus annuus) می‌باشد. برای پالایش سرب، گیاهان اسفنج انتخاب (Spinacia oleracea L.) و کادمیوم انتخاب (Helianthus annuus) می‌باشد.

شده جذب سرب و کادمیوم در غلظت‌های مختلف محلول

 Soil Distribution Coefficient، ضریب توزیع خاک

 به دست آمده

\[
S = K_{SDC}
\]

در رابطه با (S)، مقدار آنی‌بند جذب شده در واحد جرم خاک

\[
C, (mg \: g^{-1})
\]

پالایش سیز کادمیوم و سرب

برای پالایش سیز کادمیوم و سرب، گیاهان اسفنج (Barbarea verna) و سرب، گیاهان اسفنج انتخاب (Spinacia oleracea L.)

کادمیوم انتخاب (Helianthus annuus) می‌باشد. برای پالایش سرب، گیاهان اسفنج انتخاب (Spinacia oleracea L.) و کادمیوم انتخاب (Helianthus annuus) می‌باشد.

شده جذب سرب و کادمیوم در غلظت‌های مختلف محلول

 Soil Distribution Coefficient، ضریب توزیع خاک

 به دست آمده

\[
S = K_{SDC}
\]

در رابطه با (S)، مقدار آنی‌بند جذب شده در واحد جرم خاک

\[
C, (mg \: g^{-1})
\]

پالایش سیز کادمیوم و سرب

برای پالایش سیز کادمیوم و سرب، گیاهان اسفنج (Barbarea verna) و سرب، گیاهان اسفنج انتخاب (Spinacia oleracea L.)

کادمیوم انتخاب (Helianthus annuus) می‌باشد. برای پالایش سرب، گیاهان اسفنج انتخاب (Spinacia oleracea L.) و کادمیوم انتخاب (Helianthus annuus) می‌باشد.

شده جذب سرب و کادمیوم در غلظت‌های مختلف محلول

 Soil Distribution Coefficient، ضریب توزیع خاک

 به دست آمده

\[
S = K_{SDC}
\]

در رابطه با (S)، مقدار آنی‌بند جذب شده در واحد جرم خاک

\[
C, (mg \: g^{-1})
\]
کادمی موجود در نمونه‌های گیاه و خاک عضو‌گری‌های شده و تجزیه‌های شیمیایی ارزان انجام گردید. سرب و کادمی محلول خاک با تناک دادن نمونه‌های با نسبت (آی‌می‌ف) خاک به مدت 24 ساعت در تکان‌دهندهای با دور 500 دور در دقیقه عصاره‌گیری غلظت سرب و کادمی در گیاه با روش اکسیداسیون تخمیر عصاره‌گیری و پس از به‌هم دنی‌ادن غلظت آنها با دستگاه‌های جذب انیم و (Atomic Absorption Spectrometer, Shimadzu, AA-670G) (گرافیت گریفیش (GFA-4A) اندوز خاک کفید-۱ و ۲) از آمی ره‌اپیدستیک اسیدیکریک و اسیدسولفوریک با نسب حجمی ۴.۰۰ و ۱ برای اکسیداسیون ۱ استفاده شد.

مدل‌سازی پالایش‌سی
برای مدل‌سازی پالایش سی نظیری توپی بر میان رفتار خاک و گیاه در برای آلی‌بند، پرداخته شد. در این روش، درون جذب خاک پانگو رفتار خاک در برای آلی‌بند و تغییرات نرخ جذب آلی‌بند به وسیله گیاه گزارنده و رفتار گیاه در برای آلی‌بند در نظر گرفته شد و مدل‌های ساده‌ای برای پردازش زمان لازم برای پالایش آلی‌بند به است. بدنی شکل که اگر چک جرم آلی‌بند موجود در واحد حجم خاک را (ML³⁻¹ M) می‌گیره، آنگاه:

\[M = M_g + M_i \]

که در آن (ML³⁻¹ M) می‌باشد (به ترتیب جرم آلی‌بند در فاز جامد و مایع خاک است. با سطح عبارت‌های رابطه [۴] و بازتوی آن داریم:

\[M = S \rho_b + C_0 \]

که در آن (MM⁵⁻¹ S) جرم آلی‌بند جذب شده در واحد حجم C جرم آلی‌بند خاک (ML⁻¹) ρb (جرم و مایع خاک (ML⁻¹) ρb (جرم و
زهر محاسبه شد:
\[
t_i^m = \begin{cases} \frac{1}{\sum_{i=1}^{n} \left(\frac{C_{i+1} - C_i}{\rho_b} \right)^i} & \text{if } C_{i+1} > C_a \\ \frac{1}{\sum_{i=1}^{n} \left(\frac{C_{i+1} - C_i}{\rho_b} \right)^i} & \text{if } C_{i+1} \leq C_a \end{cases}
\]

که در آن \(t_i^m \) مدت زمان لازم برای پالایش سیز آلایندگی از خاک بر حسب سال ن (ی ول تعداد سطح آلودگی سررب و کادمیم در خاک است به گونه‌ای که فاصله بین دو سطح آلودگی خاک یک کلاس پداناوجی شده است.

سرب و کادمیم در خاک از (mg kg\(^{-1}\)) مقدار کل سرب يا کادمیم ب (mg m\(^{-3}\)) است که باید بالا بوده شود تا نخ از سطح آلودگی +1 به سطح آلودگی 1 بررسی می‌گیرد. میانگین نرخ اندازه‌گیری شده پالایش سرب يا کادمیم توسط گیاه (mg m\(^{-3}\) day\(^{-1}\)) غلظت کل محیط آلودگی در خاک و ضریب 365 در مخرج کسر با تبدیل زمان از گیاه و سرب به سال است.

در پایان اعتبار مدل‌های ارائه شده برای برآورد مدت زمان لازم برای پالایش سرب و کادمیم با ملاک‌های کمی مانند ضریب کارایی (Efficiency, R\(^2\)), جذر میانگین مربعات خطا (RMSE), ضریب نسبی (CAE), ضریب کارایی (Modeling Efficiency, EF) و ضریب مقدار باعث می‌شود (Coefficient of Residual Mass, CRM).

\[R^2 = 1 - \frac{\sum_{i=1}^{n} (T_i^p - T_i^o)^2}{\sum_{i=1}^{n} T_i^o} \]

\[ME = \max \left(T_i^p - T_i^o \right) \]

\[EF = \frac{\sum_{i=1}^{n} (T_i^p - T_i^o)}{\sum_{i=1}^{n} T_i^o} \]

با قرار دادن این مقدار در رابطه 8 و با پایین‌سپری آن داریم:

\[\frac{C_t}{C_i} = \left(\frac{C_{SDPb} + \theta}{K_{SDPb} + \theta} \right)^{1/t} \Rightarrow t_r = \frac{(K_{SDPb} + \theta)}{k} \ln \frac{C_i}{C_f} \]

که در آن \(k \), (ML\(^{3}\)T\(^{-1}\)) یکی از شیمیایی و اکتشی تابع مربوطه اول \(C \) و روابط پایین مقدار منفی پالایش سیز آلایندگی است.

اگر \(r_o \) تابع مربوطه اول \(C \) باشد، آنگاه داریم:

\[r_o = \frac{\Delta C}{\Delta t} = k_i \Rightarrow r_o = -k_i C \]

که در آن \(k_i \), (ML\(^{-1}\)T\(^{-1}\)) ضریب وابسته به گیاه، خاک و اکتشی است.

اور \(r_0 \) را تابع مربوط به C در نظر گیریم، آنگاه داریم:

\[r_o = \frac{\Delta C}{\Delta t} = k_i \Rightarrow r_o = -k_i C \]

که در آن \(k_i \), (ML\(^{-1}\)T\(^{-1}\)) ضریب وابسته به گیاه، خاک و اکتشی است.

 جديدة: به عنوان حذف مجموع مربعات خطا برای تغییر در وابستگی به دست آمد.

مقدار زمان اندازه‌گیری شده پالایش سیز خاک نیز از رابطه 9
جدول 1: نتایج تجزیه‌های فیزیکی و شیمیایی خاک استفاده شده در آزمایش‌ها

<table>
<thead>
<tr>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>ρb (gr cm⁻³)</th>
<th>ρFC (cm² cm⁻³)</th>
<th>ECE (ds m⁻¹)</th>
<th>pH</th>
<th>OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>18</td>
<td>18</td>
<td>1.2</td>
<td>0.02</td>
<td>1.0</td>
<td>6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* ρb: جرم ویژه خاک
ρFC: رطوبت حجمی خاک در نقطه ظرفیت زراعی
ECE: هدایت الکتریکی در عصره خاک انت‌باع
pHe: pH واکنش گل اشباع
OM: ماده آلی خاک

نتایج و بحث
جدول 1 مقدار عدیدی ویژگی‌های از خاک که در فرمول‌بندی فرض آرایه شده در این پژوهش کاربرد دارد به عنوان پیش‌فرض در انتخاب معادلات این فرض‌ها پذیرفته شده‌اند. در این آزمایش‌ها، می‌تواند منفی باشد. مقدار CRM ME 0 را بزرگتر از 85% یک است. R² EF و CD می‌توانند مقدار مقدار نشانه‌نامه‌ای ناکام‌آمدی مدل است، در حالی که مقدار RMSE می‌تواند مدل به‌جهت میزان بیشتر یا کمتر از واقعیت، برآورد می‌کند. CRM مقدار برآورد شده و اندام‌زیستی شده را نشان می‌دهد. مقدار بیشتر از مقدار برآورد شده به‌دست می‌دهد. شاخص CRM برای سنجش تعامل مدل به‌راورد بیشتر یا کمتر از واقعیت است. منفی بیانگر برآورد یا CRM از واقعیت است. اگر هم‌های داده‌های برآورد شده و اندام‌زیستی شده یکسان باشد، آماره‌ها به این کنونه‌اند: R² = 1; EF = 1; CRM = 0; ME = 0; RMSE = 0; CD = 1
جدول ۲. مقدار ضرایب k، kی و kی در برای پالایش سرب و کادمیم به وسیله شاهی و استفاده

<table>
<thead>
<tr>
<th>فلز</th>
<th>کیهای</th>
<th>kی (mg l(^{-1})Yr(^{-1}))</th>
<th>kی (Yr(^{-1}))</th>
<th>kی (mg l(^{-1})Yr(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>شاهی</td>
<td>25/9 \times 10^{-1}</td>
<td>1/7 \times 10^{-1}</td>
<td>53/687 \times 91</td>
</tr>
<tr>
<td></td>
<td>استفاده</td>
<td>2/0 \times 10^{-1}</td>
<td>4/8 \times 10^{-1}</td>
<td>53/687 \times 91</td>
</tr>
<tr>
<td>کادمیم</td>
<td>شاهی</td>
<td>13/9 \times 10^{-1}</td>
<td>13/2 \times 10^{-1}</td>
<td>53/687 \times 91</td>
</tr>
<tr>
<td></td>
<td>استفاده</td>
<td>9/5 \times 10^{-1}</td>
<td>9/4 \times 10^{-1}</td>
<td>53/687 \times 91</td>
</tr>
</tbody>
</table>

جدول ۳. نتایج آزمایش کمی اعتبار روابط ۱۰، ۱۲ و ۱۴ در برآورد مدت زمان لازم برای پالایش سرب و کادمیم از خاک

<table>
<thead>
<tr>
<th>فلز</th>
<th>کیهای</th>
<th>ME</th>
<th>RMSE</th>
<th>CD</th>
<th>EF</th>
<th>CRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>رابطه 10</td>
<td>0/959</td>
<td>0/959</td>
<td>5/5</td>
<td>0/966</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 12</td>
<td>0/996</td>
<td>0/949</td>
<td>12/7</td>
<td>0/968</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 14</td>
<td>0/993</td>
<td>0/946</td>
<td>14/2</td>
<td>0/958</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 16</td>
<td>0/989</td>
<td>0/942</td>
<td>16/9</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 18</td>
<td>0/980</td>
<td>0/939</td>
<td>18/6</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 20</td>
<td>0/971</td>
<td>0/938</td>
<td>20/3</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 22</td>
<td>0/967</td>
<td>0/938</td>
<td>22/0</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 24</td>
<td>0/963</td>
<td>0/938</td>
<td>24/7</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 26</td>
<td>0/959</td>
<td>0/938</td>
<td>26/4</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 28</td>
<td>0/955</td>
<td>0/938</td>
<td>28/0</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 30</td>
<td>0/952</td>
<td>0/938</td>
<td>30/7</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 32</td>
<td>0/948</td>
<td>0/938</td>
<td>32/4</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 34</td>
<td>0/945</td>
<td>0/938</td>
<td>34/1</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 36</td>
<td>0/942</td>
<td>0/938</td>
<td>36/7</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>رابطه 38</td>
<td>0/939</td>
<td>0/938</td>
<td>38/4</td>
<td>0/948</td>
<td>0/10</td>
<td></td>
</tr>
</tbody>
</table>
مطالعه پالایش سیستم‌های آلودگی آلوده به سرب و کادمیم

نتایج جدول 3 همچنین نشان می‌دهد که اثره
پیش‌فرض های متغیر فاکتور تترا گیاه در جذب
آلودگی فلزات سطحی از خاک بیش از آن که در گرو
ویژگی کیفیت باندی به شکل فلزیکر دارد. به دیگر
هم‌چنین، نتایج تجربه حساسیت (Sensitivity analysis)
مدل انتخاب شده نشان داد که تغییر 10 درصدی هر یک از
پارامترها، b و K_{SD}، موجب نسبت به 0 تغییر در θ نشده.
این نتایج نشان داد که مهم‌ترین
مدل حساسیت یکسان و شبیه‌گنگ است. به دیگر
نسبت به 0 حساس نیست. لذا، فرض ثابت گرفته 0 پذیرفته
است.

نتایج گزار
در پایان بر پایه نتایج این پژوهش به منظور برآورد مقدار زمان
لزوم برای پالایش سیستم سرب از خاک توسط شاهی و سافنتاج
می‌توان از رابطة 12 استفاده کرد. لینک با استفاده از توری ارائه
شده در این پژوهش. نمی‌توان برآورد دقیقی از زمان لزوم برای
پالایش کادمیم از خاک به دست آورد. با وجود این، رابطه
10 نتایج برای دست‌یابی به برآوردی کلی از زمان لزوم برای
پالایش کادمیم توسط شاهی و سافنتاج پیشنهاد می‌شود.

منابع مورد استفاده
1. مهابی، م. و. پ. پرستاش. 1377. تشیعی، سربه (ترجمه). مرکز گزارش دانشگاه صنعتی اصفهان.
2. هم‌چنین، م. 1381 وکنش کیفیتگی به شوری. انتشارات کتابی ملی آیناری و وزش ایران. شماره 58.