کاربرد سرباره و لجن کنتورور فولاد سازی در ونیسیز کود دامی

جهت تعیین ذرت در شرایط گلخانه

احتمال‌پیشنهادی

(تاریخ دریافت: ۱۳۸۶/۱۲/۲۳)

مقدمه

که شکل‌گیری کلروفیل بدون حضور آهن ممکن نیست، بنابراین کمبوس یا غیر فعال شدن آهن در گیاهان با کلروفیل

مقدمر

۱. به ترتیب: دانشجوی ساخ دانشگاه کارشناسی ارشد و دانشیار خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

* مسئول مکاتبات: پست الکترونیکی: arm_melali@yahoo.com
برگه‌های شیمیایی لجن کن‌تورتو و سرباره فولاد آهنی مورد استفاده کوده‌های آهن در عملکرد و نحوه انتقال ماده به دست آمده است. این کوده‌ها برای کنترل این مشکلات معمولاً دو دسته‌ای هستند: ۱) کنترل انتقال ماده به دست آمده است. این کوده‌ها برای کنترل این مشکلات معمولاً دو دسته‌ای هستند: ۱) کنترل انتقال ماده به دست آمده است. این کوده‌ها برای کنترل انتقال ماده به دست آمده است. آهن از جمله مناسب‌ترین مواد مصرف کننده‌ای است که کنترل انتقال ماده به دست آمده است. این کوده‌ها برای کنترل انتقال ماده به دست آمده است. آهن از جمله مناسب‌ترین مواد مصرف کننده‌ای است که کنترل انتقال ماده به دست آمده است. این کوده‌ها برای کنترل انتقال ماده به دست آمده است. آهن از جمله مناسب‌ترین مواد مصرف کننده‌ای است که کنترل انتقال ماده به دست آمده است. این کوده‌ها برای کنترل انتقال ماده به دست آمده است. آهن از جمله مناسب‌ترین مواد مصرف کننده‌ای است که کنترل انتقال ماده به دست آمده است. این کوده‌ها بر
جدول 1. تناپ تجزیه شیمیایی لجن کنترلور

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>44.3</td>
</tr>
<tr>
<td>FeO</td>
<td>10.0</td>
</tr>
<tr>
<td>ZnO</td>
<td>19.2</td>
</tr>
<tr>
<td>V2O5</td>
<td>6.7</td>
</tr>
<tr>
<td>CaO</td>
<td>5.6</td>
</tr>
<tr>
<td>S</td>
<td>4.0</td>
</tr>
<tr>
<td>SiO2</td>
<td>3.0</td>
</tr>
<tr>
<td>Na2O</td>
<td>2.4</td>
</tr>
<tr>
<td>K2O</td>
<td>2.0</td>
</tr>
<tr>
<td>P2O5</td>
<td>1.8</td>
</tr>
</tbody>
</table>

جدول 2. تناپ تجزیه شیمیایی سرباره

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>مقدار (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2O5</td>
<td>16.3</td>
</tr>
<tr>
<td>P2O5</td>
<td>7.8</td>
</tr>
<tr>
<td>Al2O3</td>
<td>4.6</td>
</tr>
<tr>
<td>SiO2</td>
<td>8.9</td>
</tr>
<tr>
<td>ZnO</td>
<td>5.8/85</td>
</tr>
<tr>
<td>Na2O</td>
<td>2.2</td>
</tr>
</tbody>
</table>

جدول 3. مشخصات کود گاوی مورد استفاده

<table>
<thead>
<tr>
<th>K</th>
<th>P</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>Ca</th>
<th>N</th>
<th>EC</th>
<th>pH</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>1900</td>
<td>11</td>
<td>47</td>
<td>12</td>
<td>51</td>
<td>2/5</td>
<td>12/5</td>
<td>19/7</td>
<td>4/0</td>
<td>dSm/m</td>
</tr>
</tbody>
</table>

کود دامی ورموکمربوط به بخش بالا استخراج با DTPA

بزرگ بوده و به عنصر می‌باشد.

1. علی‌عمراني و دوست‌الحیا دو کود آلی کود گاوی و کود دامی کمبوتست کود گاوی (جدول 2) با استفاده از سطح 0.5 و 1 درصد آهن خالص از ترکیبات سرباره و لجن کنترلور فولادسازی ذوب آهن و سولفات آهن تجاری طی سه‌شانه خواباندن نمونه‌ها در دمای اتانول جریان برق فشار گرفته‌اند. نمونه‌های مخلوط از گلدن‌ها بیا طرفیت 3 کیلوگرم فشار گرفته و طی زمان خواباندن رطوبت نمونه‌ها با روشن پوشیده در جد طرفیت مرعوظ نگه داشته شد. طی این مدت در فواصل زمانی 10, 15, 20, 25 و 30 روز از شروع آزمایش از هر

507
جدول 4. برخی خصوصیات آزمایشی خاک مزرعه چای انتزاعی دانشگاه صنعتی اصفهان

<table>
<thead>
<tr>
<th>ماده</th>
<th>pH</th>
<th>ECc</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>CaCO3</th>
<th>OM</th>
<th>MgKg</th>
</tr>
</thead>
<tbody>
<tr>
<td>بافت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میزانهای مربوطات</th>
<th>درجه آزادی</th>
<th>تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>132899000</td>
<td>5</td>
<td>تیمار</td>
</tr>
<tr>
<td>207977700</td>
<td>5</td>
<td>زمان</td>
</tr>
</tbody>
</table>

* ** در سطح احتمال 0/1 معنی دار است.***

قبال استخراج چای انتزاعی پیشنهاد دانشگاه صنعتی اصفهان (جدول 4) مخلوط و در هر گلدان دو گیاه درخت کشت گردید. پس از گذشت ۲۰ روز اندامهای خواص گیاه برداشت شد و بعد از

Mn, Zn, Cu

Fe

DTPA

gاهای دگرگونی شد و تا پایان حاصل با استفاده از نرمافزار

SAS

مورد تجزیه و تحلیل آماری فارار گرفت.

نتایج و بحث

DTPA

الف) آهن قابل استخراج با

نتایج تجزیه واریانس داده‌های خاک مزرعه چای انتزاعی و زمان

DTPA

که دارای بر آهن قابل استخراج با

معنی‌دار است (جدول 5). تأثیر تیمارها و زمان نگهداری بر آهن

قابل استخراج در جدول نشان داده شده است. تیمار ۵ درصد آهن خالص از سربذپری که کود گاو باعث

DTPA

افزایش آهن قابل استخراج با در نگهداری از سربذپری شد است. ولی تیمار ۱۰ درصد آهن خالص از سربذپری تأثیر چندانی در

DTPA

اهام که اینکه

تركیبات موثر جهت کلاته کردن آهن معنی‌دار تبیین آن آهن

508
جدول ٦: اثر تیمار و زمان تغذیه‌داری بر مقدار آهن (mg/Kg) قابل عصاره‌گیری با DTPA

<table>
<thead>
<tr>
<th>AW</th>
<th>A</th>
<th>AS₁</th>
<th>AS₂</th>
<th>AS₁W</th>
<th>AS₂W</th>
<th>AK₁</th>
<th>AK₂</th>
<th>AK₁W</th>
<th>AK₂W</th>
<th>AC₁</th>
<th>AC₂</th>
<th>AC₁W</th>
<th>AC₂W</th>
<th>زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>72/0</td>
<td>68/0</td>
<td>2622</td>
<td>1517</td>
<td>1092</td>
<td>1089</td>
<td>125</td>
<td>115</td>
<td>90/0</td>
<td>100</td>
<td>33/5</td>
<td>35/0</td>
<td>35/0</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>64/0</td>
<td>58/0</td>
<td>960</td>
<td>1992</td>
<td>950</td>
<td>144</td>
<td>135</td>
<td>80/0</td>
<td>10/0</td>
<td>37/5</td>
<td>37/5</td>
<td>40/0</td>
<td>40/0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>58/0</td>
<td>33/0</td>
<td>925</td>
<td>975</td>
<td>820</td>
<td>875</td>
<td>120</td>
<td>80/0</td>
<td>87/5</td>
<td>22/5</td>
<td>30/0</td>
<td>33/0</td>
<td>22/5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>50/0</td>
<td>47/5</td>
<td>580</td>
<td>540</td>
<td>320</td>
<td>815</td>
<td>141</td>
<td>90/5</td>
<td>90/0</td>
<td>28/5</td>
<td>28/0</td>
<td>28/0</td>
<td>27/5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>43/0</td>
<td>44/0</td>
<td>1070</td>
<td>820</td>
<td>620</td>
<td>822</td>
<td>128</td>
<td>110</td>
<td>67/5</td>
<td>22/5</td>
<td>53/0</td>
<td>53/0</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35/0</td>
<td>51/5</td>
<td>1112</td>
<td>845</td>
<td>745</td>
<td>710</td>
<td>320</td>
<td>215</td>
<td>147/5</td>
<td>85/0</td>
<td>18/5</td>
<td>90/0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50/0</td>
<td>51/0</td>
<td>1280</td>
<td>1277</td>
<td>814</td>
<td>859</td>
<td>214</td>
<td>110</td>
<td>98/5</td>
<td>25/0</td>
<td>55/0</td>
<td>55/0</td>
<td>55/0</td>
<td>میانگین</td>
<td></td>
</tr>
</tbody>
</table>

1. میانگین‌های دارای حداکثر یک حرف مشترک در سطح 5٪ آزمون LSD فاصله‌دار می‌باشند (LSDₐₓ=0.05 = 9.8/5).
دیل کمتر بودن مگنز موجود در ترکیب لجن کنترلور (به
میزان 1/3 درصد) می‌باشد. پیشترین میزان مگنز در ترکیب
حاوی 1/3 درصد آهن لجن کنترلور مخلوط با ورمی کمپوزت
می‌باشد. که احتمالاً به دلیل فعالیت کرما و جلولگری از
رسوب مگنز می‌باشد.

ضمناً در تیمارهای حاوی لجن کنترلور کاهش ناجوری در
میزان قابل هنگام استخراج پس از چند هفته اول اتفاق افتاده است، به
نوش می‌رسد روند توزیع مگنز قابل استخراج در این تیمار به
IV و II همانند pH و رسوپ و یا اکسیژن افزایش می‌گیرد
می‌باشد که مگنز کمی‌تری از مثبت کاری‌های کم محلول
رسوب می‌باشد.

منگنز روز قابل استخراج کلیه گیاهی تیمارهای کمتر از شاهد بهود
(داده‌ها نشان داده شده است) و در هر دسته تیمارهای تیمارهای
ورمی کمپوزت میزان روی بیشتری نشان می‌دهند، احتمالاً به
دلیل کم بودن غلظت روی در ترکیبات به کار رفته و همچنین
رسوب و جذب مصرفی روی در زمان انگیزه‌برداری این یک بحث
اتقاف افتاده است و کرمه خاکی در حفظ روی قابل جذب
فعالیت شده‌اند. در ضمن سرباره می‌تواند سبب کاهش
جبب روی گیاه در خاک شدیدی‌ای و افزایش جذب در
خاک حداکثر خشک شود (7).

DTPA) منگنز، روی و مس قابل استخراج با
تیمارهای حاوی 5 درصد آهن خالص از سربار مخلوط با
ورمی کمپوزت کود گاوی بهترین نتیجه را در انواع مگنز
قابل استخراج داد (شکل 1). علت افزایش روی DTPA
می‌توان به مگنز موجود در ترکیب سربار (به میزان
2/3 درصد) نسبت داد. در غنی سازی با استفاده از لجن کنترلور در
تیمارهای حاوی 10 درصد آهن محلولی کود بهترین نتیجه
به دست آمد. استفاده از لجن کنترلور به مقادیر کمتری نسبت به
تیمارهای سرباره منگنز قابل عصاره گیری را افزایش داد که به

1386
علم و فناوری کشاورزی و منابع طبیعی / سال 1386 / دوره دوم (ب) / زمستان
جدول 7. تجزیه واریانس آهن کل گیاه در تیمارهای کود گاری

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>میانگین مربوطات</th>
<th>درجه آزادی</th>
<th>میانگین مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 8. تجزیه واریانس عملکرد (gr/pot) گیاه در تیمارهای کود گاری

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>میانگین مربوطات</th>
<th>درجه آزادی</th>
<th>میانگین مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 9. میانگین عملکرد (μg/pot) و مقدار کل آهن گیاه در دوره تیمارهای کود گاری

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>میانگین مربوطات</th>
<th>درجه آزادی</th>
<th>میانگین مربوطات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مس قابل استخراج با DTPA

کورنیتر مخلوط با کود گاری تهیه مطلوب‌تری داده است. در این تحقیق، کاهش آنی در میزان مس قابل استخراج دیده شد که احتمالاً به دلیل جذب سطحی این عنصر می‌باشد.

ج) تغییرات آهن کل و عملکرد گیاهان در تیمارهای سرباره و لجن کورنیتر

نتایج تجزیه واریانس داده‌های نشان می‌دهد که اثر غذای سازی کود بر مقدار کل آهن گیاه در تیمارهای مختلف نمی‌باشد. در تیمارهای 10 و 11 نشان داده شده است.

به‌طور کلی مطلوب‌ترین تیمار در بالاترین گل‌فرشیت و

دنیایی کورنیتر در تیمار کود گاری می‌باشد که این تیمار دارای بالاترین

گل‌فرشیت گیاه می‌باشد. در این تیمار بالاترین گل‌فرشیت گیاه توسط کورنیتر در تیمارهای سرباره و لجن کورنیتر در سطح مختلف غذای سازی تفاوت معنی‌داری با هم نداشتند، ولی به طور کلی انسداده‌ای از لجن کورنیتر چهار غذای سازی، عملکرد بالاتری نسبت به سرباره داشته است. به جز تیمارهای سرباره، عملکرد آهن کل گیاه و عملکرد وزن حاصل در تیمار 10 دردس لجن کورنیتر نسبت به سایر تیمارها بیشتر بود. به طور کلی تیمار
جدول 11. میانگین عملکرد (µg/pot) و مقدار کل مگنزیوم گیاه ذرت (mg/pot) در تیمارهای کود گاری

<table>
<thead>
<tr>
<th>تیمار</th>
<th>عملکرد</th>
<th>لحیم</th>
<th>کمپوست</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1.10</td>
<td>3.15</td>
<td>1.10</td>
</tr>
<tr>
<td>K</td>
<td>1.50</td>
<td>3.50</td>
<td>1.50</td>
</tr>
<tr>
<td>W</td>
<td>0.90</td>
<td>2.70</td>
<td>0.90</td>
</tr>
</tbody>
</table>

1. میانگین‌های دریاچه‌ای حداکثر یک حرف مشترک، در سطح 1/10 آزمون LSD فاصله‌دار معنی دار می‌باشد.

2. عناصرهای S، K و W در 10/100 آهن خالص، تیمار 1/100 آهن خالص و

3. افزایش عملکرد در تیمارهای غنی می‌شود

نتیجه‌گیری

افزایش سریاره در تیمارهای غنی از 5 درصد تأثیری در افزایش آهن قابل استخراج مخلوط ناشی از ویاژی می‌باشد. سریاره در تیمار 5 درصد در زمان 90 روز خواص این سالند. می‌تواند تأثیر رضایت بخشی نسبت به سطح بالاتر سریاره را داشته باشد. سطح 10 درصد آهن خالص از گیاه کود گاری بیشتر آهن قادر است خارج در این تیمار ورده می‌باشد. استخراج را در تیمار وری کمپوست و در زمان حدود 60 روز

منابع مورد استفاده

1. اشاکی 1380. ع. م. مجزه‌ها و سریاره کودهای آهن ناخالص. دانشگاه صنعتی اصفهان.
2. دستوری ع. 1380. ع. م. خاک‌شناسی انتقال اثرهای کودهای آهن. دانشگاه صنعتی اصفهان.
3. سالاری، ع. 1380. ع. م. و مجزه‌ها و سریاره کودهای آهن. دانشگاه صنعتی اصفهان.
4. سالاری، ع. 1380. ع. م. و مجزه‌ها و سریاره کودهای آهن. دانشگاه صنعتی اصفهان.
کاربرد سرباره و لجن کنن‌کتور فولاد سازی در غنی سازی کود دامی ...

5. عباسپور، غ. م. کلیسا و ح. شریعت‌ماداری. 1383. کاربرد لجن کنن‌کتوراسیدی شده (ضایعات کارخانه فولاد) به عنوان کود آهن. مجله علوم و فنون کشاورزی و منابع طبیعی. 18(1): 61-67.
6. کلیسا م. 1374. کلروفن آهن در گیاهان و راه‌های مبارزه با آن. نشریه شماره 18، سازمان پارک‌ها و فضای سبز اصفهان.
7. محمودی ترکاشوند، ع. 1379. بررسی اثر سرباره کنن‌کتور (فولاد سازی) به عنوان اصلاح کننده در کاهش اسیدی و کود آهن در خاک‌های آهکی. پایان نامه کارشناسی ارشد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
8. محمود آبادی، ع. 1383. اثر لجن کنن‌کتور و سرباره ذوب آهن بر عملکرد ذرت و جذب برخی عناصر سنگین در سه خاک آهکی. پایان نامه کارشناسی ارشد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.