صدای گیری برخی از ذخایر کربن آلی در دسترس به عنوان شاخص کیفیت خاک

معصومه پویسفي، حسین شیریمدادی* و محمد علی حاج عباسی

(تاریخ دریافت: ۲۴/۱۱/۸۵، تاریخ پذیرش: ۲۴/۱۱/۸۵)

چکیده
مدیریت صحیح عملیات کشاورزی و حفظ مواد آلی خاک، از جمله عوامل مهم در کشاورزی پایدار می‌باشد. مدیریت ماده آلی خاک یکی از شاخص‌های مهم کیفیت خاک محصول می‌شود. ذخایر لایل مواد آلی به عنوان شاخص خوبی از کیفیت خاک به‌شماره می‌رود. تغییرات عملیات مایع و مغذی خاک به‌ویژه تغییرات زراعی در دو خاک آهنک صورت گرفت این مطالعه در دو محل – کرمان‌شهر تحت کودهای با چهار سطح ۱۰۰-۵۰ و ۲۵۰-۱۰۰ مگاگرایی کود گازی در هرکاله‌ای با تاپوی زراعی دزرت-کنده (C1, C2, C3, C4)، در کرمان‌شهر و در سیستم‌های کاوش (C5, C6, C7) مزدوجی انجام شد. نمونه‌برداری خاک از دو عمق ۵-۰ و ۵-۱ سانتی‌متر انجام شد. در نمونه‌های خاک مقابل کربن آلی، کربوهیدراتات عصاره‌گیری با آب، داگ، داگ مواد آلی (POM)، داگ آلی و داگ کربوهیدراتات عصاره‌گیری با آب پودری از نمونه‌برداری در دو محل تعیین شد. همچنین نتایج نشان داد که میانگین وزنی نسبت به کلیه‌های نمونه‌برداری یافته‌های دو محل در دو محل کاهش داشت و به اصول ارزیابی کیفیت خاک مواد توجه شد. ارزیابی کیفیت خاک مورد توجه پایداری خاک‌داری خاک، کیفیت خاک

واژه‌های کلیدی: ذخایر کربن، مواد آلی خاک، پایداری خاک‌داری، مدیریت خاک، کیفیت خاک

مقدمه
مدیریت صحیح کشاورزی و حفظ مواد آلی خاک، از جمله عوامل مهم در کشاورزی پایدار می‌باشد. مدیریت ماده آلی خاک به دلیل اینکه خصوصیات شیمیایی، فیزیکی، بیولوژیکی و فرایندهای خاک را تبدیل کرده‌است تحت تأثیر قرار می‌دهد. یکی از

* مسئول مکاتبات، پست الکترونیکی: Shariat@cc.iut.ac.ir

پیوست: فهرست اشاره‌های منابع

1. ه. برترین دانشجوی سابق کارشناسی ارشد در دانشگاه خلیج فارس، دانشگاه کشاورزی دانشگاه اصفهان
لیال (Labile) یا ذخایر آلی تعریف شده در بخش (Particulate Organic Matter) از ذخایر ماده آلی (POM) یا کربن محلول، کربن قابل معدنی شدن و کربن قابل عصاره‌گیری با عصاره‌گیری مختلف (15). از آمایش‌های زرده خانه نشان داده است که می‌توان به‌طور چشم‌گیر تغییر در وضعیت ماده آلی شده که این تغییر در ذخایر لایل برای میزان بسیاری از کربن آلی به طور درخت دارد (7). به همین دلیل ذخایر لایل کربن خاک به عنوان شاخص‌های حساس برای ماهیت روند تغییرات در ماده آلی خاک بیشتر است (77).

در حالات ماده آلی خاکی از ماده آلی است که از نظر مقدار تجهیز حذف‌سازی یا تخلیه یا تبدیل به شکل مجزا بیشتر نمی‌شود. این بخش می‌تواند هم‌زمان به شکل حذف‌سازی یا تخلیه خاک یا به شکل واحد مجزا یا متفاوت تبادل می‌شود. در این زمینه بگستن کربن و نیز غنی بودن از عناصر غذایی کربن‌کریک‌های شاخص به‌صورت حساب می‌آید (15). مطالعات نشان داده است که ارتباط بین این مقدار از ماده آلی با اجزای معدنی ناجی بوده و از این رو بستری از ماده آلی که با اجزای معدنی خاک در ارتباط هستند، تجزیه می‌شود (16). بنابراین استفاده از این شاخص برای بررسی اثر زمان‌ها و نتایج زراعی مختلف بر شاخص‌های کربن نشان‌داده می‌شود (17). در مطالعات می‌توان روند و مقاومت شاخص‌های کربن بیشتر یا کمتر در پیش‌آوری از شاخص‌های حساس به میزان تغییرات جهت ارزیابی تأثیر سیستم‌های مختلف کشاورزی بر خصوصیات کیفی خاک صورت گرفت.

مواد و روش‌ها

این مطالعه در قالب طرح فاکتوریال با پایه‌های کامل تصادفی در سه تکرار و دو عدد خاک در هر سیستم کاشتگاه در دو منطقه نجف‌آباد و شوشتر انجام شد. کشت‌های تحقیقاتی در میان گیاهی به سبک مزرعه تکرار و اقتصادی در دو گروه آب و دیگری در ایستگاه تحقیقاتی شهید فردوز، مرکز تحقیقات منابع طبیعی و جهاد کشاورزی استان اصفهان که خاک این مناطق از سری خمیشی شهر بوکرود و در دو ارتفاع

430
جدول 1. تغییرات کشت مزارع و سیستم‌های کشت مورد مطالعه

<table>
<thead>
<tr>
<th>سیستم کشت</th>
<th>تغییرات / نوع کوددهی</th>
<th>مخل نموده برداری</th>
<th>1387</th>
<th>1386</th>
<th>1385</th>
<th>1384</th>
<th>1383</th>
</tr>
</thead>
<tbody>
<tr>
<td>دشت-گندم</td>
<td>مخل نموده کوددهی</td>
<td>مخل نموده کوددهی</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>لوکر</td>
<td>مخل نموده کوددهی</td>
<td>مخل نموده کوددهی</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>لوکر</td>
<td>مخل نموده کوددهی</td>
<td>مخل نموده کوددهی</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>لوکر</td>
<td>مخل نموده کوددهی</td>
<td>مخل نموده کوددهی</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>لوکر</td>
<td>مخل نموده کوددهی</td>
<td>مخل نموده کوددهی</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

1. در سیستم بدون کوددهی، در طی پنج سال تناوب دشرت و گندم هیچ کودایی کود شیمیایی یا آلی به خان اضافه نشده است.
2. در سیستم کوددهی معنی‌دار، کودهای P و K مطلوب توصیه آزمون خال سالانه استفاده می‌شود.
3. نموده برداری خاک در پایان فصل رشد سال 1383 انجام گرفته است.

سول‌ها (تیپیک های آلی، آلی، لاکمیک، تریمک) قرار دارند. سیستم‌های کشت C1، C2، C3، C4 و C5 در منطقه لوکر به ترتیب عمارت بودن از سطح صفر، 250 و 150 مگاگرم در هکتار کود گزاری که از سال 1378 شروع و هر سال در کرت که آزمایشی اعمال شده است. کلیه سیستم‌های کشت در تهیه اول نه سال تحت کشت گندم و در نهایت C4 و C5 تا نهایت سال تحت کشت دشت و سایر سیستم‌های کشت شامل C7 و C6 در منطقه لوکر و سیستم‌های کشت C8 و C9 در منطقه فروزه انتخاب شدند که تغییرات C10 و C7، C9 کشت و تناوب زراعی آنها در جنگ سال گذشته در جدول اول نشان داده شده است. تعامل بیلاته‌های آزمایشی در دو مزرعه تحت روش آماری گرافیک قرار داشته‌اند.

نتایج کشت خاک از هر کدام از سیستم‌های کشت دو نمونه‌ها داشته باشید و از شرایط آماری بین‌شانه ای در سایر سیستم‌های کشت دو مزارع داشته باشید. نتایج شرایط بدون کوددهی، کوددهی لاین 5 و 5 سانتی متری به صورت نموده مرکب برداشه شده. نتایج به دو اندازه گیری به دو آزمایشگاه و حکایت شدن در هوا از روش گرگ‌وریچ (POM) برای جدادیزی در آماده‌الآیی (ال) از روش گرگ‌وریچ.
جدول ۲ - برخی خصوصیات فیزیکی و شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>کربنات کلسیم (۰)</th>
<th>EC (dS/m)</th>
<th>pH</th>
<th>سیستم کاشت</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۷/۳۵</td>
<td>۰/۲۵</td>
<td>۸/۴۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۵۸</td>
<td>۰/۲۵</td>
<td>۸/۴۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۷۵</td>
<td>۱/۲۵</td>
<td>۷/۶۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۳/۲۵</td>
<td>۱/۲۵</td>
<td>۷/۵۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۶۵</td>
<td>۰/۱۵</td>
<td>۷/۵۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۶/۳۵</td>
<td>۰/۱۵</td>
<td>۷/۳۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۶/۴۰</td>
<td>۰/۱۵</td>
<td>۷/۵۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۵۵</td>
<td>۰/۰۵</td>
<td>۷/۵۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۶۵</td>
<td>۰/۱۵</td>
<td>۷/۸۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۷۵</td>
<td>۰/۰۵</td>
<td>۷/۸۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۸۰</td>
<td>۰/۰۵</td>
<td>۷/۸۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۸۵</td>
<td>۰/۰۵</td>
<td>۷/۸۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۹۰</td>
<td>۰/۰۵</td>
<td>۷/۸۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
<tr>
<td>۳۷/۹۵</td>
<td>۰/۰۵</td>
<td>۷/۸۰</td>
<td>لوکر</td>
<td>لوکر</td>
</tr>
</tbody>
</table>

نتایج و بحث

خلاصه‌ای از نتایج آزمایشات مورد انتزاع قرار گرفته در صفحه‌های گذشته تأثیر و تأثیر سیستم‌های کاشت مطالعه‌ی قرار داشتند. نتایج تجزیه و ارائه‌ی داده‌های (جدول‌های ۲ و ۳) نشان می‌دهد که در همه‌ی صفات، اختلاف معنی‌داری بین سیستم‌های کاشت و همچنین عمق‌های مورد مطالعه (جدول ۵) در سطح احتمال ۱ درصد وجود دارد.

کربن آلی

حدود استخوان‌های کربن آلی در دو منطقه به ۸/۰۵ ردیدن است (شکل ۱). در منطقه لوکر سیستم کاشت C4 مربوط به تیمار سالانه افزایش ۱۰۰ مگاگرم کود کاری در هکتار بیشترین مقدار کربن آلی خاک را نشان داد. کربن مقدار کربن آلی در این منطقه مربوط به سیستم کاشت C1 (تیمار صفر کود گاوا) باشد. سیستم کاشت C5 و C7 و C6 از نظر مقدار کربن آلی نیز تفاوت معنی‌داری با کود کاری تیمار شادی هزینه. این تفاوت‌ها با کود کاری تیمار شادی HWD (ارزیابی کربن). سیستم‌های مختلف در سیستم‌های مختلف، در تحقیقات مختلف از جمله میکرو و هم‌کاران نیز نشان داده شده افزودن کود آلی به خاک باعث افزایش مقدار ماده آلی خاک می‌گردد (۲۲).

در منطقه فزوه، بیشترین مقدار کربن آلی مربوط به سیستم کاشت C9 (پیش از پنج سال پیونجه مستوا) به دو شاید شباهت با دیگر C9
جدول ۳. نتایج تجزیه و ارتباط خصوصیات اندازه‌گیری شده‌ها در منطقه لورک

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>کربوهیدرات در بخش</th>
<th>کربوهیدرات کربوهیدرات</th>
<th>df</th>
<th>متغیر تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWD</td>
<td>POM</td>
<td>POM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/144**</td>
<td>817**</td>
<td>1/8V**</td>
<td>6</td>
<td>تیمار</td>
</tr>
<tr>
<td>0/0037**</td>
<td>21/39**</td>
<td>18/98**</td>
<td>1</td>
<td>عمق</td>
</tr>
<tr>
<td>0/0012</td>
<td>11/24**</td>
<td>23/153**</td>
<td>6</td>
<td>اثر مقابل</td>
</tr>
<tr>
<td>0/0055</td>
<td>0/016</td>
<td>18/73</td>
<td>4</td>
<td>تکرار، عمق</td>
</tr>
<tr>
<td>0/0052</td>
<td>0/055</td>
<td>21/74</td>
<td>24</td>
<td>خططا</td>
</tr>
</tbody>
</table>

* نشان دهنده اختلاف معنی‌دار در سطح 0/01 است.

جدول ۴. نتایج تجزیه و ارتباط خصوصیات اندازه‌گیری شده‌ها در منطقه فزوه

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>کربوهیدرات در بخش</th>
<th>کربوهیدرات کربوهیدرات</th>
<th>df</th>
<th>متغیر تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWD</td>
<td>POM</td>
<td>POM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/194**</td>
<td>894**</td>
<td>3/95**</td>
<td>2</td>
<td>تیمار</td>
</tr>
<tr>
<td>0/017**</td>
<td>44/95**</td>
<td>11/21**</td>
<td>1</td>
<td>عمق</td>
</tr>
<tr>
<td>0/01</td>
<td>1/77**</td>
<td>3/723**</td>
<td>2</td>
<td>اثر مقابل</td>
</tr>
<tr>
<td>0/001</td>
<td>0/043</td>
<td>0/879</td>
<td>4</td>
<td>تکرار، عمق</td>
</tr>
<tr>
<td>0/007</td>
<td>0/041</td>
<td>11/66</td>
<td>8</td>
<td>خططا</td>
</tr>
</tbody>
</table>

* نشان دهنده اختلاف معنی‌دار در سطح 0/01 است.

جدول ۵. مقایسه میانگین خصوصیات اندازه‌گیری شده‌ها در دو عمق مشترک در دو منطقه لورک و فزوه

<table>
<thead>
<tr>
<th>پارامتر اندازه‌گیری شده</th>
<th>لورک (۶-۵)</th>
<th>فزوه (۵-۴)</th>
<th>واحد</th>
<th>کربوهیدرات</th>
<th>کربوهیدرات</th>
<th>کربوهیدرات</th>
<th>کربوهیدرات</th>
<th>کربوهیدرات</th>
<th>کربوهیدرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۳۲ B</td>
<td>۱/۳۹ A</td>
<td>۱/۴۷ A</td>
<td>% POM</td>
<td>کربوهیدرات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۳۱ B</td>
<td>۰/۳۴ A</td>
<td>۰/۴۸ A</td>
<td>mg/kg</td>
<td>کربوهیدرات</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۵۰/۰۳۴ B</td>
<td>۴۱۷/۱A</td>
<td>۴۱۷/۱ A</td>
<td>mg/kg</td>
<td>POM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳۷/۴۹ B</td>
<td>۱۴۷/۴۶ A</td>
<td>۱۴۷/۴۶ A</td>
<td>mm MWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* در هر ردیف، میانگین‌های مربوط به هر منطقه که با حروف مختلف مشخص شده‌اند در سطح 0/01 دارای اختلاف معنی‌دار می‌باشند.

433
کربن آلی در بخش POM در منطقه شورک کاربرد 100 مگاگرم کود گازی در هکتار (سیستم کاشت C4) همراه با بیشترین مقدار کربن آلی در بخش

بختی از این افتارش را مرتبط با بجاگشت بختی از یک‌گاهی گیاهی به کربن آلی مقدار مربوط به سیستم کاشت C8 (آتش متولی) بود. کمتر بودن کربن آلی در تیمار آتش را می‌توان به دلیل تجربه ماده آلی دانست که مقاربه از کربن آلی متنقل تجربه به عنوان حدسی یک‌گاهی گیاهی به کربن آلی موردنظر می‌باشد. این مقدار مواد آلی در بخش به شمار می‌رود در سیستم کاشت C7 به دلیل آتش ماندن زمین بعد از کشت برنج. احتیاط با یک‌گاهی گیاهی و رودی و همچنین کودهای اضافه شده به زمین فرض تجربه با کربن آلی مقدار زیادی از کربن آلی این بخش طی تجربه به صورت CO2 از زمین خارج شده است. نتایج تحقیقات اسپسر و همکاران نیز نشان

شکل 1. کربن آلی خاک سطحی در سیستم‌های کاشت متفاوت حریف متفاوت در هر منطقه نشان دهنده اختلاف معینی در میانگین‌ها در سطح 2014 می‌باشد.

شکل 2. نسبت کربن آلی بخش POM به کربن آلی در سیستم‌های کاشت متفاوت حریف متفاوت در هر منطقه نشان دهنده اختلاف معینی در میانگین‌ها در سطح 2014 می‌باشد.
در این رابطه محققان نشان داده‌اند برخی کودها

435
پایداری خاک‌های محدوده تغییر میانگین وزنی قطر خاک‌های پایدار در آب بین 28/38 میلی‌متر است (شکل 5). در منطقه لورک پیشرفت مقدار MWD در سیستم‌های کاشتن C6 و C4 و همچنین C7 و C1 حاصل شد که مقدار قطر خاک‌های پایدار در آب یکم خاک را تحت کشت جو و بی‌بیش در مقایسه با آب‌کاری به مقدار 50 درصد افزایش یافت (3).

در منطقه دوم پیشرفت مقدار پایداری خاک‌های در سیستم کاشتن C9 و کمترین مقدار آن در سیستم کاشتن C8 به دست آمد. نتایج تحقیقات رید و گونس نشان داد که افزایش پایداری

شکل 4: مقدار کربونهایر در خاک در سیستم‌های کاشتن متفاوت در فهرستی نشان دهنده تفاوت میانگین ها در سطح 0/00 درصدی.

شکل 5: میانگین وزنی قطر خاک‌های پایدار در آب (MWD) در سیستم‌های کشت متفاوت حروف متفاوت در هم منطقه نشان دهنده اختلاف معنی‌دار میانگین ها در سطح 0/000 درصدی.

نیز می‌توان به دلیل بقا‌ای کیفیت افرودی قبلاً شده به خاک و ترکیب شیمیایی بقا و دانست. نیز بیشتر مطالعات انجام شده تحت شرایط گلخانه‌ای نشان داد که پایداری خاک‌های نشان دهنده می‌تواند بی‌اس که این رابطه نگر و می‌تواند در یک ذهن مازاد مزروعه مشاهده کرده که بیشتر از یک فصل رشد، میانگین وزنی قطر خاک‌های پایدار در آب یکم خاک را تحت کشت جو و بی‌بیش در مقایسه با آب‌کاری به مقدار 50 درصد افزایش یافت (3).
جدول 6 رابطه بين ذخایر کربن آلی و پایداری خاک‌هایی

<table>
<thead>
<tr>
<th>عامل‌های میتستیک</th>
<th>ضرایب همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWD = 0.1/109 C</td>
<td>0.33</td>
</tr>
<tr>
<td>MWD = 0.2/9 Cb.HW</td>
<td>0.34</td>
</tr>
<tr>
<td>MWD = 0.3/24 POMC</td>
<td>0.53</td>
</tr>
<tr>
<td>MWD = 0.4/041 POM (Cb.HW)</td>
<td>0.60</td>
</tr>
</tbody>
</table>

نتیجه گیری

مقادیر کربن آلی، کروهیدرات‌های خاک و سیستم‌های مختلف کشت تأثیر مستقیمی بر نشان‌دهنده قدرت خاک دارد. در این رابطه سیستم‌های مختلف کشت کود دامی و نوسان بیوجنتیک باعث افزایش میزان بار آرام گشته و سیستم کشت آبی در مقایسه با سایر سیستم‌های مختلف کشت میزان چربی آب آرام‌های از کاهش داده انتظار داشت. پایداری خاک‌های آلی نیز در میزان متفاوت کشت اختلاف معنی‌دار نشان داد. در این رابطه تناوب بیوجنتیک منجر به استفاده قرار گرفت.

می‌تواند این نتیجه از دیدگاه الگولیستیک رشد گیاهی و بیوجنتیک به دلیل پیلی ساکاریدهای تولید شده در ریزوسفر بوده است (24).

همتستیک خصوصیات

بررسی روابط بین ذخایر کربن آلی و پایداری خاک‌های آلی و میزان شاخص‌های خاک‌های آلی در پایداری آلی و کربن آلی در این سال (f = 0.95) کروهیدرات‌های قابل عصاره‌گیری با آب داغ (f = 0.75) همچنین کربن آلی در بخش میکروبی نسبت به متوان در غلیظ شدن مواد آلی (MWD).

نتیجه گیری

مقادیر کربن آلی، کروهیدرات‌های خاک و سیستم‌های مختلف کشت تأثیر مستقیمی بر نشان‌دهنده قدرت خاک دارد. در این رابطه سیستم‌های مختلف کشت کود دامی و نوسان بیوجنتیک باعث افزایش میزان بار آرام گشته و سیستم کشت آبی در مقایسه با سایر سیستم‌های مختلف کشت میزان چربی آب آرام‌های از کاهش داده انتظار داشت. پایداری خاک‌های آلی نیز در میزان متفاوت کشت اختلاف معنی‌دار نشان داد. در این رابطه تناوب بیوجنتیک منجر به استفاده قرار گرفت.

می‌تواند این نتیجه از دیدگاه الگولیستیک رشد گیاهی و بیوجنتیک به دلیل پیلی ساکاریدهای تولید شده در ریزوسفر بوده است (24).
مورت مورد استفاده

438