سیستم تغییرات فسفر قابل استخراج در تعدادی از خاک‌های همدان

فرنوش طهماسبی و علیرضا حسین‌پور

(تاریخ دریافت: 1491/10/02)

چکیده

ویژگی‌های خاک نقش مهمی در جذب فسفر دارد. اطلاعات درباره جذب فسفر در خاک‌های همدان محدود است. هدف از این پژوهش بررسی سرعت جذب فسفر در تعدادی از خاک‌های همدان به ویلیمی‌دار نوع عصاره‌گیری ویژگی‌های خاکهای سبز/5 نرمال (روش اولنس) و پی‌کریبت‌های آمونیوم-دی‌تی‌پی‌ای ارائه گزارش می‌گردد. خصوصیات جذب فسفر در خاک‌های همدان از دو حالت مختلف بررسی شده که از پی‌کریبت‌های آمونیوم-دی‌تی‌پی‌ای بهره می‌گیرد.

کلیدواژه‌ها: سیستم تغییرات فسفر، جذب فسفر، پی‌کریبت‌های سبز، پی‌کریبت‌های آمونیوم-دی‌تی‌پی‌ای.
مقدمه

جذب و آراد شد فسفر از مهم‌ترین فرآیندهای هستند که
غلظت فسفر در محلول خاک را کنترل می‌کند (۲۳). برای
مطاعبه جامع یک واکنش هم بررسی نرم‌ترهای عاملیکی و هم
سئین‌کی این واکنش ضروری است. چنین بررسی‌های مکمل
یک‌گانگی می‌باشد (۱۱).

تومودیامیکی، جهت واکنش را توصیف می‌کند و پیش‌بینی
می‌کند که آیا مواد برای رسیدن به پایدارترین حالت خود با هم
وکنش خواهند داد یا اما بعضاً از واکنش‌های بسیار کند هستند
و به‌افعاله به پایدارترین حالت خود نمی‌رسند. سپس، مطالعه
سابز کار (مسیر و محصولات حد واسط) و سرعت واکنش‌ها
می‌باشد (۷). اینکه از دو دلیل برای مطالعه سرعت
واکنش‌های شیمیایی ارائه می‌شود: پیش‌بینی اینکه واکنش‌ها
با چه سرعتی به تعادل با حالت شیب تعادل رسیدن و پیش‌بینی
سازوکار واکنش‌ها معادله‌های سرعت هم‌چنین و سیل‌های برای
طبقه‌بندی واکنش‌ها به مهره‌ای مختلف می‌باشد.

واکنش‌های شیمیایی در خاک و محیط‌های آبی فراپاسگی
پویا هستند (۲۵). بنابراین مطالعه سپتی‌کی برای توصیف و پیش
بینی واکنش‌های جذب و دفع که در محیط‌های طبیعی رخ
می‌دهد به کار می‌روند (۲۷).

به منظور رسیدن به توصیف بهتر از تغییرات واکنش‌های
FS در خاک با زمان نمی‌توان ماهیت سینتی‌کی چنین
واکنش‌های را نادیده گرفت (۶، ۱۹، ۲۱). غلظت
فسفر در محلول خاک با فراپاسگی جذب-دفع کنترل می‌شود.
ویژگی‌های مختلف خاک شامل پ-هش سیستم جذب، مقدار
اکسیدهای آهن، آلومینیوم، کربنات کلسیم، مواد آلی و رس و
همچنین کاتیون‌های موجود در لایه دوگانه از طریق تأثیر بر
فراپاسگی جذب و دفع در خاک بر تناوب سرعت تناوب
دارند (۱۹). سفر صنعتی عموماً در خاک‌ها به صورت
فسفاتهای کلسیم، آلومینیوم و آلومینیوم در خاک در خاک‌های آلکه، و فسفاتهای آهن و آلومینیوم در
خاک‌های آسیدی قسمت عمده فسفر خاک را تشکیل

۲۷۵
سری‌های آزمایشگاهی به‌طور کلی در مورد سرعت جذب فسفر و توصیف آن با مدل‌های سیستمی مطالعاتی انجام نشده است. لذا این مطالعه به هدف کاربرد مدل‌های سیستمی در توصیف جذب فسفر در تعدادی از خاک‌های همدان انجام شد.

مواد و روش‌ها

جفت انجام این پژوهش ۱۲ نمونه خاک سطحی (۳-۵۰ سم) نمونه‌های خاک با درصد رس تغییر و کنترل انتخاب شدند. از انتقال نمونه‌ها به روش مکانیکی و الکترونیکی در مراحل کاربرد کریستال‌های محمول در خاک (ملحه‌های شیلی) مسیرها به روش الکترونیکی و شیمیایی خاک‌ها شما: بافت خاک با روش هیدرولیک (۸۰-۸۰۰ متر به خاک هیدرولیک (۷۰۰-۰ متر) به روش الکترونیکی و شیمیایی خاک‌ها.) کلیپ-هیدرولیک در مراحل کاربرد کلیپ-هیدرولیک در مراحل کاربرد

پژوهشکده‌هایی در بیشتر خاک‌ها استفاده شده است (۳-۱۳). اسپارکس (۷۷) نشان داشت که برای زاید و افزایش استفاده روش‌های مدل‌سازی و کاربرد مدل‌های سیستمی در توصیف این مدل‌ها به عنوان نشانگر کاربرد مدل‌های سیستمی در توصیف جذب فسفر استفاده شده است (۱۱).}

در خاک‌های ایران در مورد سرعت جذب فسفر و توصیف آن با مدل‌های سیستمی مطالعاتی انجام نشده است. لذا این مطالعه به هدف کاربرد مدل‌های سیستمی در توصیف جذب فسفر در تعدادی از خاک‌های همدان انجام شد.

مواد و روش‌ها

جفت انجام این پژوهش ۱۲ نمونه خاک سطحی (۳-۵۰ سم) نمونه‌های خاک با درصد رس تغییر و کنترل انتخاب شدند. از انتقال نمونه‌ها به روش مکانیکی و الکترونیکی در مراحل کاربرد کلیپ-هیدرولیک در مراحل کاربرد

پژوهشکده‌هایی در بیشتر خاک‌ها استفاده شده است (۳-۱۳). اسپارکس (۷۷) نشان داشت که برای زاید و افزایش استفاده روش‌های مدل‌سازی و کاربرد مدل‌های سیستمی در توصیف این مدل‌ها به عنوان نشانگر کاربرد مدل‌های سیستمی در توصیف جذب فسفر استفاده شده است (۱۱).
جدول 1. معادله‌های سیستمی استفاده شده

<table>
<thead>
<tr>
<th>مدل</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_t = P_0 - K_a \cdot t$</td>
<td>مرتیه صفر</td>
</tr>
<tr>
<td>$lnP_t = lnP_0 - K_a \cdot t$</td>
<td>مرتیه اول</td>
</tr>
<tr>
<td>$P_t = a + \frac{1}{\beta} \ln t$</td>
<td>الریپ ساده شده</td>
</tr>
<tr>
<td>$P_t/P_0 = a + b \cdot t^{0.5}$</td>
<td>انتشار پارابولیک</td>
</tr>
<tr>
<td>$lnP_t = ln(a + b \cdot t)$</td>
<td>تابع نمای</td>
</tr>
</tbody>
</table>

در این معادلات: $P_t$ به ترتیب مقادیر فسفر استخراج شده در زمان $t$ و زمان $t$ مقادیر فسفر جذب شده پس از $t$، $P_0$ و $P_t$ به ترتیب $P_0$ و $P_t$ ساعت و $b$ پر درصد سرعت می‌باشد.

نتایج و بحث

براساس تابعی می‌توان گفت خاک‌های بررسی شده دارای دانه کسترده‌ای از نظر ویژگی‌های زیرگرمی و شبیه‌ترین بود (جدول 2). در مورد درصد اجاعات خاک دانه‌های تغییرات رس 0/05-0/06 درصد بود. دانه‌های تغییرات کربن آلی 0/05-0/06 درصد بود. دانه‌های تغییرات گنجایش نیثال کانیئی 0/38-0/46 سانتی‌مول بر گرم بود. دانه‌های تغییرات آهن پلوری این خاک‌های بین مقدار 0/05-0/32 می‌باشد. دانه‌های تغییرات آلومنیوم یلوری (آزاد) نیز 0/05-0/32 می‌باشد. در کل، گرم که بیشترین و کمترین مقدار آن به ترتیب در خاک‌های 1 و 11 بود (جدول 2). دانه‌های تغییرات آهِن و آلومنیوم یلوری (فعل) نیز به ترتیب بین 0/03-0/32 و 0/05-0/28 می‌باشد. در کل، که بیشترین و کمترین مقدار مریخ به خاک‌های 1 و 11 بود (جدول 2). دانه‌های تغییرات فسفر عصاره‌گیری شده به روش اولسن 0/05-0/13 و میانگین 0/14 می‌باشد. در کل، گرم که بیشترین و کمترین مقدار عصاره‌گیری شده به روش آمیزشی-است. در پانی‌های این معادله‌های سیستمی معادله‌های بهترین مقدار غرفه‌البندی جذب شده فسفر این خاک‌ها تبعیض شد. هم‌چنین میان ثابت‌های سرعت معادله‌های سیستمی و ویژگی‌های خاک معادلات رگرسیونی برای تایپ‌های خاصی از خاک که بر سرعت غرفه‌البندی جذب شدن فسفر تأثیر دارند، مشخص گردید.
### جدول 2

| شماره خاک | محل نمونه برداری | قابلیت هماذیت پ-های کل | کاربرد کائوپتال | تعداد میزان | کلیه معادل | نسبت رس | های | شیمیایی خاکهای مطالعه شده
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>مواری جین</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>سولان</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>میانج</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>یکین آباد</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>بیثار</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>لاله جین</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>کوریجان</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>دوراهی کوریجان</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>سه راهی نوزه</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>کوریجان آلتاک</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>سیرفرآباد</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>شهاب الدین</td>
<td>0/04</td>
<td>1/2</td>
<td>3/7</td>
<td>1/2</td>
<td>7/2</td>
<td>0/26</td>
<td>مواد جینه سولان</td>
<td></td>
</tr>
</tbody>
</table>

### جدول 3

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>فسفر قابل استخراج قبل از اضافه کردن کود و انکوپایسون</th>
<th>فسفر قابل استخراج پس از اضافه کردن کود و انکوپایسون</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بیکراتنات سدیم-دی</td>
<td>بیکراتنات سدیم-دی</td>
</tr>
<tr>
<td></td>
<td>تی بی ای</td>
<td>تی بی ای</td>
</tr>
<tr>
<td>1</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>2</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>3</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>4</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>5</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>6</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>7</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>8</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>9</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>10</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>11</td>
<td>4/52</td>
<td>4/52</td>
</tr>
<tr>
<td>12</td>
<td>4/52</td>
<td>4/52</td>
</tr>
</tbody>
</table>

### نکته

سیستم تغییرات فسفر قابل استخراج در تعدادی از خاکهای همدان

این جدول نشان می‌دهد که فسفر قابل استخراج قبل از اضافه کردن کود و انکوپایسون در خاکهای مطالعه شده (میلی گرم در کیلوگرم) در شماره‌های ۱ تا ۱۲ بوده است. فسفر قابل استخراج پس از اضافه کردن کود و انکوپایسون نیز در همه شماره‌ها مشاهده شده است.
جدول 2. مقادیر آهن و آلومینیوم بلوری و بی‌شکل در خاک های مطالعه شده (پیل گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>آلومینیوم (پیل گرم)</th>
<th>120/7</th>
<th>20/9</th>
<th>10/2</th>
<th>110/9</th>
<th>184/1</th>
<th>12/5/0</th>
<th>130/0/0</th>
<th>12/0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>آهن (پیل گرم)</td>
<td>124/7</td>
<td>130/8</td>
<td>140/4</td>
<td>130/7</td>
<td>140/8</td>
<td>130/8</td>
<td>130/8</td>
<td>130/8</td>
</tr>
</tbody>
</table>

13/1 میلی گرم در کیلوگرم بود (جدول 3). جذب فسفر قابل جدا کردن است که محلول در اثر واکنش با ترکیبات آلی و معادنی خاک به شکل کمتر محلول تبدیل و در نتیجه فسفر قابل جدا کردن کاهش می‌یابد (۶). فسفر در خاک توسط اجزای مختلف خاک از جمله: کلسیم، اکسیدهای آلی و آلومینیوم و مواد آلی، تثبیت شده و از دسترس گیاه خارج می‌شود. تثبیت فسفر بستگی به سرعت وارد که فسفر محلول در می‌تواند به شکل‌های تثبیتی از دسترس است. وجود 25% استخراج فسفر در خاک جدول ۵ ۵نشان داده شده است. با توجه به این جدول‌ها سرعت جذب فسفر در خاک عصاره‌گیر در ابتدا سریع است و سپس کاهش یافته و مقادیر ناپایه می‌رسد. همچنین البسه از ۱۰% فسفر جذب شده در خاک عصاره‌گیر در طول مدت خواباییدن مربوط به بخش اول (۳۳۶ ساعت) بس از شروع آزمایش است. دامپ تغییرات مقادیر فسفر گیاه شده در اختلاف فسفر قابل جدا کردن اولیه و فسفر قابل جدا کردن پس از 250 ساعت (250 ساعت) بس از 250 ساعت توسط پیل گرینت سدیم و
جدول ۵ فسفر استخراج شده با روش اولین در زمان‌های مختلف پس از اضافه کردن کود
(میلی‌گرم بر کیلوگرم)

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
<th>۱۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>۲۲۶/۳</td>
<td>۲۴۸/۳</td>
<td>۲۵۴/۳</td>
<td>۲۵۶/۳</td>
<td>۳۰۳/۳</td>
<td>۳۱۲/۳</td>
<td>۳۰۸/۳</td>
<td>۳۰۷/۳</td>
<td>۲۹۹/۳</td>
<td>۲۹۷/۳</td>
<td>۲۹۴/۳</td>
<td>۲۹۱/۳</td>
</tr>
<tr>
<td>۶</td>
<td>۲۴۹/۳</td>
<td>۲۳۴/۳</td>
<td>۲۲۳/۳</td>
<td>۱۹۸/۳</td>
<td>۱۹۵/۳</td>
<td>۱۹۳/۳</td>
<td>۱۹۱/۳</td>
<td>۱۸۹/۳</td>
<td>۱۸۸/۳</td>
<td>۱۸۶/۳</td>
<td>۱۸۴/۳</td>
<td>۱۸۲/۳</td>
</tr>
<tr>
<td>۷</td>
<td>۲۴۰/۳</td>
<td>۲۲۴/۳</td>
<td>۲۱۳/۳</td>
<td>۲۰۲/۳</td>
<td>۱۹۹/۳</td>
<td>۱۹۷/۳</td>
<td>۱۹۵/۳</td>
<td>۱۹۳/۳</td>
<td>۱۹۱/۳</td>
<td>۱۹۰/۳</td>
<td>۱۸۸/۳</td>
<td>۱۸۶/۳</td>
</tr>
<tr>
<td>۸</td>
<td>۲۱۳/۳</td>
<td>۱۹۲/۳</td>
<td>۱۸۱/۳</td>
<td>۱۷۰/۳</td>
<td>۱۶۹/۳</td>
<td>۱۶۸/۳</td>
<td>۱۶۷/۳</td>
<td>۱۶۶/۳</td>
<td>۱۶۵/۳</td>
<td>۱۶۴/۳</td>
<td>۱۶۳/۳</td>
<td>۱۶۲/۳</td>
</tr>
<tr>
<td>۹</td>
<td>۱۹۳/۳</td>
<td>۱۷۸/۳</td>
<td>۱۶۷/۳</td>
<td>۱۵۶/۳</td>
<td>۱۵۵/۳</td>
<td>۱۵۴/۳</td>
<td>۱۵۳/۳</td>
<td>۱۵۲/۳</td>
<td>۱۵۱/۳</td>
<td>۱۴۹/۳</td>
<td>۱۴۸/۳</td>
<td>۱۴۷/۳</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۶۳/۳</td>
<td>۱۴۲/۳</td>
<td>۱۲۱/۳</td>
<td>۱۰۰/۳</td>
<td>۹۸/۳</td>
<td>۹۶/۳</td>
<td>۹۵/۳</td>
<td>۹۴/۳</td>
<td>۹۳/۳</td>
<td>۹۱/۳</td>
<td>۸۹/۳</td>
<td>۸۷/۳</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۲۱/۳</td>
<td>۱۰۰/۳</td>
<td>۸۹/۳</td>
<td>۷۸/۳</td>
<td>۷۶/۳</td>
<td>۷۴/۳</td>
<td>۷۲/۳</td>
<td>۷۱/۳</td>
<td>۷۰/۳</td>
<td>۶۹/۳</td>
<td>۶۸/۳</td>
<td>۶۷/۳</td>
</tr>
<tr>
<td>۱۲</td>
<td>۷۱/۳</td>
<td>۵۰/۳</td>
<td>۳۹/۳</td>
<td>۲۸/۳</td>
<td>۲۷/۳</td>
<td>۲۶/۳</td>
<td>۲۵/۳</td>
<td>۲۴/۳</td>
<td>۲۳/۳</td>
<td>۲۲/۳</td>
<td>۲۱/۳</td>
<td>۲۰/۳</td>
</tr>
<tr>
<td>۱۳</td>
<td>۲۳/۳</td>
<td>۱۲/۳</td>
<td>۱۱/۳</td>
<td>۱۰/۳</td>
<td>۹/۳</td>
<td>۸/۳</td>
<td>۷/۳</td>
<td>۶/۳</td>
<td>۵/۳</td>
<td>۴/۳</td>
<td>۳/۳</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۱۴</td>
<td>۲۳/۳</td>
<td>۱۲/۳</td>
<td>۱۱/۳</td>
<td>۱۰/۳</td>
<td>۹/۳</td>
<td>۸/۳</td>
<td>۷/۳</td>
<td>۶/۳</td>
<td>۵/۳</td>
<td>۴/۳</td>
<td>۳/۳</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۱۵</td>
<td>۲۳/۳</td>
<td>۱۲/۳</td>
<td>۱۱/۳</td>
<td>۱۰/۳</td>
<td>۹/۳</td>
<td>۸/۳</td>
<td>۷/۳</td>
<td>۶/۳</td>
<td>۵/۳</td>
<td>۴/۳</td>
<td>۳/۳</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۱۶</td>
<td>۲۳/۳</td>
<td>۱۲/۳</td>
<td>۱۱/۳</td>
<td>۱۰/۳</td>
<td>۹/۳</td>
<td>۸/۳</td>
<td>۷/۳</td>
<td>۶/۳</td>
<td>۵/۳</td>
<td>۴/۳</td>
<td>۳/۳</td>
<td>۲/۳</td>
</tr>
</tbody>
</table>

Downloaded from jcpp.iut.ac.ir at 13:57 IRST on Sunday October 4th 2020
جدول ۶: فسفر استخراج شده با روش پیکربندی آمومی - دی ی پی ای در زمان‌های مختلف پس از اضافه کردن کود

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۹۶/۳</td>
<td>۸۴/۹</td>
<td>۷۷/۸</td>
<td>۶۶/۵</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
<tr>
<td>۱</td>
<td>۹۴/۷</td>
<td>۸۴/۸</td>
<td>۷۷/۴</td>
<td>۶۶/۹</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
<tr>
<td>۲</td>
<td>۹۲/۵</td>
<td>۸۱/۸</td>
<td>۷۶/۴</td>
<td>۶۶/۹</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
<tr>
<td>۳</td>
<td>۹۰/۸</td>
<td>۸۱/۸</td>
<td>۷۳/۸</td>
<td>۶۶/۴</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
<tr>
<td>۴</td>
<td>۸۸/۲</td>
<td>۸۱/۸</td>
<td>۷۱/۸</td>
<td>۶۳/۸</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
<tr>
<td>۵</td>
<td>۸۶/۲</td>
<td>۸۱/۸</td>
<td>۷۰/۸</td>
<td>۶۳/۸</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
<tr>
<td>۶</td>
<td>۸۴/۸</td>
<td>۸۱/۸</td>
<td>۶۹/۸</td>
<td>۶۳/۸</td>
<td>۵۱/۸</td>
<td>۴۹/۳</td>
<td>۴۷/۶</td>
<td>۴۵/۳</td>
<td>۴۰/۰</td>
<td>۳۴/۵</td>
</tr>
</tbody>
</table>

آگهی‌اه (۲) در مطالعه خود دریافتند که جذب فسفر در ابتدا سریع و سپس کاهش و بعد از ۵۰ روز جذب فسفر به

حتی خواصی نشان داده است. انجام واقعی ۴ از مطالعه خود

دریافتند که با افزایش زمان خواصی نشان داده مقداری از فسفر اولیه موجود در آنها نیز جذب شده است. ۴۸۲
جدول 7: ضرایب تشخیص و خطای استاندارد برآورد معادلات سیتیکی در روش اول

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله تابع نمایی</th>
<th>معادله انتشار پارابولیک</th>
<th>معادله لوپیت ساده</th>
<th>معادله آنتیپارابولیک</th>
<th>معادله متریک اول</th>
<th>معادله متریک صفر</th>
<th>شماره</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/0</td>
<td>0/008</td>
<td>0/008</td>
<td>0/008</td>
<td>0/008</td>
<td>0/008</td>
<td>5/0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0/46</td>
<td>0/051</td>
<td>0/051</td>
<td>0/051</td>
<td>0/051</td>
<td>0/051</td>
<td>0/46</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0/033</td>
<td>0/021</td>
<td>0/021</td>
<td>0/021</td>
<td>0/021</td>
<td>0/021</td>
<td>0/033</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0/093</td>
<td>0/055</td>
<td>0/055</td>
<td>0/055</td>
<td>0/055</td>
<td>0/055</td>
<td>0/093</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0/063</td>
<td>0/073</td>
<td>0/073</td>
<td>0/073</td>
<td>0/073</td>
<td>0/073</td>
<td>0/063</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>6</td>
</tr>
</tbody>
</table>

جدول 8: ضرایب تشخیص و خطای استاندارد برآورد معادلات سیتیکی در روش پیکرات آمپوئوم-دی ت پی ای

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله تابع نمایی</th>
<th>معادله انتشار پارابولیک</th>
<th>معادله لوپیت ساده</th>
<th>معادله آنتیپارابولیک</th>
<th>معادله متریک اول</th>
<th>معادله متریک صفر</th>
<th>شماره</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/0</td>
<td>0/008</td>
<td>0/008</td>
<td>0/008</td>
<td>0/008</td>
<td>0/008</td>
<td>5/0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0/46</td>
<td>0/051</td>
<td>0/051</td>
<td>0/051</td>
<td>0/051</td>
<td>0/051</td>
<td>0/46</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0/033</td>
<td>0/021</td>
<td>0/021</td>
<td>0/021</td>
<td>0/021</td>
<td>0/021</td>
<td>0/033</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0/093</td>
<td>0/055</td>
<td>0/055</td>
<td>0/055</td>
<td>0/055</td>
<td>0/055</td>
<td>0/093</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0/063</td>
<td>0/073</td>
<td>0/073</td>
<td>0/073</td>
<td>0/073</td>
<td>0/073</td>
<td>0/063</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>0/043</td>
<td>6</td>
</tr>
</tbody>
</table>

سرعت چرخش فسفر از 5 مدل سیتیکی استفاده شد (جدول 1). فسفر در سطح سربی، ضرایب تشخیص و خطای استاندارد برآورد معادله‌های سیتیکی در روش پیکرات آمپوئوم-دی ت پی ای به ترتیب در جدول‌های 7 و 8 آورده شد. عناوین معادله‌های معادله‌های که ضریب تشخیص بالا و خطای استاندارد برآورد بی‌پایین دارند به عنوان معادله‌ی‌ها همچنین بارو (5) در بررسی‌های خود نشان داد که جذب فسفر از 1 روز شدت افت‌رایی‌ها از 3 روز بسیار تری‌تر. عناوین معادله‌های که در خاک کهزن، آب‌پاشی و افزایش زمان و دمای خولیبدن‌ها بازیافت فسفر اضافه شده چاه یافته‌اند. در نهایت، در بخش مورد و روش‌ها گفته شد، یک روش تشخیص
جدول 9 ضرایب سرعت معادله‌های الرویچ و تابع نمایی در خاک‌های مطالعه‌شده (میلی گرم در کیلوگرم بر ساعت)

<table>
<thead>
<tr>
<th>شماره</th>
<th>روشنی کریاتن آمونیوم - دی‌تی‌پی ای</th>
<th>روشنی کریاتن سیدل</th>
<th>مکان‌های حاکم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28/72</td>
<td>28/72</td>
<td>19/61</td>
</tr>
<tr>
<td>2</td>
<td>28/74</td>
<td>28/74</td>
<td>19/61</td>
</tr>
<tr>
<td>3</td>
<td>28/76</td>
<td>28/76</td>
<td>19/61</td>
</tr>
<tr>
<td>4</td>
<td>28/78</td>
<td>28/78</td>
<td>19/61</td>
</tr>
<tr>
<td>5</td>
<td>28/80</td>
<td>28/80</td>
<td>19/61</td>
</tr>
<tr>
<td>6</td>
<td>28/82</td>
<td>28/82</td>
<td>19/61</td>
</tr>
<tr>
<td>7</td>
<td>28/84</td>
<td>28/84</td>
<td>19/61</td>
</tr>
<tr>
<td>8</td>
<td>28/86</td>
<td>28/86</td>
<td>19/61</td>
</tr>
<tr>
<td>9</td>
<td>28/88</td>
<td>28/88</td>
<td>19/61</td>
</tr>
<tr>
<td>10</td>
<td>28/90</td>
<td>28/90</td>
<td>19/61</td>
</tr>
</tbody>
</table>

جدول 10 ضرایب همبستگی بین ویژگی‌های خاک با تابع‌های سرعت معادلات الرویچ و تابع نمایی

<table>
<thead>
<tr>
<th>بی‌کریاتن آمونیوم - دی‌تی‌پی ای</th>
<th>بی‌کریاتن سیدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>تابع نمایی</td>
<td>تابع نمایی</td>
</tr>
<tr>
<td>الرویچ</td>
<td>نرم</td>
</tr>
<tr>
<td>نرم</td>
<td>نرم</td>
</tr>
</tbody>
</table>

تابع نمایی در جدول‌های 9 و 10 از لحاظ احتمال ایجاد مقادیر مثبت است. در تابع نمایی معادله‌های که سرعت جذب فسفر را بهتر توصیف می‌کند، به انتخاب ضرایب معادله‌های الرویچ و تابع نمایی به دلیل بالا بودن ضریب تعیین و پایین بودن خطای استاندارد برآورد می‌شود. این خاک‌ها جهت توصیف سرعت جذب فسفر استفاده شوند. ولی معادله‌های دیگر به دلیل ضرایب تعیین مناسب نیستند. ضرایب سرعت جذب فسفر در معادله‌های الرویچ و
جدول 11. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیتیکی در بخش اول در روش بی‌کربنات آمونیوم دی تی پی ای

<table>
<thead>
<tr>
<th>معادله</th>
<th>معادله نتاب نمایی</th>
<th>SE</th>
<th>$r^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>معادله انتشار پارابولیک</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معادله الیزی ساده</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معادله مربوط اول</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معادله مربوط صفر</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>شماره</td>
<td>خاک</td>
<td></td>
</tr>
</tbody>
</table>

جدول 12. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیتیکی در بخش اول در روش بی‌کربنات آمونیوم دی تی پی ای

<table>
<thead>
<tr>
<th>معادله</th>
<th>معادله نتاب نمایی</th>
<th>SE</th>
<th>$r^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>معادله انتشار پارابولیک</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معادله الیزی ساده</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معادله مربوط اول</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معادله مربوط صفر</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>شماره</td>
<td>خاک</td>
<td></td>
</tr>
</tbody>
</table>

اتریکس تغییرات فسفر قابل استخراج در تعادل از خاک‌های همدان

*آزمایش اجرایی* 2. تراش مطالعات همبستگی (داده‌ها نشان دادند است که) بین ویژگی‌های خاک و ضرایب سرعت معموله‌های سیتیکی در 2 معادله که همبستگی معنی‌داری میان نتاب سرعت معادله الیزی و نتاب نمایی با آهسته و آلومینیوم بلوری و بی‌شکل در عصاره‌گیر اولین و نتاب

۴۸۵
جدول 13: ضرایب سرعت معادله‌های سیستمی در پیش‌آوری اول در خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>بیکاری‌کننده آمونیوم - دی‌تی‌پی‌ای</th>
<th>بیکاری‌کننده گیاه</th>
<th>وزن‌گذاری‌های</th>
<th>انتشار پاراپولیک</th>
<th>الکتر بار</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>تابع نمایی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>الکتر بار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/0</td>
<td>0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/1</td>
<td>0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/2</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/3</td>
<td>0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>0/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/5</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سرعت معادله‌های تابع نمایی با کربنات کلسیم در عصاره‌گیر

پی کربنات آمونیوم - دی‌تی‌پی‌ای وجود داشت. با بررسی روند تغییرات فسفر قبل استخراج مشخص شد که 336 ساعت پس از شروع آزمایش فسفر استخراج شده تغییر زیادی نداشت. این نتیجه نشان دهنده سازوکار‌های متغیر جذب فسفر در دو بخش می‌باشد. احتمالاً در بخش اول (پس از اضافه کردن کود) با 336 ساعت پس از آزمایش) فسفر در اثر جذب سطحی غیرقابل جذب می‌شود و در بخش دوم (336 ساعت پس از آزمایش) سازوکار روبه‌رو جذب فسفر می‌شود. به همین دلیل نمودارا به دو بخش تقسیم و در هر بخش (شروع تا 336 و 336 تا 654 ساعت) معادله‌های سیستمیک به داده‌برای رازش شدند. تابع تجزیه‌های آماری نشان داد که در بخش اول معادله‌های خشک‌شدن پاراپولیک الکتر بار و معادله‌های الکتر بار و تابع نمایی در عصاره‌گیر بی‌کربنات آمونیوم-دی‌تی‌پی‌ای مشابه می‌باشند. بی‌کاری سرعت جذب با بی‌کربنات آمونیوم-دی‌تی‌پی‌ای در معادله‌های نمایی و الکتر بار در دامنه 0/0-0/0 و 0/0-0/5 میلی‌گرم بر کیلوگرم بر ساعت بود. نتایج در دامنه 0/0-0/5 و 0/0-0/7 میلی‌گرم بر کیلوگرم بر ساعت بود.
نتیجه‌گیری
تایباد انواع مختلف نشان داد که جذب فسفر در دو مرحله انجام شد. مرحله اول 33 ساعت پس از اضافه‌کردن فسفر به در این مرحله سرعت جذب فسفر سریع بود. مرحله دوم 12 ساعت تا 250 ساعت که در این مرحله سرعت جذب فسفر کند بود. در دو مرحله اختلافی جذب فسفر با دو سازوکار مختلف انجام می‌شود. در بخش دوم به دلیل کمبود قندی تشخیص هیدکس در محیط آبی داده‌ها قادر به توصیف غیرقابل جذب شدن فسفر نبودند. شاید بتوان عنوان عدم توانایی مدل‌های سیستم‌کی در توصیف جذب فسفر در بخش دوم را ناشی از فعالیت بی‌رنگی دانست که در مفهوم شدن فسفر آتی و افزایش سرعت قابل استخراج نقص دانست. با توجه به نتایج مطالعات هم‌ساختگی، در این نتایج مدل‌ها و آمیانسیم برای بیشتر کسب کلیسیم در این بخش کمتر خواهد بود. 

چنین مطالعاتی با محیط‌های عصاره‌گیر دیگر انجام و
ضرایب سرعت جذب فسفر در محیط‌های مختلف مقایسه شود. همچنین توصیف می‌تواند ضرایب سرعت جذب فسفر که به روش‌های شبیه‌سازی در آزمایشگاه تعمیمی شود با
شاخص‌های میزان و سرعت جذب فسفر توسط گیاه مقایسه شود.

با توجه به نتایج، همبستگی معنی‌داری بین ثابت سرعت معادله الیوینج در بخش اول در عصاره‌گیر اولین با آهن و آمیانسیم عاملی و بی‌شک وجود دارد (ضرایب هم‌ساختگی با ترتیب 0.54، 0.38، 0.40، 0.60) این نتیجه حاکی از نقش اسیدهای آهن و آمیانسیم به شکل و بلوری در جذب فسفر در خاک است. همچنین هم‌ساختگی معنی‌داری میزان ثابت سرعت معادله الیوینج در بخش اول در عصاره‌گیر با گرایش آهن و آمیانسیم به شکل و بلوری در جذب فسفر در خاک (0.35) که نشان دهنده نقش کلیسیم در افزایش جذب و تثبیت فسفر در خاک است. لیندسی و همکاران (18) گزارش نموده‌اند که در خاک‌های آلی فسفر در اثر ترکیب با کربنات کلیسیم سریع‌تر به ترکیبات فسفات کلیسیم که می‌گردد تبدیل شده و قابلیت جذب آنها کاهش می‌یابد. 

گزارش نشان داده‌است که در مواردی که کربنات کلیسیم در مقدار بالایی به کشور می‌آید، استفاده در خاک‌های آلی بعد از کاربرد مقدار کم کود با مقادیر کاهشی آهن و بعد از کاربرد مقدار بالای کود با مقادیر کاهشی آهن.