سيئتمک آزاد شدن فسفر و هیپستگی ضرایب مدل‌های سینتیکی با برخی ویژگی‌های خاک و شاخص‌های گیاهی در تعدادی از خاک‌های همدان

فرزندان الساده پیبانکی، و علی‌رضا حسین‌پور

(تاریخ دریافت: 1487/7/5؛ تاریخ پذیرش: 1487/7/5)

چکیده

در اکثر مناطق دنا فسفر به‌عنوان یکی از نیازهای محیطی بسیار مهم و ضروری جهت نگهداری و بهره‌برداری از خاک‌های همدان به‌ویژه عرضه‌گیری مراجعه‌ای به استفاده از پر کربن‌سازی 75 مولای پH=8/5 توسط آب‌وریزی کربنات دمید بهره‌مندی آن لازم می‌باشد. اطلاعاتی درباره سرعت آزاد شدن فسفر در خاک‌های همدان محدود است. هدف از این تحقیق تأمین مطالعه سرعت رها‌سازی فسفر در همدان و بررسی عوامل موثر بر سرعت رها‌سازی فسفر در خاک‌های همدان می‌باشد. این تحقیق می‌تواند نهان داده‌ای که راه‌اندازی سلسله‌های فسفر توسط تمام‌پوش‌های گیاهی و همچنین موادهای گیاه‌های محیطی داشته باشد.

واژه‌های کلیدی: فسفر، آزاد شدن، معادلات سینتیکی، ذرت، همدان

پیش‌بینی سرعت آزاد شدن فسفر به‌وسیله مدل‌های سینتیکی

مقدمه

فسفر یکی از عناصر غذایی پر نیاز موجودات زندگی است (12) که از نظر اهمیت غذایی در گیاهان پس از نیتروژن در جامعه دوم قرار می‌گیرد. جلوگیری و قابلیت جذب فسفر تابع عوامل

1. دانشجوی سایه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی دانشگاه بوشهر، سیستان، همدان
2. استادیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه بوشهر، سیستان، همدان

f_biananaki@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: *
فسفر در خاک زمان می‌باشد. برای درک ارتباط متقابل فسفر با ذرات خاک و بیشتر سرمایش آن، اطلاعاتی درباره سرعت واکنش‌های دارد. سرعت فراهم شدن فسفر برای گیاه از نظر تغذیه‌گی خاصیت آزمایش می‌باشد. بررسی سرعت واکنش‌ها و مطالعات سیستمیک در خاک به سبب حضور انواع کاتی‌ها و ترکیباتی پیچیده آنها به مراتب دشوارتر از سیستم‌های خاکی یک کانی مشخص می‌باشد. لذا این گونه مطالعات در خاک‌ها کمتر انجام شده‌اند. درک سیستم‌های آزاد شدن فسفر از خاک‌ها می‌تواند در کاهش ورود فسفر به روان آب اهمیت داشته باشد. (23) غلظت پایین فسفر سرعت فلز عملاً واکنش‌های فوق سرفیسی با تعدادی از فازهای جاده آلی و غیر آن و کبد و سرعت بیماری از واکنش‌های آزاد فسفر است. از این رو بررسی و آکنش‌های جدی و رهآوری فسفر در خاک در طی زمان باید تغییرات فسفر قابل اجتناب را در خاک دارای اهمیت است. وجدان تعدادی سنو فسفر خاک برای کشور و سنو فسفر برای محیط زیست زمین می‌باشد. در این راستا نشان داده شده که راه‌های فسفری از خاک اهمیت دارد چرا که نشان دهنده سفر قابل دسترس گیاه خواهد بود. (5) از خوایدیگر مطالعات سیستمیک فسفری این می‌باشد که نشان می‌دهد تمامی فسفر موجود در خاک ممکن است در زمان توزییزی به محول خاک را یابند ولی همین مقدار فسفر در زمان محدودی مانند دوره رشد گیاه قادر به وارد شدن به محلول نمی‌باشد.

رهآوری فسفر از کلیپ فلزی خاک یکی از فرامین‌های کشته‌کننده جذب فسفر و ورود راه‌رسانی و رسانده در زمان گیاهان می‌باشد. با پایان مطالعه سیستمیک رهآوری فسفر از خاک و سماسه بسیار خوب و بررسی وضعیت فسفر می‌باشد. (21) مطالعات انجام شده در مورد سرعت آزاد شدن فسفر از خاک به سال‌های گذشته مربوط می‌شود. در بررسی سیستم‌های فسفر روش‌های کوناگویی مورد استفاده قرار گرفته است که عصره‌گیری یا به کریستال‌های با تأثیر می‌باشد.

"عصره‌گیری" یا روزن در سال 1955 توسط آمر و همکاران (1) و نیز در سال 1963 به وسیله کرک و هیبسون (2) سرود استفاده گرفته‌است. با اتفاق از این روش، چندین مطالعه در سال‌های بعد انجام شده است. در سال 1995 فریس و همکاران (7) با استفاده از روش جدیدی سیستمیک رهآوری فسفر از خاک‌ها را مطالعه نمودند. این محققین از انتقال الکترونولولوژی‌های آن گذشته، با اکسید آهن (4) و محققان آبن (فیزیک) و وکسید آن (فیزیک) آب‌زدایی (فیزیک) را به عنوان مجزا جابجایی فسفر به قدرو جذب نظام استفاده نمودند. لکم و همکاران (16) به بررسی بندی مدت آزاد شدن فسفر با استفاده از اکسید آبن درون لوله‌ای دیالیزی در بافت و به این ترتیب ریسیدن به راه‌بستگی فسفر در این بسیار و مهم به کنی اطلاعاتی در کشت‌های خاکی و فسفر. گیاهی و شیمیایی خاک‌ها دست یافتند. مک دارو و شارلی (18) به بررسی فسفر سیستمیک خاکی و رهآوری فسفر با غلظت فسفر آژون خاک پرداختند و به این ترتیب ریسیدن به هم‌سیستمیک معنی‌داری داشت که تغییرات خاک و نقش آن مانند جابجایی فسفر تجربی آژون شیفت از خاک و فسفر آژون خاک وجود دارد.

مطالعات متعددی در بررسی توصیف سرفیس رهآوری خاک در کاتی‌های رسی و خاک اتشفشا مربوط است (11). این مطالعات شامل مطالعات مربوط صرف، مرتبه اول، مرتبه دوم، ورودی ساده، انتشار پارابولیک و تابع نمایی می‌باشد.

مطالعات فسفر سیستمیک پایه‌پردازی آزاد شدن فسفر خاک‌ها با چندین فکر و یا رژیم‌های الکترونولوژی و شیمیایی خاک‌ها می‌توانند در توصیف وضعیت فسفر قابل استفاده خاک‌ها مفید باشند. اهداف انجام تحقیق حاضر عبارتند از:

1- مطالعه سیستمیک فسفر قابل دسترس از خاک‌ها
2- مقایسه مطالعات سیستمیک و انتخاب بهترین مطالعه جهت توصیف آژون شدن فسفر از خاک‌ها
3- مطالعه فسفر سیستمیک و دیگر نکاتی‌ها رژیم‌های فسفر و شیمیایی خاک‌ها با ثابت‌مانده مطالعات سیستمیک.
جدول 1. معادلات سیستمی استفاده شده

<table>
<thead>
<tr>
<th>معادله</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{0} - P_{1} = a - k_{0} \times t)</td>
<td>معادله مربوط به صفر</td>
</tr>
<tr>
<td>(\ln(P_{0} - P_{1}) = a - k_{b} \times t)</td>
<td>معادله مربوط به اول</td>
</tr>
<tr>
<td>(l/P_{1} = a + k_{d} \times t)</td>
<td>معادله مربوط به دوم</td>
</tr>
<tr>
<td>(P_{1} = a + b \times n)</td>
<td>معادله الگوی ساده شده</td>
</tr>
<tr>
<td>(P_{0}/P_{0} = a + R_{0} \times t^{0.5})</td>
<td>معادله پیشنهادی پارابولیک</td>
</tr>
<tr>
<td>(\ln P_{1} = a + b \times n)</td>
<td>معادله معادلات نمایی</td>
</tr>
</tbody>
</table>

- فضه‌های همبستگی بین شاخص‌های یک‌نیکی در تاپت‌های
- رهاسازی معادلات سیستمی

مواد و روش‌ها

در ابتدا بسته و سه نمونه خاک سطحی (عمق 20-30 اسانتی‌متر) با بیشترین پراکنش جغرافیایی در استان همدان جمع آوری شدند. پس از حصول کرده کدنمکنی نمونه‌ها از دوکبی متری درصد رس به روش هیدرومتر باکس (4) مقدار سیلول استفاده به روش معادلات کلیمی به روش تیتراسیون برگشتی (17) تعیین شدند. سپس نمونه‌ها که با توجه به
- وجود مقدار مکرون‌نمونه بودند، انتخاب شدند.
- برای هر یک، مقدار \(a \) و \(b \) را از معادلات
- انتخاب/پردازش آن‌ها برآورد شد.

این استفاده براوردی (SE) با استفاده از فرمول زیر

\[
SE = \left(\frac{\sum|P_{1} - P_{0}|}{n} \right)^{0.5} \]

می‌تواند حساب شود:

\[
mg.kg^{-1} = \frac{P_{1} - P_{2}}{m} \times 10^{3} \]

\[
mg.kg^{-1} = \frac{P_{1} - P_{2}}{m} \times 10^{3} \]

که در آن:

به معنی مقدار مطلوع سیستمی بین دو گروه‌های سیستمی آزاد

شدن فشار و شاخص‌های کیهای مطلوع گلولی انجام شد.

این

(1) انجام SE (Successive extraction)
از آزمایش با استفاده از گیاه درخت (Zea mays) وارداتی سیکل کرواس

17442 تحمیل شد. قبلاً از کاشت، بذرهای درخت به خویش با قارچ
کش بیدهای ضرب نظوری شده و جوانه زنی به مدت 10
روز در شرایط مانند و در مدت 25 دنیه ناتیاگ رگه‌های
ششینه. سپس سر جوانه زده و در سطح گیاه‌های باز شده

3 کیلوگرم خاک بدون بافت از انک 8 میلی‌متری در مدت
سانتی‌متری کشت شدند. در این اجبار الهی و خروج آب
برای ایجاد توانایی و در ریختن اضافی منافذی در کف گیاه
ابای و جند سنگ آسیب در کف هم گیاه فلز داده شد. قبل
از پرکردن گیاه‌ها کرواتی‌الا در از هم گیاه داده شد.

پیدا منظری‌ها در فرد کود یک کمی خاک مخلوط و سبس
مخلوط خاک و هم گیاه در اضافه شدند. دنیه از آزمایش
از دوم صفر و 400 میلی‌گرم فسفر در کیلوگرم خاک استفاده
شد. نظر به اینکه کد گیاه‌ها بایستی از نظر سابقی عناصر
غذایی کمبودی نداشته باشد 5 میلی‌گرم در کیلوگرم روى
به صورت ۴۰۰ ، ZnSO4 H2O ، و ۵ میلی‌گرم در کیلوگرم پاسیع به
سکوستروم آهن به خاک هم گیاه اضافه شد. کود نیترات/زینک
در دوم مرحله به ترتیب یک هفته پس از کاشت و شش هفته پس
از کاشت بهره‌های دیگر به مقدار ۱۰۰ میلی‌گرم در کیلوگرم
به خاکه اضافه شدند. به صورت ۱۰۰ در از پی ای کد گیاه افزوده شد.

طول فصل رشد مراقبت‌های‌لای زمین حضور آب. آیا هر یک آب
۱۸۰ میلی‌گرم و یک روز روی بیان صورت گرفت. پس از گشای
رؤز ادامه هواهایی از سناتی‌تی باز خاک بردای وت
به داخل باکتی انتقال داده شدند. سبیس نمونه‌ها در مدت
۱۰۰ درجه سناتی در کشو شدند. پس از توزین، نمونه‌ها آسیب
شد و غلتک سفر در آنها اندازه‌گیری شد. برای اندازه‌گیری
فسف در بیشتر کاپا یک گرم نمونه آسیب شده در کروزه
چنین ریخته شد و به مدت ۴ ساعت در کوه اکیkatی با دمای
۰۰۰ درجه سناتی گراد استری کریستال. سبیس ۱۰ میلی‌لیتر استفاده
کردیربد در نرمال به این خاک اضافه و حارثیر راه داده ۱سی
سپس نمونه‌ها صاف گردید (۱۲). غلتک سفر عصاره‌ها با

نتایج و بحث

تایب دانش خاک‌های مورد مطالعه دارای دامنه سکرتوردهای
از نظر ویژگی‌های فیزیکی و شیمیایی می‌باشد (جدول ۲). دامنه
تغییرات درصد رس، سیلت و سن در خاک‌های مطالعه شده به
ترتیب ۳۷-۱۳-۱۰ و ۵۷-۲۵-۱۴ می‌باشد. بافت خاک‌ها از ریس
نام رسته شنی مثيری است. خاک‌های مطالعه شده آتشفشانی
با pH دامنه ۷/۶-۷/۷ می‌باشد. دامنه تغییرات فالیپس هماییت
الکتریکی خاک‌ها ۳۰۱-۱۶۰ می‌باشد. دامنه تغییرات ویژگی‌های
کشت‌باین کانال‌ریزی ۱۶-۰ می‌باشد. دامنه تغییرات فسفر
۱۰۰۰-۵۰۰ می‌باشد. دامنه تغییرات موجودیت الکتریکی
۲۷-۲۵ می‌باشد. دامنه تغییرات فسفر و عصاره‌گیری با روی
۲۰/۰۰۰ می‌باشد. دامنه تغییرات فسفر و عصاره‌گیری به

294
جدول ۲: برخی از ویژگی‌های فیزیکی و شیمیایی خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>قابلیت هایتونی</th>
<th>کمیت ب‌هاش</th>
<th>محل مونوهبرداری</th>
<th>کربنات کلسیم</th>
<th>استخراج</th>
<th>رس</th>
<th>سیلت</th>
<th>درصد</th>
<th>بند</th>
<th>مشق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>مومت جین</td>
<td>۲۳۹/۹</td>
<td>۱/۷۹</td>
<td>۱/۵</td>
<td>۱/۵</td>
<td>۲۰/۱</td>
<td>۲۱/۲</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۲</td>
<td>پهلو</td>
<td>۲۴۵/۹</td>
<td>۱/۸۸</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۲۱/۲</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۳</td>
<td>گچ تیه</td>
<td>۲۵۶/۹</td>
<td>۱/۹۵</td>
<td>۳/۱</td>
<td>۳/۱</td>
<td>۲۱/۲</td>
<td>۱/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۴</td>
<td>سیلیمان آباد</td>
<td>۲۶۷/۹</td>
<td>۱/۱</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۵</td>
<td>دستجرد</td>
<td>۲۷۸/۹</td>
<td>۱/۱</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۶</td>
<td>دستجرد</td>
<td>۲۸۹/۹</td>
<td>۱/۱</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۷</td>
<td>لاله جین</td>
<td>۳۰۰/۹</td>
<td>۱/۱</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۸</td>
<td>چاده علی‌صدر</td>
<td>۳۱۱/۹</td>
<td>۱/۱</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
<tr>
<td>۹</td>
<td>یکن آباد</td>
<td>۳۲۲/۹</td>
<td>۱/۱</td>
<td>۲/۱</td>
<td>۲/۱</td>
<td>۹۵/۲</td>
<td>۲/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱/۱</td>
</tr>
</tbody>
</table>

جدول ۳: فسفر عصاره‌گیری شده از مورد مطالعه در زمان‌های مختلف (میلی‌گرم بر کیلوگرم)

<table>
<thead>
<tr>
<th>زمان‌های عصاره‌گیری (ساعت)</th>
<th>۱۰</th>
<th>۱۸</th>
<th>۲۶</th>
<th>۳۴</th>
<th>۴۲</th>
<th>۵۰</th>
<th>۵۸</th>
<th>۶۶</th>
<th>۷۴</th>
<th>۸۲</th>
<th>۹۰</th>
<th>۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۰۰</td>
<td>۰/۵۱</td>
<td>۰/۶۴</td>
<td>۰/۷۵</td>
<td>۰/۸۶</td>
<td>۰/۹۷</td>
<td>۱/۰۸</td>
<td>۱/۱۹</td>
<td>۱/۳۰</td>
<td>۱/۴۱</td>
<td>۱/۵۲</td>
<td>۱/۶۳</td>
<td>۱/۷۴</td>
</tr>
<tr>
<td>۹/۰۰</td>
<td>۰/۵۲</td>
<td>۰/۶۴</td>
<td>۰/۷۵</td>
<td>۰/۸۷</td>
<td>۰/۹۸</td>
<td>۱/۱۰</td>
<td>۱/۱۱</td>
<td>۱/۱۲</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۰/۰۰</td>
<td>۰/۵۳</td>
<td>۰/۶۶</td>
<td>۰/۷۷</td>
<td>۰/۸۹</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۱/۰۰</td>
<td>۰/۵۴</td>
<td>۰/۶۷</td>
<td>۰/۷۸</td>
<td>۰/۸۹</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۲/۰۰</td>
<td>۰/۵۵</td>
<td>۰/۶۸</td>
<td>۰/۷۹</td>
<td>۰/۸۸</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۳/۰۰</td>
<td>۰/۵۶</td>
<td>۰/۶۸</td>
<td>۰/۷۸</td>
<td>۰/۸۸</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۴/۰۰</td>
<td>۰/۵۷</td>
<td>۰/۶۹</td>
<td>۰/۷۹</td>
<td>۰/۸۸</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۵/۰۰</td>
<td>۰/۵۸</td>
<td>۰/۷۰</td>
<td>۰/۸۰</td>
<td>۰/۸۸</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۶/۰۰</td>
<td>۰/۵۹</td>
<td>۰/۷۱</td>
<td>۰/۸۱</td>
<td>۰/۸۹</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۷/۰۰</td>
<td>۰/۶۰</td>
<td>۰/۷۲</td>
<td>۰/۸۲</td>
<td>۰/۸۹</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۸/۰۰</td>
<td>۰/۶۱</td>
<td>۰/۷۳</td>
<td>۰/۸۳</td>
<td>۰/۸۹</td>
<td>۰/۹۱</td>
<td>۱/۰۲</td>
<td>۱/۱۳</td>
<td>۱/۱۴</td>
<td>۱/۱۵</td>
<td>۱/۱۶</td>
<td>۱/۱۷</td>
<td>۱/۱۸</td>
</tr>
</tbody>
</table>
روش عصره‌گیری مصرفی یا به کریبت زندیه‌ای بتواند به
زمان نشان داده شده است. سرعت آزاد شدن فسفر در کلیه
خانک‌ها مرحله‌ای نهایی تامین‌برداری (184 ساعت پس از شروع
آزمایش) با یکسک و پس از این مرحله، رهاسازی بین سطح
کمتری آدام به پایه کرده است. مشاهده این نتایج توسط پژوهشگران
دیگر گزارش شده است (1.3 و 16). مقادیر فسفر آزاد شده
در مرحله اولیه عصاره‌گیری در خانک‌های مختلف متفاوت
می‌باشد. به طوری که 184 ساعت پس از شروع آزمایش،
پیشرفت مقدار فسفر از خانک شماره ۲۹ می‌گرم در
کیلوگرم (آزاد شده) (جدول ۳). تغییرات زمانی در تولید کارکرد
رافته‌ی نهایی به طور مناسب گزارش شده است. این
سفیر افتخار شهید خارج است. اختلال مقادیر فسفر رها
شده از خانک‌ها را می‌توان به تفاوت اشکال فسفور موجود در این
خانک‌ها نسبت داد. فسفر در خانک به حالت‌های مختلف، مصرف
جنسی صرفه‌کننده، و هیدروکسیدها فلزی خواهد شد (16).

شش معادله سببیکی شامل معادله مربوط به مصرف، مربوط اولیه، مربوط تدوم، توده نشتی، پیش‌بندی پارابولیک و تابع نمایی
برای بزرگ‌ترین فسفر رهازاسی فسفر مورد استفاده قرار گرفته.
ضرایب تشدید و خطای استاندارد برآورد معادلات سببیکی
به کار گرفته شده برای توصیف سرعت آزاد شدن فسفر در
جدول ۴ نشان داده شده است. معادلاتی که ضریب تشدید
با ویرایش استاندارد برآورد کم داشته باشند سرعت آزاد شدن
فسفر را بهتر توصیف می‌گند. معادلات مربوط به فسفر و توده
ساده ای وجود ندارد ضریب تشدید به دلیل باودن
خطای استاندارد برآورد و معادله مربوط به دلیل کم بودن
ضریب تشدید نمی‌تواند سرعت آزاد شدن فسفر را به خوبی
توصیف دهد. معادلات مربوط به اول، پیش‌بندی پارابولیک و تابع
نمایی به دلیل باودن ضریب تشدید و گفایی نمایی
استاندارد برآورد می‌تواند سرعت آزاد شدن فسفر را به خوبی
توصیف کند (جدول ۳). ضرایب این معادلات در خانک‌های
مطالعه شده در جدول ۵ نشان داده شده است.

بعدها سرعت آزاد شدن فسفر با معادله مربوط اول و
پیش‌بندی پارابولیک نشان می‌دهد که آزادشدن فسفر احتمالاً
Downloaded from jcpp.iut.ac.ir at 16:10 IRST on Sunday March 8th 2020
Downloaded from jcpp.iut.ac.ir at 16:10 IRST on Sunday March 8th 2020
جدول 4. ضرایب تشخیص و خطای استاندارد برآورد مدل‌های سیستمیکی استفاده شده

<table>
<thead>
<tr>
<th>شماره شاخ</th>
<th>معادله مرتبه اول</th>
<th>معادله مرتبه دوم</th>
<th>معادله پیش‌بینی پارابولیک</th>
<th>معادله پیش‌بینی یک‌ضریب</th>
<th>E</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.97</td>
<td>0.80</td>
<td>0.93</td>
<td>0.91</td>
<td>0.98</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>0.98</td>
<td>0.87</td>
<td>0.92</td>
<td>0.89</td>
<td>0.96</td>
<td>0.93</td>
</tr>
<tr>
<td>3</td>
<td>0.98</td>
<td>0.85</td>
<td>0.90</td>
<td>0.88</td>
<td>0.95</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>0.99</td>
<td>0.82</td>
<td>0.91</td>
<td>0.87</td>
<td>0.94</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>0.99</td>
<td>0.80</td>
<td>0.90</td>
<td>0.85</td>
<td>0.92</td>
<td>0.88</td>
</tr>
<tr>
<td>6</td>
<td>0.98</td>
<td>0.81</td>
<td>0.91</td>
<td>0.86</td>
<td>0.93</td>
<td>0.89</td>
</tr>
<tr>
<td>7</td>
<td>0.97</td>
<td>0.83</td>
<td>0.89</td>
<td>0.84</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>8</td>
<td>0.96</td>
<td>0.85</td>
<td>0.90</td>
<td>0.86</td>
<td>0.90</td>
<td>0.87</td>
</tr>
<tr>
<td>9</td>
<td>0.98</td>
<td>0.86</td>
<td>0.92</td>
<td>0.88</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td>10</td>
<td>0.97</td>
<td>0.84</td>
<td>0.91</td>
<td>0.87</td>
<td>0.90</td>
<td>0.88</td>
</tr>
</tbody>
</table>

جدول 5. تابع‌های معادلات سیستمیک در خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره شاخ</th>
<th>معادله مرتبه اول</th>
<th>معادله مرتبه دوم</th>
<th>معادله پیش‌بینی پارابولیک</th>
<th>معادله پیش‌بینی یک‌ضریب</th>
<th>E</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.54</td>
<td>0.12</td>
<td>0.16</td>
<td>$5/80$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.38</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>3</td>
<td>0.39</td>
<td>0.39</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>4</td>
<td>0.42</td>
<td>0.34</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>5</td>
<td>0.45</td>
<td>0.21</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>6</td>
<td>0.49</td>
<td>0.16</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>7</td>
<td>0.47</td>
<td>0.24</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>8</td>
<td>0.45</td>
<td>0.13</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>9</td>
<td>0.40</td>
<td>0.08</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
<tr>
<td>10</td>
<td>0.39</td>
<td>0.07</td>
<td>0.30</td>
<td>0.17</td>
<td>$6/90$</td>
<td>$1/7$</td>
</tr>
</tbody>
</table>

تغییرات ضریب سرعت معادله نمایی بین $0/53$ تا $0/33$ در خاک شماره 2 می‌باشد. دامنه تغییرات ضریب سرعت راهاسازی فسفر در معادله مرتبه اول بین $0/3$ تا $1/7$ در خاک‌های 1 و 3 بررسی می‌باشد. خاک‌های 1 و 3 دارای بیشترین ضریب سرعت راهاسازی هستند. ضریب سرعت راهاسازی معادله پیش‌بینی پارابولیک از $0/1$ تا $0/3$ بر مجدور ساعت تغییر بود. خاک شماره 3 بیشترین شاخ هکر شماره 2 کم‌ترین ضریب سرعت را نشان می‌دهد. دامنه
جدول 6. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیستمیک در خاک‌های استفاده شده

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>معادله مرتبط صفر</th>
<th>معادله مرتبط دوم</th>
<th>معادله مرتبط صفر</th>
<th>معادله مرتبط دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/95/0/99/0/95</td>
<td>0/99/0/99/0/99</td>
<td>0/99/0/99/0/99</td>
<td>0/99/0/99/0/99</td>
</tr>
<tr>
<td>2</td>
<td>0/81/0/98/0/97</td>
<td>0/81/0/98/0/97</td>
<td>0/81/0/98/0/97</td>
<td>0/81/0/98/0/97</td>
</tr>
<tr>
<td>3</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
<tr>
<td>4</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
<tr>
<td>5</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
<tr>
<td>6</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
</tbody>
</table>

جدول 7. تأثیر معادلات سیستمیک در باختن در خاک‌های مطلوبه شده

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>معادله مرتبط صفر</th>
<th>معادله مرتبط دوم</th>
<th>معادله مرتبط صفر</th>
<th>معادله مرتبط دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/95/0/99/0/95</td>
<td>0/99/0/99/0/99</td>
<td>0/99/0/99/0/99</td>
<td>0/99/0/99/0/99</td>
</tr>
<tr>
<td>2</td>
<td>0/81/0/98/0/97</td>
<td>0/81/0/98/0/97</td>
<td>0/81/0/98/0/97</td>
<td>0/81/0/98/0/97</td>
</tr>
<tr>
<td>3</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
<tr>
<td>4</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
<tr>
<td>5</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
<tr>
<td>6</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
<td>0/55/0/98/0/96</td>
</tr>
</tbody>
</table>

نشان داده شده است. در باختن اول (تا 18 ساعت پس از شروع آزمایش)، تأثیر سرعت رهاشایی معادله مرتبط صفر از 6/9 از 134 ساعت تغییر می‌یابد. کمترین مقادیر آن در خاک شماره 3 و بیشترین مقادیر آن در خاک شماره 2 می‌باشد (جدول 7). در باختن دوم، تأثیر سرعت رهاشایی از 10/0 تا 1/99 بر ساعت متغیر می‌یابد که نشان می‌دهد سرعت رهاشایی در باختن دوم ساعت پس از شروع آزمایش و باختن دوم 168 تا 1752 ساعت پس از شروع آزمایش را شامل می‌شوند. ضرایب تشخیص و خطای استاندارد برآورد معادلات در باختن نشان داده شده است. نتایج نشان می‌دهد که معادلات مرتبط صفر والروجی در باختن اول و باختن دوم می‌توانند برای توصیف آزاد شدن فسفر استفاده شوند. ضرایب این معادلات در جدول 7.
نتایج کشت گلستان در جدول ۹ نشان داده شده است. در
تبارهای عمیق‌کردن خشک اندام‌هایی درت در بین خاک‌های
مورد مطالعه از ۱۵ تا ۲۴ گرم در گلستان و در تبارهای کود داده شده
از ۲۳ تا ۳۱ گرم در گلستان تغییر می‌کند. در تمامی خاک‌های
عمیق‌کردن خشک خوابی در تبارهای کود داده شده نسبت به
تبارهای بدون خشک خوابی تأثیر کدورده سطح افزایش
عمیق‌کردن به عوامل گوناگونی ازجمله مقدار سطح قابل استفاده
برای گیاه بسیگی دارد. دانش‌های غلظت فسفر در اندام‌های
گیاهی در تبارهای مختلف بین ۶۰۰ تا ۱۷۱۲ میلی‌گرم در کیلوگرم درت، در تبارهای کود داده شده بین ۱۲۷۳ تا ۱۸۵۳ میلی‌گرم در کیلوگرم درت، فسفر جذب شده توسط گیاه در
تبارهای بدون خشک خوابی از نظر ۱۰۱ گرم در گلستان و تیمار کود داده
شده ۱۲ از ۱۳ تا ۱۵ میلی‌گرم در گلستان تغییر می‌کند.

ضرایب همبستگی بین وزن‌گیری‌های آزاد شدن فسفر و برخی
شاخص‌های گیاهی در جدول ۱۰ نشان داده شده است. با بررسی
ارتباط بین ثابتی از جمله آزاد شدن فسفر و شاخص‌های
گیاهی می‌توان به استقرار آزاد شدن فسفر و رشد گیاه‌ی بی‌پری گیاه
عمیق‌کردن خشک اندام‌هایی با عرض از میابا مقدار مربیه اول و تابع نمایی

درجه (جدول ۸). شاربی‌گزارش نمود که همبستگی معناداری بین
مقدار کردن‌کلیم بی‌پری و راهنمایی معادلات سیستمیک
وجود دارد (۲۳) و همچنین بین داشت که مقدار کردن‌کلیم
کلیم، کردن آن در خاک شاخه از طرف وزن و اکانت پذیر
با فسفور می‌باشد. همچنین ایستودار گزارش کردند که شیب معادله
مرتبه اول معناداری دارد با یک کدام از وزن‌گیری‌های خاک
نداشت (۸). اگر چه مقدار تأثیر نشان می‌دهد اما در با
کناره‌گیری تأثیر معادلات کلیم معادله معناداری دارد (جدول
۸). مقدار فسفور قابل استفاده به‌یاد می‌آید که
ضرایب همبستگی بین ثابت‌سازی معادلات سیستمیک در
وزن‌گیری‌های خاک در جدول ۸ نشان داده شده است. این اجرا
معادلات مربوط به آزاد شدن فسفر با درصد رس همبستگی
معناداری و وجود نداشت (جدول ۸). علت این امر ممکن است
تقلید در نوع کانالهای کنترل خاک‌ها فسفر از دریافت
پاش. حالا در مطالعه خود دریافت که وزن‌گیری‌های فیزیکی
ویژگی‌های مؤثر بر تهیه کردن هندسی فسفور
ماه آل‌همبستگی معناداری با کمک فسفر آزاد شده
خاک‌ها نداشت (۴). همبستگی معناداری بین درصد سیستم خاک‌ها
مورد مطالعه و ثابت سرعت معادلات الیت در به‌بین
راه‌سازی مشاهده شد. همبستگی معناداری بین درصد سن و
شب معادله مربیه صفر در به‌بین اول، پیش‌بینی‌گری‌های پاراپلیک، و
تابع نمایی و عرض از میابا معادلات ثابت نمایی ویژگی‌های
پاراپلیک pH این خاک‌ها با عرض از میابا معادلات
پیش‌بینی‌گری‌های پاراپلیک، و تابع نمایی همبستگی معناداری داشت. بین
قابلیت‌های دیگری الکترونیکی و ضراع معادلات آزاد سایی
فسفوربرای معناداری وجود نداشت. بین کناره‌گیری تیمار کود داده
ضرایب همبستگی معناداری رابطه معناداری مشاهده
شد (جدول ۸). در مقدار آلی به‌یاد کدام از ثابت‌سازی معادلات
راه‌سازی فسفر همبستگی معناداری نداشت. این نتایج آزمایش
آلی را در تهیه فسفور قابل جذب بکار می‌برد. مقدار کردن‌کلیم
معادله همبستگی معناداری با عرض از میابا معادلات پیش‌بینی‌گری
پاراپلیک، و تابع نمایی و شب معادلات مربیه اول و تابع نمایی
نسبت به بخش اول کمتر می‌باشد. در این بخش کمترین و
پیشین نسبت سرعت به ترتیب در خاک شماره ۶ و شماره ۳
وجود دارد. در بخش اول، ثابت سرعت در معادله الیت از
۴۰/۰۰۰ تا ۴۰/۰۵۰ معناداری به این چکنرکن
۲ و پیشین نسبت آن در خاک‌های شماره ۹ و ۶ می‌باشد (جدول
۷). در بخش دوم ثابت سرعت در معادله الیت از ۴۰/۰۰۰ تا
۴۰/۰۵۰ معناداری در این بخش کمترین نسبت سرعت در
خاک‌های شماره ۶ و ۱۵ پیشین نسبت آن در خاک شماره
۶ وجود دارد.

سیاست‌های آزاد شدن فسفر و همبستگی ضرابی مدل‌های سیستمیک با پری دریافتی خاک‌ها
جدول 8. ضرایب همبستگی بین تایباده‌های معادلات سیستمیک و برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>معادله مربوطه سیستمیک</th>
<th>میزان نمایی</th>
<th>معادله مربوطه سیستمیک</th>
<th>زیستگی چربی‌های پلی‌پیکر</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>a</td>
<td>b</td>
<td>R</td>
<td>a</td>
<td>b</td>
<td>R</td>
<td>a</td>
<td>b</td>
<td>R</td>
<td>a</td>
<td>b</td>
<td>R</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
<tr>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
<td>0.79*</td>
<td>0.67*</td>
<td>0.58*</td>
</tr>
</tbody>
</table>

شش نشاندهای کیفیت‌های فیزیکی و شیمیایی خاک‌های مطالعه‌شده در جدول 9

جدول 9. شاخص‌های های‌گیه‌های نر در خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>عملکرد خشک (g pot⁻¹)</th>
<th>غلظت فسفر در اندام هوازی (mg kg⁻¹)</th>
<th>فسفر جذب شده (mg pot⁻¹)</th>
<th>کود داده شده شاهد</th>
<th>کود داده شده شاهد</th>
<th>کود داده شده شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>33²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>35²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>36²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>37²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>39²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40²</td>
<td>1195</td>
<td>31²</td>
<td>1195</td>
<td>31²</td>
<td></td>
</tr>
</tbody>
</table>

* در مورد هر شاخص حروف مشابه نشان دهنده معنی دارندون در سطح 5 درصد می‌باشد.
جدول ۱۰. ضرایب هم بستگی بین شاخص‌های گیاهی و ضرایب سرعت معادلات سیتیکی در خاک‌های مختلف شده

<table>
<thead>
<tr>
<th>شاخص‌های شده</th>
<th>فشار آزاد فشار آزاد شده</th>
<th>بخش دوم</th>
<th>بخش اول</th>
<th>معادله یک‌پارامتری</th>
<th>معادله پارابولیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>شده ۱۴۵۲</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>K_3</td>
<td>a</td>
</tr>
<tr>
<td>۱۶۸ ساعت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
<td>۰/۹۵</td>
</tr>
</tbody>
</table>

عملکرد خشک
غلط فسفر
نتیجه‌گیری

مقدار فسفر آزاد شده به‌طور متوالی با ساختار ماده‌های مختلف تغییر می‌کند. مقدار فسفر آزاد شده با ساختار دو ارگانیسم را به‌طور تصادفی کردن، ضرایب مقدار آزاد شدن فسفر با خویی و یا خارج شدن فسفر از آزاد شده می‌توانند به دست آورد. پیش‌بینی شرایط جدید فسفر در زمان‌های مختلف، شروع یک ترکیب کلیسی و pH ویژگی‌های خاص مراقب‌گری در مورد سلیت، در این مقاله فقط از این زمان‌های مختلف می‌تواند عملکرد مناسب آن‌ها در حالت‌های مختلف از این روش در دسترس یافت شود. مقدار دسته‌بندی استفاده، نیز با شرایط شرایطی به‌طور کلی مناسبگری می‌باشد. مقدار آزاد شده به‌طور متوالی با ساختار دو ارگانیسم را به‌طور تصادفی کردن، ضرایب مقدار آزاد شدن فسفر با خویی و یا خارج شدن فسفر از آزاد شده می‌توانند به دست آورد. پیش‌بینی شرایط جدید فسفر در زمان‌های مختلف، شروع یک ترکیب کلیسی و pH ویژگی‌های خاص مراقب‌گری در مورد سلیت، در این مقاله فقط از این زمان‌های مختلف می‌تواند عملکرد مناسب آن‌ها در حالت‌های مختلف از این روش در دسترس یافت شود. مقدار دسته‌بندی استفاده، نیز با شرایط شرایطی به‌طور کلی مناسبگری می‌باشد.

منابع مورد استفاده